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We construct implementations of the PR-box using quantum and classical channels as state spaces. In both
cases our constructions are very similar and they share the same idea taken from general probabilistic theories
and the square state space model. We construct all quantum qubit channels that maximally violate a given CHSH
inequality, we show that they all are entanglement-breaking channels, that they have certain block-diagonal
structure, and we present some examples of such channels.
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I. INTRODUCTION

The Bell nonlocality is a well-known topic in quantum
theory, yet we still lack full understanding of its implications.
The research of Bell nonlocality was inspired by the famous
paradox of Einstein, Podolsky, and Rosen [1] that questioned
the completeness of quantum theory.

As it was later shown by Bell [2] the EPR paradox does
not question the completeness of quantum theory, but it rather
separates it from any other classical theory. This was demon-
strated by the well-known Bell inequalities, that constrain any
classical theory but are violated by quantum theory. Probably
the most well known and most studied of Bell inequalities
is the CHSH inequality [3] that can be violated by quantum
states and measurements, but this violation is constrained by
the Tsirelson bound [4]. On one hand this shows that quantum
theory is more nonlocal than any classical theory, on the other
hand, Popescu and Rohrlich proved that the CHSH inequality
may be violated even more by nonsignaling correlations [5,6].
Since then, it is a longstanding question whether the Tsirelson
bound does have any operational meaning for quantum theory.

It was later shown by Barrett that the conditional proba-
bility distribution identified in Ref. [5], now often called the
PR-box, can be generated by a nonsignaling theory [7], most
commonly known as the Boxworld GPT. A realization of the
PR-box in the real world would have several rather interesting
implications, as shown in Refs. [8–10], see also Ref. [11] for
a review.

It has been demonstrated several times that nonsignaling
classical and quantum channels provide realizations of the
PR-box [12–15]. As described in Ref. [14], such constructions
can be put into the framework of general probabilistic theories
(or GPT for short), in the following way: since the set of
classical (or quantum) channels is compact and convex, it can
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be seen as a state space of some GPT. One can see nonsignal-
ing channels as elements of a joint state space, equivalent
to entangled states in quantum theory, and one can describe
measurement procedures and CHSH experiments within this
theory, yielding maximal violation of the CHSH inequality.

One has to be careful when using channels in this way. The
formalism implies that we are able to use the channel only
once, hence one can exploit the input state incompatibility of
measurements on channels [16]. From a realistic viewpoint it
is important to remember that using a nonlocal channel may
take some time and resources, but the channel is considered to
permit communication only if the channel is signaling.

In the present paper, we focus on the structure of the
nonsignaling channels such that the CHSH inequality is max-
imally violated for some choice of channel measurements.
Such channels will be called the PR-channels. All the PR-
channels obtained so far are in fact classical-to-classical and
it is natural to ask whether there are some truly quantum
nonsignaling PR-channels. Another important question is the
possibility of instantaneous implementation of such channels.
Since PR-channels are nonsignaling, their instantaneous im-
plementation is not forbidden by special theory of relativity
simply because no information is transferred, yet it is believed
that such implementations do not exist.

We make a step toward addressing these questions, in that
we present a characterization of the structure of all implemen-
tations of the PR-box in the framework of GPTs, especially
for theories in which classical and quantum channels play
the role of states. In any GPT, the pairs of measurements
appearing in such implementations must be maximally incom-
patible and we show how the corresponding bipartite states are
constructed from such pairs.

We apply the obtained results mainly to qubit bipartite
nonsignaling channels, where both parts of the input and
output are qubit spaces. Here we give a full description of all
possible pairs of maximally incompatible two-outcome chan-
nel measurements and of all qubit PR-channels. In particular,
we prove that all these channels are necessarily entanglement
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breaking. We believe that our results will bring more insight
into the structure of PR-channels, in particular to the question
of existence of their instantaneous implementation.

The paper is organized as follows. In Sec. II we give a
brief overview of general probabilistic theories as it will be
used in later calculations. In Sec. III we present the method
of finding all bipartite nonsignaling states that maximally
violate the CHSH inequality and show that maximally incom-
patible measurements are necessary, the main result is stated
as Theorem 1. In Sec. IV, we present the (known) PR-box
implementation by classical channels in the light of the results
of Sec. III. The main purpose of Sec. V is to introduce the GPT
of quantum channels and show how the known PR-box imple-
mentations (and their slight generalizations) are obtained by
our construction. In Sec. VI we derive the structure of all qubit
PR-channels. The main result is in Theorem 2 where we prove
that all qubit PR-channels must be entanglement breaking and
we provide some examples. Some more technical proofs can
be found in the Appendixes.

II. OVERVIEW OF GENERAL PROBABILISTIC
THEORIES AND TENSOR PRODUCTS

General probabilistic theories (GPTs for short) provide a
framework that uses operational axioms to describe various
possible physical theories. GPTs include the classical and
the quantum theory, hence this setting allows us to compare
these two theories as well as to construct theories that are
different from both. Among other things, GPTs provide a
framework to describe measurements of a physical systems in
a general and mathematically clear way. We briefly introduce
the formalism below, which allows us to obtain general results
applicable to various state spaces. Since it will be sufficient
for all of our calculations, we will only consider theories with
finite-dimensional state spaces. This section is only intended
to settle the notation that we use; for a full review of GPTs
we refer the reader to Ref. [17]. A nice introduction to GPTs,
including a historical account, can be found in Ref. [18].

The main idea behind GPTs is the following: both in
(finite-dimensional) classical and quantum theory, the state
space (i.e., the set of all preparation procedures) is a compact
convex subset of a real finite-dimensional vector space. We
will generalize both theories by assuming that the state space
is some compact convex subset of a finite-dimensional vector
space.

Any GPT can be described as a set of physical systems it
contains. In operational terms, any system is determined by
the set of allowed preparation procedures (states) and yes-no
experiments (effects).

The set of states has a natural convex structure, because if x
and y are preparable states of a system, then we can randomize
the preparation to prepare the convex combination λx + (1 −
λ)y, which we again postulate to be a viable state. One can
also argue that the state space must be closed (in a for now
unspecified topology) as if we can prepare a series of states
xn converging to x, then we should be also able to prepare x
(albeit with infinite resources).

An effect is described by an affine function mapping states
to probabilities of the “yes” outcome, represented by the in-
terval [0, 1]. Recall that a function f is affine if it respects the

convex structure: f (λx + (1 − λ)y) = λ f (x) + (1 − λ) f (y),
for any states x and y and any λ ∈ [0, 1]. We will require that
for any two distinct states there is an effect that distinguished
these states strictly better than a random guess. This implies
that the state space must be bounded. Indeed, if the state space
would have a direction of recession in which it would go to
infinity (i.e., it would be unbounded), any effect would have to
be zero in this direction, so we would be unable to distinguish
these states.

We also require the state space to be embedded in a real
finite-dimensional vector space equipped with the Euclidean
topology. This last assumption is only practical as it allows
us to stick only to rather simple mathematics. Note that it is
well known that any bounded and closed subset of a finite-
dimensional real vector space is compact, hence the state
space is compact.

A. Structure of GPTs

As we have seen above, the basic mathematical framework
for GPT consists of compact convex sets in finite-dimensional
Euclidean spaces and affine functions on them. Below, we
introduce the notations and further assumptions, applied
throughout the paper.

Let V be a finite-dimensional real vector space with the
standard Euclidean topology and let K ⊂ V be a compact
convex set, interpreted as the state space of a system in a
GPT. Let A(K ) denote the linear space of real-valued affine
functions on K . We will denote constant functions by the value
they attain. Let f , g ∈ A(K ), then we introduce an ordering
to A(K ) as follows: f � g if and only if for every x ∈ K we
have f (x) � g(x). Let A(K )+ = { f ∈ A(K ) : f � 0} denote
the convex, closed, generating, pointed cone of positive func-
tions and let E (K ) = { f ∈ A(K ) : 0 � f � 1} denote the set
of effects on K , called the effect algebra. The effect algebra
E (K ) is important in GPTs since (as will be explained below)
the effects describe two-outcome measurements of the theory.

Denote A(K )∗ the dual of A(K ) and denote A(K )∗+ the
positive cone dual to A(K )+, i.e.,

A(K )∗+ = {ψ ′ ∈ A(K )∗ : ψ ′( f ) � 0,∀ f ∈ A(K )+}.
The cone A(K )∗+ gives rise to an ordering on A(K )∗: let
ψ, ϕ ∈ A(K )∗, then ψ � ϕ if and only if ψ − ϕ ∈ A(K )∗+,
i.e. if ψ − ϕ � 0. The state space K is affinely isomorphic to
the subset {ψ ′ ∈ A(K )∗+ : ψ ′(1) = 1}, see chap. 1, Theorem
4.3 of Ref. [19]. Note that by definition, we consider all
states to be normalized, which is expressed by the condition
ψ (1) = 1. For simplicity we will omit the above isomorphism
and treat K as a subset of A(K )∗.

It follows that any 0 �= ψ ∈ A(K )∗+ can be expressed
uniquely as ψ = αx for α > 0 and x ∈ K . The cone A(K )∗+
is generating, so we can express every ψ ∈ A(K )∗ as ψ =
αx − βy for some x, y ∈ K and α, β ∈ R, α, β � 0.

Now we will present a simple definition of a two-outcome
measurement in GPTs. Generally speaking, a measurement
is a procedure that assigns probabilities to possible measure-
ment outcomes. For simplicity we will restrict ourselves to
outcomes labeled by the numbers −1, 1. Let A be such a
measurement and let Px(ε|A) denote the probability of ob-
taining the outcome labeled as ε ∈ {−1, 1} when we measure
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a system in the state x ∈ K . Since the outcome probabilities
must respect probabilistic mixtures, the map x �→ Px(1|A) is
an effect and x �→ Px(−1|A) = 1 − Px(1|A) is an effect as
well. Although in general the measurements in the theory
may be restricted, in this work we will assume that any effect
f ∈ E (K ) gives rise to such a measurement, determined for
x ∈ K as

Px(1|A) = f (x),

Px(−1|A) = (1 − f )(x) = 1 − f (x).

Such an assumption is called the no-restriction hypothesis
[20], see also Ref. [21] for a recent treatment.

Measurements with a finite number of outcomes are simi-
larly described by collections of effects fi ∈ E (K ), such that∑

i fi = 1. For a more general treatment of measurements see
e.g., Sec. 2.2 of Ref. [22].

We now list some examples of state spaces, and relations
between them, that are basic for the present work.

Example 1 (Classical bit). The simplest (nontrivial) exam-
ple is the one-dimensional simplex SC . Let the extreme points
(deterministic states) in SC be denoted by s0, s1, then SC =
conv(s0, s1). Since all affine functionals are fully determined
by their values at s0, s1, we have A(SC ) 
 R2 and the set
of effects is identified with E (SC ) 
 [0, 1]2. Let π ∈ E (SC )
be the effect determined by π (s0) = 0, π (s1) = 1, then π :
SC → [0, 1] is an affine isomorphism.

Example 2 (Quantum state space). Let H be a finite-
dimensional complex Hilbert space. Let Bh(H) denote the set
of self-adjoint operators on H and let SH = {ρ ∈ Bh(H) :
ρ � 0, Tr(ρ) = 1} denote the set of density operators (or
states) on H, where ρ � 0 means that ρ is positive semidefi-
nite and Tr(ρ) denotes the trace of ρ. Let 1 denote the identity
operator. Then A(SH) 
 Bh(H) and E (SH) 
 E (H), where
E (H) = {0 � E � 1, E ∈ B(H)} is the set of quantum ef-
fects. The quantum measurements will be thus described by
collections E1, . . . , En of positive operators such that

∑
i Ei =

1, such a collection is called a POVM [23]. We will mostly
treat the qubit case, that is dim(H) = 2.

Example 3 (Square state space). This state space is also
called the gbit and appears as the state space of systems in a
theory called GNST introduced in Ref. [7], now also known as
the Boxworld GPT. This theory is one of the most commonly
used examples of a GPT other than classical or quantum
theories. The square S is a state space with four extreme points
s00, s10, s01, s11, such that

1
2 (s00 + s11) = 1

2 (s10 + s01).

Let π0, π1 ∈ E (S) be given, for i, j ∈ {0, 1}, as

π0(si j ) = i, π1(si j ) = j,

then A(S) = span({π0, π1, 1}) and E (S) = conv({π0, 1 −
π0, π1, 1 − π1, 0, 1}). Moreover, we can see that {s00, s10 −
s00, s01 − s00} forms a linear basis of A(S)∗, which is dual to
{π0, π1, 1}. Note also that the map

s �→ (π0(s), π1(s)), s ∈ S

is an affine isomorphism of S onto [0, 1]2 
 SC × SC , its
inverse is given by

(λ,μ) �→ s00 + λ(s10 − s00) + μ(s01 − s00), λ, μ ∈ [0, 1].

FIG. 1. Two equivalent ways of describing the same measure-
ment A on the channel 
 ∈ CC . On the left we have the viewpoint
of the GPT from Example 4 where channels are considered as states
and the channel is measured. On the right-hand side we have the
implementation of the measurement, where s ∈ SC is used as an
input into the channel 
 and the outcome, which is 
(s) ∈ SC is
measured by M.

The notations π , π0, π1 introduced in the above examples will
be kept throughout.

Example 4 (Classical bit channels). A channel 
 : SC →
SC is defined as an affine map of SC into itself; a simple
example of a channel is the identity channel id : SC → SC .
Let CC be the set of all channels (on the classical bit), then
since π ◦ 
 is an effect on SC for every 
 ∈ CC and π is an
isomorphism, we see that

CC 
 E (SC ) 
 [0, 1]2 
 S.

Through this isomorphism, we establish a relation between
classical bit channels and the Boxworld GPT.

The effect π0 (π1) on S corresponds to the effect in E (CC ),
determined as 
 �→ π (
(s0)) (
 �→ π (
(s1))). More gener-
ally, each effect in E (CC ) is a convex combination of effects
of the form

Fti, fi (
) := fi(
(ti )),

where ti ∈ SC and fi ∈ E (SC ) (clearly, we may restrict to the
extreme points ti ∈ {s0, s1}). The corresponding measurement
can be seen as a protocol where we choose the state ti with
some probability λi, input it into the measured channel 
 and
apply the effect fi to the output of the channel. For such a
measurement A and a channel 
 ∈ CC , we have

P
(1|A) =
∑

i

λiP
(ti )(1|Mi ),

where Mi is the measurement given by fi, see also Fig. 1.
Note that we can obtain similar relations for finite-

dimensional simplices, their products and channels between
them. The (for us) most important example of quantum chan-
nels will be described later in Sec. V.
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B. Incompatible measurements in GPT

Let A, A′ be two-outcome measurements on K given by
the effects fA, fA′ ∈ E (K ) respectively, then we say that they
are compatible [16,24–26] if there is a four-outcome measure-
ment G with outcomes (−1,−1), (−1, 1), (1,−1), (1, 1) such
that for all x ∈ K we have

Px(1|A) = Px((1, 1)|G) + Px((1,−1)|G),

Px(1|A′) = Px((1, 1)|G) + Px((−1, 1)|G).

Equivalently, measurements A and A′ are compatible if and
only if there is p ∈ E (K ) such that

fA � p

fA′ � p

1 + p � fA + fA′

see Ref. [27] for a proof. This definition of compatibility of
measurements generalizes to GPTs the well-known notion of
compatibility (or joint measurability) of POVMs in quantum
theory, which itself generalizes the notion of commutativity of
projective measures, see Ref. [26] for a review.

The degree of compatibility of A and A′ is defined as

DegCom(A, A′) = sup
T,T′

{λ ∈ [0, 1] : λA + (1 − λT),

λA′ + (1 − λT′) are compatible},
where T and T′ are trivial or coin-toss measurements de-
termined by constant effects μ1, μ′1 for μ,μ′ ∈ [0, 1]. It is
known that we always have DegCom(A, A′) � 1

2 [28] and we
say that the measurements A and A′ are maximally incompat-
ible if DegCom(A, A′) = 1

2 .
By Ref. [29], the effects fA, fA′ ∈ E (K ) correspond to

maximally incompatible measurements A, A′ if and only if
there are four points x00, x10, x01, x11 ∈ K satisfying

1
2 (x00 + x11) = 1

2 (x10 + x01) (1)

and such that

fA(x00) = fA(x01) = fA′ (x00) = fA′ (x10) = 0, (2)

fA(x10) = fA(x11) = fA′ (x01) = fA′ (x11) = 1. (3)

We will call such a set of points xi j a witness square for
fA, fA′ , or equivalently for A, A′.

Example 5. Let A0 denote the two-outcome measurement
on the square determined by effect π0 and let A1 be deter-
mined by the effect π1, see Example 3. It is immediate that A0

and A1 are maximally incompatible, the witness square being
formed by the extreme points {si j}. The existence of maxi-
mally incompatible measurements on S was first observed in
Ref. [28].

We now present an equivalent characterization of maxi-
mally incompatible measurements which shows that all such
pairs are, in some sense, isomorphic to the pair A0, A1 on
S. This characterization was proved in a more general form
in Corollary 5 of Ref. [30], we include a short proof for the
convenience of the reader.

Proposition 1. The measurements A, A′ on the state space
K corresponding to the effects fA, fA′ ∈ E (K ), respectively,
are maximally incompatible if and only if there are affine

maps ι : S → K and � : K → S such that � ◦ ι = id and for
i, j ∈ {0, 1} we have

fA(ι(si j )) = π0(si j ), (4)

fA′ (ι(si j )) = π1(si j ). (5)

Proof. Assume that the maps with said properties exist,
then the points ι(si j ) ∈ K form a witness square, which im-
plies that the measurements are maximally incompatible.

If the measurements are maximally incompatible, then let
xi j ∈ K , i, j ∈ {0, 1}, be the corresponding witness square.
Now define the maps ι : S → K and � : K → S as follows:
ι is determined by the property that the images of the vertices
of S form the witness square:

ι(si j ) = xi j (6)

and for x ∈ K we put

�(x) = fA(x)(s10 − s00) + fA′ (x)(s01 − s00) + s00. (7)

We have

�(ι(si j )) = �(xi j ) = si j

and so � ◦ ι = id follows as well. Note that Eq. (4) and (5)
are satisfied simply because ι(si j ) = xi j . �

The maps in Proposition 1 can be uniquely extended to
positive maps ι : A(S)∗ → A(K )∗, � : A(K )∗ → A(S)∗, that
is, linear maps preserving the positive cones. Note also that
the map � is uniquely determined by the given pair of mea-
surements while ι is given by the choice of the witness square,
which may be nonunique.

Corollary 1. Let A, A′ and B, B′ be two pairs of maximally
incompatible measurements on a state space K defined by the
effects fA, fA′ , fB, fB′ . Let �A, ιA and �B, ιB be the corre-
sponding maps. Then there is an affine map T : K → K , such
that fB = fA ◦ T , fB′ = fA′ ◦ T and

ιA = T ◦ ιB, �B = �A ◦ T .

Proof. Put T = ιA ◦ �B, all the properties are checked
straightforwardly. �

Remark 1. Note that the above results imply that {A0, A1}
is, up to affine isomorphisms, the unique maximally incom-
patible pair of two-outcome measurements on S.

C. Tensor products and bipartite systems in GPTs

To describe the state spaces of composite systems in GPTs,
we need the notion of a tensor product of the state spaces. For
simplicity, we will only consider the tensor product of a state
space K with itself.

There are several ways to define the tensor product of
compact convex sets, but there is a minimal and a maximal
one. All of the possible tensor products are compact convex
subsets in the tensor product A(K )∗ ⊗ A(K )∗.

The minimal tensor product, denoted by K⊗̇K , is the con-
vex hull of the points of the form x ⊗ y for x, y ∈ K , i.e.,

K⊗̇K = conv({x ⊗ y : x, y ∈ K}).

In other words, this is the smallest composite state space
containing all locally prepared states. The maximal tensor

042208-4



STRUCTURE OF QUANTUM AND CLASSICAL … PHYSICAL REVIEW A 102, 042208 (2020)

product, denoted K⊗̂K , is the state space of all nonsignaling
states, that is

K⊗̂K = {ψ ∈ A(K )∗ ⊗ A(K )∗ : ψ ( f ⊗ g) � 0

∀ f , g ∈ A(K )+, (1 ⊗ 1)(ψ ) = 1}.
To give more insight into these definitions, we will look at
state spaces of quantum theory (Example 2). In this case,
SH⊗̇SH is the set of all separable states and SH⊗̂SH is the
set of all (normalized) entanglement witnesses, see Definition
6.38 in Ref. [23].

Every GPT in which we want to describe bipartite systems
must come equipped with a composition rule on how to form
the joint state space of two (or more) systems. We will denote
the joint state space as K⊗̃K and it will represent the set of
all bipartite states for the given system. Note that K⊗̃K does
not have any general definition as it is specified by the theory
we are working with. Some properties of the composition rule
are sometimes imposed (such as it is given by a symmetric
monoidal structure), but here we only require that it is a state
space such that

K⊗̇K ⊆ K⊗̃K ⊆ K⊗̂K.

In quantum theory, the joint state space is SH⊗̃SH =
SH⊗H so that all of the above inclusions are strict. On the
other hand, for the classical bit (or any simplex) we have
SC⊗̇SC = SC⊗̂SC , so that the joint state space is unique,
denoted by SC ⊗ SC . It can be easily seen that SC ⊗ SC

can be identified with the three-dimensional simplex, with
vertices labeled by {(i, j), i, j = 0, 1}. In the Boxworld GPT,
the composition rule is the maximal tensor product, so that
S⊗̃S = S⊗̂S. Here the minimal tensor product S⊗̇S is quite
different from S⊗̂S (the GPT with the composition rule
S⊗̃S = S⊗̇S is called GLT in Ref. [7]).

Consider a state space K and let K⊗̃K be the joint state
space. Let A, B be two-outcome measurements on K given
by effects fA, fB ∈ E (K ) and let A ⊗ B denote the four-
outcome measurement obtained by measuring A on the first
part and B on the other. This measurement is determined
by the effects { fA ⊗ fB, (1 − fA ) ⊗ fB, fA ⊗ (1 − fB), (1 −
fA ) ⊗ (1 − fB)} and it is clear that K⊗̂K is the largest state
space such that all such locally prepared measurements are
valid. Note also that for any f ∈ E (K ) and x ∈ K⊗̂K one can
define ( f ⊗ id )(x) ∈ A(K )∗+ as the unique functional such
that for any other g ∈ E (K ) we have

[( f ⊗ id )(φ)](g) = ( f ⊗ g)(φ).

In particular, (1 ⊗ id )(x) and (id ⊗ 1)(x) belong to K and
define the two marginals of x which correspond to partial
traces in quantum theory.

D. Review of the CHSH inequality

We provide a very short introduction to the CHSH inequal-
ity, in the setting of nonlocal boxes. These are defined as a
black box, with two inputs with possible values A, A′ and
B, B′, respectively, and two outputs, each with values 1 or
−1. It is assumed that such a box describes the situation when
two experimenters (Alice and Bob), each on their part of a

bipartite system, apply one of a given pair of two-outcome
measurements {A, A′} resp. {B, B′}.

Any nonlocal box x is fully described by the outcome
probabilities Px(ε, η|C, D), with C = A or A′, D = B or B′
and ε, η ∈ {−1, 1}. Assume that the measurements A and B
are chosen. Then Alice will see the outcome 1 on her part
with the probability Px(1, 1|A, B) + Px(1,−1|A, B). For this
to be a well-defined marginal outcome probability of A, we
require that it stays the same if the other measurement is B′,
that is,

Px(1, 1|A, B) + Px(1,−1|A, B)

= Px(1, 1|A, B′) + Px(1,−1|A, B′). (8)

This condition, together with the analogical condition

Px(1, 1|A, B) + Px(−1, 1|A, B)

= Px(1, 1|A′, B) + Px(−1, 1|A′, B) (9)

are called the nonsignaling conditions [4,5], because they
mean that neither side can signal to the other by only using
different local measurements and without announcing the out-
come of the measurement. Nonlocal boxes satisfying these
conditions, also called nonsignaling boxes, are of particular
interest in the theory of Bell inequalities, see also Ref. [11]. It
is clear that if K is a state space in a GPT, then any x ∈ K⊗̃K
and any measurements {A, A′} of the first part and {B, B′} on
the other implement a nonsignaling box.

The central quantity for the formulation of the CHSH in-
equality is the correlation E (A, B) between the measurements
A and B, defined as

E (A, B) = Px(1, 1|A, B) − Px(1,−1|A, B)

− Px(−1, 1|A, B) + Px(−1,−1|A, B).

It is straightforward that we have −1 � E (A, B) � 1. For
the two pairs of measurements A, A′ and B, B′, the CHSH
quantity XCHSH is given as

XCHSH = E (A, B) + E (A, B′) + E (A′, B) − E (A′, B′).

It is known that in classical theories we have |XCHSH| � 2,
this is called the CHSH inequality. This inequality is vio-
lated in quantum theory, where the Tsirelson bound [4] gives
|XCHSH| � 2

√
2. The maximal value reachable by a nonsignal-

ing theory coincides with the algebraic maximum, which is
|XCHSH| = 4.

The nonsignaling box attaining the value XCHSH = 4 was
defined by Popescu and Rohrlich [5], it is called the PR-box.
The PR-box is determined by the outcome probabilities

Px(ε, η|C, D) =
⎧⎨
⎩

1

2

if CD �= A′B′ and εη = 1

or CD = A′B′ and εη = −1
0 otherwise.

(10)

It can be seen that the value XCHSH = −4 is obtained from
the PR-box by relabeling the outcomes on one of the sides
and that this is the only other possibility for maximal CHSH
violation. We provide some more details in Appendix A for
the convenience of the reader.
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III. IMPLEMENTATIONS OF THE PR-BOX

The aim of this section is to characterize all implementa-
tions of the PR-box in the GPT framework, that is, for a state
space K , we want to describe the states φ ∈ K⊗̃K and pairs
of two-outcome measurements {A, A′} and {B, B′} such that
the corresponding outcome probabilities maximally violate
the CHSH inequality.

The best known implementation of the PR-box is provided
in the Boxworld GPT. It was shown in Ref. [7] that all
nonsignaling boxes can be implemented with elements of the
state space S⊗̂S and the outcome probabilities are obtained
by applying the measurements given by A = B = A0 and
A′ = B′ = A1. The state in S⊗̂S corresponding to the PR-box
is given by

φS = 1
2 ((s00 − s10) ⊗ s00 + s11 ⊗ s10 + s10 ⊗ s01), (11)

up to local isomorphisms, this is the only implementation of
the PR-box on S, see Appendix B for a proof.

It is known that for some systems the degree of com-
patibility of measurements is tied to violation of the CHSH
inequality [24,31] and, as we have seen in Proposition 1, all
maximally incompatible pairs are obtained from the square
state space by embedding it into other state spaces. It is there-
fore not surprising that all implementations of the PR-box are
obtained from the above implementation on S.

Theorem 1. Let K be a state space and let {A, A′}, {B, B′}
and φ ∈ K⊗̃K be an implementation of the PR-box. Then
both pairs {A, A′} and {B, B′} are maximally incompatible.
Moreover, let ιA, �A and ιB, �B be the maps for these pairs
given by Proposition 1. Then

φ = (ιA ⊗ ιB)(φS ) + φ⊥

where φS ∈ S⊗̂S is given by (11) and φ⊥ ∈ ker(�A ) ⊗
ker(�B).

Proof. The proof is in Appendix C.
We see from this result that maximally incompatible pairs

of measurements are necessary for maximal CHSH violation,
moreover, having such pairs of measurements on both sides,
we can construct all possible states. While existence of such
measurements is a property of K , we need also a joint state
space K⊗̃K that contains at least one of the candidate states. It
follows from the next result that if we work with the maximal
tensor product, maximal incompatibility is also sufficient for
existence of an implementation of the PR-box.

Proposition 2. Let K be a state space on which there exists a
pair of maximally incompatible measurements and let ι : S →
K be the corresponding map. Then

(ι ⊗ ι)(φS ) ∈ K⊗̂K.

Proof. Since ι extends to a positive map A(S)∗ → A(K )∗
with the respective positive cones, the assertion follows by
the fact that positive maps are completely positive for the
maximal tensor product. In more details: note that the adjoint
map ι∗ : A(K ) → A(S), given by

ι∗( f )(s) = f (ι(s)), s ∈ S, f ∈ A(K )

is again positive. Hence, for any h1, h2 ∈ A(K )+ we have

(h1 ⊗ h2)[(ι ⊗ ι)(φS )] = [(ι∗h1) ⊗ (ι∗h2)](φS ) � 0,

as φS ∈ S⊗̂S and ι∗hi ∈ A(S)+. It follows that (ι ⊗ ι)(φS ) ∈
K⊗̂K . �

We finish this section by observing that the element (ι ⊗
ι)(φS ), corresponding to the special case φ⊥ = 0 in Theorem
1, can be constructed from a witness square {xi j} of the maxi-
mally incompatible pair of measurements as

(ι ⊗ ι)(φS ) = 1
2 [(x00 − x10) ⊗ x00 + x11 ⊗ x10 + x10 ⊗ x01].

This is immediate from (6) and (11). It is clear that we can
construct a similar state for different measurements on each
side, using some respective witness squares.

IV. CLASSICAL CHANNELS AS IMPLEMENTATIONS
OF THE PR-BOX

In this section we discuss known results, showing that
nonsignaling classical channels implement the PR-box.

As we have seen in Example 4, the set of classical bit
channels is isomorphic to the square state space. By a similar
reasoning as in the proof of Proposition 2, we can extend this
to an isomorphism of the maximal tensor products CC⊗̂CC

and S⊗̂S. In this way, we may view the Boxworld as a GPT
based on classical channels. It this section, we will describe
the PR-box implementation (11) in this setting.

It is immediate from the definition that the nonlocal boxes
can be identified with classical bipartite channels SC ⊗
SC → SC ⊗ SC , where the four vertices of SC ⊗ SC are
labeled by elements of {A, A′} × {B, B′} in the input space and
by elements of {1,−1}2 in the output. Since S⊗̂S is identified
with the nonsignaling boxes, we see from the above remarks
that CC⊗̂CC can be described as the set of nonsignaling classi-
cal bipartite channels.

As shown in Example 4, the measurements on CC corre-
sponding to A0, A1 on S are given by the effects Fs0,π and Fs1,π ,
respectively (where π is as in Example 1). Note also that the
corresponding maps ι and � are precisely the isomorphism
S → CC and its inverse. To construct the bipartite channel 
C

corresponding to the state φS of (11), we first find the elements
of CC corresponding to the vertices of S. Looking at Example
4, the channels 
i j 
 si j are determined by

π (
i j (s0)) = i, π (
i j (s1)) = j,

hence 
00 = 1SC (·)s0 and 
11 = 1SC (·)s1 are constant chan-
nels, 
01 = id and 
10 is the negation channel, given by
s0 �→ s1 and s1 �→ s0. It is now easily checked that 
C is given
by


C (s0 ⊗ s0) = 
C (s0 ⊗ s1) = 
C (s1 ⊗ s0)

= 1
2 (s0 ⊗ s0 + s1 ⊗ s1) (12)


C (s1 ⊗ s1) = 1
2 (s0 ⊗ s1 + s1 ⊗ s0). (13)

It can be also checked directly that this channel, together with
the above pair of measurements applied on both sides, maxi-
mally violates the CHSH inequality. The protocol is depicted
on Fig. 2. As in the case of S, this is the only implementation
of the PR-box in this setting, up to local isomorphisms.
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FIG. 2. Alice and Bob can use the channel 
C to maximally
violate the CHSH inequality as follows: Alice inputs the state si

and Bob inputs the state s j where i, j ∈ {0, 1}. This choice exactly
corresponds to the choice of channel measurement A = B or A′ = B′

on either side. Finally both Alice and Bob apply the measurement
M corresponding to the effect π ∈ E (SC ). Note that for both Alice
and Bob the procedure of inputting a testing state into the channel
and measuring the outcome comprises a single measurement on the
bipartite channel itself. Also note that both Alice and Bob can only
access their respective input and output and since the channel 
C is
nonsignaling they can not obtain any information about each others
choices of channel measurement.

V. QUANTUM CHANNELS AS IMPLEMENTATIONS
OF THE PR-BOX

We now get to the most important example of a state space
for this work. Let H be a finite-dimensional Hilbert space and
let C(H) denote the set of all quantum channels on B(H), that
is, all completely positive and trace preserving linear maps
Bh(H) → Bh(H). Let {|i〉}dim(H)

i=1 be an orthonormal basis of
H, then |ψ+

dim(H)〉 = ∑dim(H)
i=1 |i〉 ⊗ |i〉 ∈ H ⊗ H is a multiple

of the maximally entangled state. The Choi matrix of a chan-
nel 
 is given as C(
) = (
 ⊗ id )(|ψ+

dim(H)〉〈ψ+
dim(H)|) ∈

B(H ⊗ H). The set C(H) is isomorphic to the set of Choi
matrices

Choi(H) := {A ∈ Bh(H ⊗ H) : A � 0, Tr1(A) = 1},
where Tr1 is the partial trace over the first Hilbert space.
Clearly, C(H) is a compact convex subset of the finite-
dimensional real vector space of linear maps on Bh(H) and
can therefore be treated as a state space in some GPT. The
following description of the quantum channel GPT is based
on the ideas of Ref. [32].

The measurements of quantum channels are in principle
similar to measurements of classical channels described in
Example 4. Clearly we can input any quantum state into the
channel in question and measure the outcome, but this does
not describe all of the possible measurements on quantum
channels for a simple reason: the input state can also be en-
tangled to other system. It turns out that all measurements on

quantum channels are described as procedures where we input
a bipartite and potentially entangled state ρ ∈ Bh(H ⊗ H′)
into the channel (possibly tensored with identity) and measure
the outcome. The measurement on channels given by ρ and a
quantum measurement described by the POVM E1, . . . , En is
determined by the outcome probabilities

P
(i|E) = Tr[(
 ⊗ id )(ρ)Ei]

for i ∈ {1, . . . , n} and any quantum channel 
 : Bh(H) →
Bh(H). Any effect on channels has the form

Fρ,E (
) := Tr[(
 ⊗ id )(ρ)E ]

for some effect E and input state ρ. Note also that this expres-
sion is not unique. In particular, we can always assume the
state ρ to be pure as we can always purify it by enlarging the
Hilbert space H′.

We can describe the measurements in an equivalent way,
using the Choi matrices. Then there are operators F1, . . . , Fn ∈
Bh(H ⊗ H) such that

P
(i|E) = Tr[C(
)Fi]

for i ∈ {1, . . . , n}. One can show that we may always choose
Fi � 0 for all i ∈ {1, . . . , n} and we must have

∑n
i=1 Fi = 1 ⊗

σ where σ ∈ SH. Such a collection of operators F1, . . . , Fn

is called a process POVM, or PPOVM, or a quantum tester,
which were first introduced in Refs. [32,33]. This passage
from quantum channels to Choi matrices is directly related
to viewing the quantum channels in the GPT picture, see also
Fig. 3.

We now need to specify the joint state space C(H)⊗̃C(H).
This will be defined as the set of completely positive maps in
C(H)⊗̂C(H), which is precisely the set Cns(H ⊗ H) of bipar-
tite nonsignaling (or causal) channels, as defined in Ref. [12].
On the set of Choi matrices, it can be seen that the set of
positive elements in Choi(H)⊗̂Choi(H) is isomorphic to the
set of Choi matrices of elements in Cns(H ⊗ H), via the map

id1 ⊗ SWAP23 ⊗ id4 : B(H⊗4) → B(H⊗4),

where SWAP denotes the swap gate, that is for X,Y ∈ B(H)
we have

SWAP(X ⊗ Y ) = Y ⊗ X.

We next describe a pair of maximally incompatible two-
outcome measurements on C(H). Let ρ1, ρ2, σ1, σ2 ∈ SH,
such that ρ1ρ2 = σ1σ2 = 0. Then there exist projections M, N ,
such that Mρ1 = ρ1, Mρ2 = 0, Nσ1 = σ1, Nσ2 = 0. Also let
us denote M⊥ = 1 − M, N⊥ = 1 − N . Let the two-outcome
measurements C1, C2 be given by the effects Fσ1,M and Fσ2,M .
Consider the channels Bh(H) → Bh(H) given for X ∈ Bh(H)
as


00(X ) = Tr(X )ρ2,


10(X ) = Tr(NX )ρ1 + Tr(N⊥X )ρ2,


01(X ) = Tr(NX )ρ2 + Tr(N⊥X )ρ1,


11(X ) = Tr(X )ρ1.

It is straightforward to verify that the measurements C1, C2

are maximally incompatible and the channels 
00, 
10, 
01,
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ρ

Φ

M

Implementation

Φ

ρM

CΦ

F

Choi matrix/GPT picture

FIG. 3. Description of a measurement on quantum channels. On
the left, we have an implementation of the measurement with an
input state ρ of the system composed with an ancilla and the final
measurement M, which is a usual quantum measurement described
by a POVM. Note that it is not necessary to consider convex combi-
nations, since these can be included into the ancilla. The right side
shows the same measurement represented by the PPOVM F applied
on the Choi matrix C
, obtained from 
 by applying the channel to
(one part) of the state |ψ+

dim(H)〉. This is depicted as the bending of
the input wire of 
. Similarly, the PPOVM F is the link product of
ρ and M [32], which is obtained by application of |ψ+

dim(H)〉 on parts
of the inputs, as shown in the picture. The representation of 
 by its
Choi matrix C
 can be straightforwardly interpreted as viewing the
set of channels in the GPT picture.


11 form a witness square for C1, C2. Let ι : S → C(H) be
the map (6) for this witness square.

Let 
 = (ι ⊗ ι)(
S ) be the tensor product element as de-
scribed in Proposition 2. Let us denote ρcor = 1

2 (ρ1 ⊗ ρ1 +
ρ2 ⊗ ρ2) and ρac = 1

2 (ρ1 ⊗ ρ2 + ρ2 ⊗ ρ1). One can check
that for X,Y ∈ Bh(H), we have


(X ⊗ Y ) = 1
2 [(
00(X ) − 
10(X ) ⊗ 
00(Y )

+ 
11(X ) ⊗ 
10(Y ) + 
10(X ) ⊗ 
01(Y )]

= Tr[(N⊥ ⊗ N⊥)(X ⊗ Y )]ρcor

+ Tr[(1 ⊗ 1 − N⊥ ⊗ N⊥)(X ⊗ Y )]ρac.

By linearity, for every ρ ∈ SH⊗H we have


(ρ) = Tr[(N⊥ ⊗ N⊥)(ρ)]ρac

+ Tr[(1 ⊗ 1 − N⊥ ⊗ N⊥)(ρ)]ρcor. (14)

It is easy to see that this is indeed a quantum channel, so that
we have 
 ∈ Cns(H ⊗ H) = C(H)⊗̃C(H). It follows by The-
orem 1, but is also straightforward to verify, that the channel

 and the measurements A = B = C1 and A′ = B′ = C2 are
an implementation of the PR-box. The protocol is similar to
the one used in the case of classical channels: Alice and Bob
share the bipartite channel 
 and they both can choose the
input state σ1 or σ2 each on their part of the channel, followed
by the measurement {M, M⊥} on their part of the output.

Example 6. The above pair of maximally incompatible
measurements is a generalization of an example studied in
Refs. [16,29], with dim(H) = 2 and N = M = ρ1 = σ1 =
|0〉〈0| and N⊥ = M⊥ = ρ2 = σ2 = |1〉〈1|. The corresponding
channel has the form


(ρ) = 〈11|ρ|11〉 1
2 (|01〉〈01| + |10〉〈10|)

+ (1 − 〈11|ρ|11〉) 1
2 (|00〉〈00| + |11〉〈11|).

The resulting implementation of the PR-box was already ob-
served in Refs. [12–14]. Note that under the identification
S 
 CC , the map ι becomes the inclusion of CC onto the set
of classical-to-classical qubit channels determined by |i〉〈i| �→∑

j P( j|i)| j〉〈 j| for conditional probabilities P( j|i), while �

is a projection of C(H) onto this set.
As the results of Theorem 1 suggest, even if the pair of

maximally incompatible measurements is fixed, there can be
more bipartite nonsignaling channels that implement the PR-
box. Any such channel will be called a PR-channel.

Observe that the PR-channel 
 given by (14) is of a
special form, called an entanglement-breaking channel. An
entanglement-breaking channel is such that for any state ω ∈
SH⊗H⊗H⊗H we have that (
 ⊗ id )(ω) is a separable state.
Such channels are also called measure-and-prepare, since we
first perform a measurement, in this case the two-outcome
measurement given by the effect N⊥ ⊗ N⊥, and according to
the result, we prepare one of a given set of states, in this case
ρac or ρcor.

The structure of the channel 
 is even more simple. In
fact, since N is a projection and the two states ρac and ρcor

commute, 
 is classical-to-classical. Moreover, note that both
the measurement and the target states are separable. Even so,
the resulting channel implements a PR-box.

Now we would like to see whether there are PR-channels
of a more complicated structure. It would be quite hard to
characterize all such channels in the general case. For this
reason, in the next section we restrict to dim(H) = 2, i.e., to
qubits.

VI. SPECIAL CASE OF QUBITS

In this section we restrict to qubits, i.e., dim(H) = 2 and
we characterize all PR-channels that exist in this scenario.
So let H be a complex Hilbert space, dim(H) = 2 and let
{|0〉, |1〉} be an orthonormal basis of H. For vectors from
H ⊗ H, we will use the shorthand |i〉 ⊗ | j〉 = |i j〉 for i, j ∈
{0, 1}. We will also use the notation ⊕ for addition modulo 2.

We will begin by characterizing all maximally incompat-
ible pairs of two-outcome measurements and their witness
squares. Let the two measurements be given by effects Fρ,M

and Fσ,N , for pure states ρ, σ ∈ SH⊗H′ and M, N ∈ E (H ⊗
H′). Let ker(M ) denote the projection onto the kernel of M.
Then by (2) and (3), a witness square 
00,
10,
01,
11 ∈
C(H) must satisfy

ker(M )(
10 ⊗ id )(ρ) ker(M ) = 0,

ker(M )(
11 ⊗ id )(ρ) ker(M ) = 0,
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and

ker(M )(
00 ⊗ id )(ρ) ker(M ) = (
00 ⊗ id )(ρ),

ker(M )(
01 ⊗ id )(ρ) ker(M ) = (
01 ⊗ id )(ρ).

From (1) it follows that

(
00 ⊗ id )(ρ) + (
11 ⊗ id )(ρ)

= (
10 ⊗ id )(ρ) + (
01 ⊗ id )(ρ),

and after applying ker(M ) we get

(
00 ⊗ id )(ρ) = (
01 ⊗ id )(ρ). (15)

It follows that ρ cannot have maximal Schmidt rank as then
(15) would imply 
00 = 
01, which is impossible by (2) and
(3). Since we have assumed dim(H) = 2, it follows that ρ

must have Schmidt rank 1, i.e., ρ must be a pure product state,
so we can assume ρ = |x〉〈x| for some |x〉 ∈ H, ‖x‖ = 1, and
M ∈ Bh(H), since ρ is not entangled and therefore we do not
need the ancillary Hilbert space H′. From

Tr(
10(|x〉〈x|)M ) = Tr(
11(|x〉〈x|)M ) = 1

and

Tr(
00(|x〉〈x|)M ) = Tr(
01(|x〉〈x|)M ) = 0

it follows that there must be an orthonormal basis |ξ0〉, |ξ1〉 of
H such that

M = |ξ0〉〈ξ0|, M⊥ = |ξ1〉〈ξ1|,
and for i, j ∈ {0, 1} we have


i j (|x〉〈x|) = |ξi⊕1〉〈ξi⊕1|.
In a similar fashion, one can show that we must have σ =
|y〉〈y| for some |y〉 ∈ H, ‖y‖ = 1, and that there is an or-
thonormal basis |η0〉, |η1〉 of H such that

N = |η0〉〈η0|, N⊥ = |η1〉〈η1|,
and for i, j ∈ {0, 1} we have


i j (|y〉〈y|) = |η j⊕1〉〈η j⊕1|.
Let L ∈ B(H) be given by L|0〉 = |x〉, L|1〉 = |y〉 and let


L
i j = 
i j (L · L∗). Then 
L

i j are completely positive maps
satisfying (1), with Choi matrices

C
(

L

i j

) =
(|ξi⊕1〉〈ξi⊕1| Xi j

X ∗
i j |η j⊕1〉〈η j⊕1|

)
,

where Xi j ∈ B(H). It follows by positivity of C(
L
i j ) that we

must have

X(i⊕1)( j⊕1) = zi j |ξi〉〈η j |,
where zi j ∈ C, |zi j | � 1, see Proposition 1.3.2 in Ref. [34].
From Eq. (1) we get

z00|ξ0〉〈η0| + z11|ξ1〉〈η1| = z10|ξ1〉〈η0| + z01|ξ0〉〈η1|
from which it follows that zi j = 0 for all i, j ∈ {0, 1}. This
implies that C(
L

i j ) are block-diagonal matrices. In particular,

0 = Tr
(

L

i j (|0〉〈1|)) = Tr
i j (|x〉〈y|) = 〈x|y〉,
so that {|x〉, |y〉} is an orthonormal basis of H and we have
proved that C(
i j ) are block diagonal in this basis. Applying

unitary transformations to the input (output) space, transform-
ing the basis |x〉, |y〉 (|ξ0〉, |ξ1〉) to |0〉, |1〉, we can summarize
as follows.

Proposition 3. Let A, A′ be two-outcome measurements on
qubit channels, given by PPOVMs {FA, F⊥

A } and {FA′ , F⊥
A′ }.

Then A, A′ are maximally incompatible if and only if, up to
unitary conjugation on the input and output spaces,

FA = |00〉〈00|, F⊥
A = |10〉〈10|

FA′ = |η0〉〈η0| ⊗ |1〉〈1|, F⊥
A′ = |η1〉〈η1| ⊗ |1〉〈1|,

where {|η0, |η1〉} is an orthonormal basis of H. Moreover,
there is a unique witness square for A, A′, with Choi matrices
of the form

Ci j =
(|i ⊕ 1〉〈i ⊕ 1| 0

0 |η j⊕1〉〈η j⊕1|
)

.

By the above proposition, essentially any maximally
incompatible pair is characterized by the choice of an
orthonormal basis |η0〉, |η1〉. The corresponding channel mea-
surements then consist of inputting |0〉 into the channel and
measuring the basis {|i〉} on the output, or inputting |1〉 and
measuring the basis {|ηi〉}.

Let us pick some choice of the bases |ηA
0 〉, |ηA

1 〉 and
|ηB

0 〉, |ηB
1 〉 on Alice’s and Bobs part, respectively, and let A, A′

and B, B′ denote the corresponding maximally incompatible
pairs. Note that the set of all PR-channels that give an imple-
mentation of the PR-box with these measurements is a face of
Cns(H ⊗ H). As we will see, all such faces consist entirely of
entanglement-breaking channels.

Let 
 be a qubit PR-channel and let C be its Choi matrix.
Then C ∈ B(Hout ⊗ Hin), where both the input and the out-
put spaces are composed of Alice’s and Bob’s part: Hin =
HA,in ⊗ HB,in and Hout = HA,out ⊗ HB,out. We write C as a
block matrix

C =
∑

α∈{0,1}2

Cα,β ⊗ |α〉〈β|in,

where Cα,β ∈ B(Hout). To describe the structure of C, we
need to introduce the following notations. For x, y, z ∈ C, we
denote

Bdiag(z) =
(

1 z
z̄ 1

)
= I2 + z|0〉〈1| + z̄|1〉〈0|

Boff(x, y) =
(

0 x
y 0

)
= x|0〉〈1| + y|1〉〈0|, i �= j.

For r ∈ N, we denote by Br a block matrix in B(C2 ⊗ Cr ) of
the form

Br = 1

2

⎛
⎜⎝

r∑
p=1

Bdiag(zp) ⊗ |p〉〈p|

+
r∑

q �=p=1

Boff(xp,q, yp,q ) ⊗ |p〉〈q|

⎞
⎟⎠. (16)

Proposition 4. Let 
 be a qubit PR-channel. Then there are
isometries Uα : C2 → Hout, α ∈ {0, 1}2 and a decomposition
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{0, 1}2 = �0 ∪ �1, such that Uα = Uβ =: Vout for α, β ∈ �1,
and C has the form

C =(Vout ⊗ Vin)Br (V ∗
out ⊗ V ∗

in )

+
∑
α∈�0

UαBdiag(zα )U ∗
α ⊗ |α〉〈α|, (17)

where |zα| � 1, r = |�1| and Vin : Cr → Hin is an isometry
such that Vin|p〉 = |αp〉, αp ∈ �1, p = 1, . . . , r. The proof of
this proposition is given in Appendix D.

Lemma 1. Let r � 3 and let Br be a matrix of the form (16).
If Br is positive, then it is separable.

Proof. Let Br be positive. Since Br ∈ B(C2 ⊗ Cr ) and
r � 3, we may apply the PPT criterion [35,36], that is, Br

is separable if and only if it remains positive under partial
transpose. We will apply the transpose to the first part, so we
will show that the matrix

B�
r = 1

2

⎛
⎜⎝

r∑
p=1

Bdiag(zp)T ⊗ |p〉〈p|

+
r∑

q �=p=1

Boff(xp,q, yp,q )T ⊗ |p〉〈q|

⎞
⎟⎠

is positive. Let V ∈ B(C2) be given as

V =
(

0 1
1 0

)

then V is unitary, V = V ∗ and for any t ∈ R and z1, z2 ∈ C
we have(

0 1
1 0

)(
t z1

z2 t

)(
0 1
1 0

)
=

(
t z2

z1 t

)
=

(
t z1

z2 t

)T

.

It follows that

B�
r = (V ⊗ 1r )Br (V ⊗ 1r )

so we have B�
r � 0 and Br is separable. �

We now prove the main result of this section.
Theorem 2. Let 
 be a qubit PR-channel. Then 
 is an

entanglement-breaking channel.
Proof. The channel 
 is entanglement-breaking if and only

if its Choi matrix C = C(
) is separable. The assertion now
follows by Proposition. 4 and Lemma 1. �

We will proceed by presenting a few examples of PR-
channels. We concentrate on the choice |ηA

i 〉 = |ηB
i 〉 = |i〉.

According to Appendix D, in this case we have

Uα|i〉 =
{ |ii〉 if α �= 11
|i(i ⊕ 1)〉 otherwise

r = 3 and �0 = {11}. So any such channel is specified by the
choice of the parameters zp, xp,q, yp,q, p, q = 1, . . . , 3 such
that the matrix B3 is positive, and any choice of z4 := z11 with
|z4| � 1.

An obvious choice is setting all these parameters to 0, in
which case we obtain the channel of Example 6.

Example 7. Another possible choice of parameters is

zp = ±1, xp,q = yp,q = 0, ∀p, q.

The resulting channels 
± are similar to 
S . We have


±(ρ) = (1 − 〈11|ρ|11〉)|φ±〉〈φ±| + 〈11|ρ|11〉|ψ±〉〈ψ±|,
where

|φ±〉 = 1√
2

(|00〉 ± |11〉),

|ψ±〉 = 1√
2

(|01〉 ± |01〉).

These channels are again classical-to-classical, but here the
target states are pure and maximally entangled. A similar
channel was also constructed by Ref. [15].

Example 8. Let W : C2 → Vout be the isometry given
by W |i〉 �→ |ii〉 and let W̃ := (V ⊗ 1)W . Let M� ∈ B(H ⊗
H), � = 1, . . . , k be effects such that

∑
� M� = I − |11〉〈11|

and let |w�| � 1, � = 0, 1, . . . , k. Then the entanglement-
breaking channel


(ρ) = 1

2

⎛
⎝〈11|ρ|11〉W̃ Bdiag(w0)W̃ ∗

+
k∑

�=1

Tr(M�ρ)W Bdiag(w�)W ∗

⎞
⎠

is a PR-channel of the required form, with values of the
parameters z4 = ω0 and for p, q � 3

zp =
k∑

�=1

w�〈αp|M�|αp〉

xp,q = yp,q =
k∑

�=1

w�〈αp|M�|αq〉.

This example contains the above examples. Note that not all
the PR-channels can be written in this form, since here xp,q =
yp,q. Note also that we may choose M� and w� is such a way
that the channel is not classical-to-classical and neither the
measurement nor the target states are separable.

Example 9. We next look at an example where all the
parameters have the same nonzero value, namely

1
3 = zp = xp,q = yp,q, ∀p, q.

One can use numerical calculations to check that the corre-
sponding matrix B3 is positive. This example shows that we
can have all of the parameters nonzero at the same time.

VII. CONCLUSIONS

We have shown that maximal violation of the CHSH
inequality requires existence of maximally incompatible two-
outcome measurements and described states in K⊗̂K that
lead to this violation. It follows that a GPT permits im-
plementations of the PR-box if it contains a system with
maximally incompatible measurements and such that the joint
state space is large enough. We have applied the results
to derive the implementations of PR-boxes by classical and
quantum nonsignaling channels. The derivation was carried
out in the framework of GPTs, which opens the door for
generalizations of our calculation. For the qubit case, we gave
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a full description of the PR-channels and proved that all such
channels are necessarily entanglement breaking.

The question of possibility of instantaneous implemen-
tation of these channels is out of the scope of this work.
Obtaining some no-go theorems that would forbid such a
possibility would provide further insight into Bell nonlocality
and our complete characterization of the qubit case might be
useful for proving such results.

There is a plethora of further open questions and directions
of research: one may ask about the structure of all implemen-
tations of PR-boxes for channels in higher dimensions and
also for more general state spaces, one may also ask which
states (and which measurements) violate the CHSH inequality
more than a given number. One may also consider a resource
theory of CHSH inequality violations.

Our results also raise the question of general applicabil-
ity of the CHSH inequality as a test of quantumness of a
system, if having too big CHSH violation constrains us to
entanglement-breaking channels, which can be seen as clas-
sical channels in a sense. This also suggests the existence
of some kind of tradeoff between CHSH violation and some
notion of quantumness of nonsignaling channels.
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APPENDIX A: POPESCU-ROHRLICH BOX

Let x be a nonsignaling box such that

XCHSH = E (A, B) + E (A, B′) + E (A′, B) − E (A′, B′) = 4.

Since all the correlations are in [−1, 1], we must have

E (A, B) = E (A, B′) = E (A′, B) = −E (A′, B′) = 1.

It is easily seen that this happens if and only if we have

Px(1, 1|A, B) + Px(−1,−1|A, B) = 1,

Px(1, 1|A, B′) + Px(−1,−1|A, B′) = 1,

Px(1, 1|A′, B) + Px(−1,−1|A′, B) = 1,

Px(1,−1|A′, B′) + Px(−1, 1|A′, B′) = 1,

with all other probabilities equal to 0. From this and the
nonsignaling conditions, we obtain

Px(1, 1|A, B) = Px(1, 1|A, B) + Px(1,−1|A, B)

= Px(1, 1|A, B′) + Px(1,−1|A, B′)

= Px(1, 1|A, B′).

In a similar fashion one may show that all the nonzero prob-
abilities must be equal, which implies the equality (10). The
case XCHSH = −4 is treated similarly.

APPENDIX B: IMPLEMENTATION OF THE PR-BOX ON
THE SQUARE STATE SPACE

Let S be the square state space and let A0, A1 be the
maximally incompatible two-outcome measurements corre-
sponding to the effects π0, π1 ∈ E (S), respectively. Since
{1, π0, π1} form a basis of A(S), it is clear that any element
φ ∈ S⊗̂S ⊂ A(S)∗ ⊗ A(S)∗ is uniquely determined by the val-
ues ( f ⊗ g)(φ), where f , g ∈ {π0, 1 − π0, π1, 1 − π1}, which
are exactly the outcome probabilities Pφ (ε, η|C, D), C, D ∈
{A0, A1}, ε, η ∈ {−1, 1}. So if there is an implementation of
the PR-box with the measurements {A0, A1} on both sides,
it must be unique. Moreover, it follows by Corollary 1 that
any other implementation, with other maximally incompat-
ible pairs of measurements, is obtained by applying a local
isomorphism on each copy of S.

Let us now find a state φS ∈ S⊗̂S, satisfying the equalities
(10). Every φ ∈ A(S)∗ ⊗ A(S)∗ can be written as

φ = ψ00 ⊗ s00 + ψ10 ⊗ s10 + ψ01 ⊗ s01

for some ψ00, ψ10, ψ01 ∈ A(S)∗. By the characterization of
E (S) in Example 3, we see by applying the maps 1 ⊗ 1,
id ⊗ π0, id ⊗ (1 − π0), id ⊗ π1, id ⊗ (1 − π1) that φ ∈ S⊗̂S
if and only if

1(ψ00 + ψ10 + ψ01) = 1

and

ψ10 � 0, ψ00 + ψ10 � 0,

ψ01 � 0, ψ00 + ψ01 � 0.

Writing ψ00, ψ01, ψ10 in the basis {s00, s10 − s00, s01 − s00}
and using the fact that {1, π0, π1} is the dual basis (see Ex-
ample 3), we see that the required equalities hold if we put

ψ00 = 1
2 (s00 − s10), ψ10 = 1

2 s11, ψ01 = 1
2 s10,

and it is easily checked that the conditions required for φ ∈
S⊗̂S are satisfied (the last inequality follows from s00 + s11 =
s10 + s01). This gives (11).

APPENDIX C: PROOF OF THEOREM 1

Since XCHSH = 4, we see that the outcome probabilities
must satisfy (10). Let fA, fA′ , fB, fB′ ∈ E (K ) be the effects
corresponding to the four measurements and put

x00 = 2((1 − fA ) ⊗ id )(φ), x11 = 2( fA ⊗ id )(φ)

x01 = 2((1 − fA′ ) ⊗ id )(φ), x10 = 2( fA′ ⊗ id )(φ).

From the fixed values of the outcome probabilities, it can be
checked that xi, j ∈ K and that for all i, j ∈ {0, 1} we have

fB(xi j ) = i, fB′ (xi j ) = j

and

x00 + x11 = x10 + x01,

i.e., the points xi j form a witness square for B, B′. It follows
that B and B′ are maximally incompatible and we can prove
in the same way that A and A′ are maximally incompatible as
well. Let ιA,�A and ιB, �B be the affine maps from Proposi-
tion 1, respectively, their positive linear extensions. Then it is
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easily seen from (7) that we have

π0 ◦ �A = fA, π1 ◦ �A = fA′ ,

π0 ◦ �B = fB, π1 ◦ �B = fB′ .

It follows that (�A ⊗ �B)(φ) ∈ S⊗̂S with the pair of two-
outcome measurements A0, A1 applied on both sides is an
implementation of the PR-box, hence we must have (�A ⊗
�B)(φ) = φS .

Next, note that PA := ιA ◦ �A (PB := ιB ◦ �B) is a positive
projection on A(K )∗ onto the range of the map ιA (ιB). We then
have

φ = (PA ⊗ PB)(φ) + (id − PA ⊗ PB)(φ)

= (ιA ⊗ ιB)(φS ) + φ⊥,

where (PA ⊗ PB)(φ⊥) = 0, which implies that

(�A ⊗ �B)(φ⊥) = (�A ⊗ �B) ◦ (PA ⊗ PB)(φ⊥) = 0.

Now note that using (7) and the definition of xi j , we get

(�A ⊗ id )(φ) = 1
2 [(s00 − s10) ⊗ x00

+ s11 ⊗ x10 + s10 ⊗ x01]

= (id ⊗ ιB)(φS ) = (�A ⊗ id )[(ιA ⊗ ιB)(φS )]

and hence (�A ⊗ id )(φ⊥) = 0. In a similar manner, we obtain
that (id ⊗ �B)(φ⊥) = 0, which implies that φ⊥ ∈ ker(�A ) ⊗
ker(�B).

APPENDIX D: PROOF OF PROPOSITION 4

Let A, A′ be the pair of maximally incompatible two-
outcome measurements corresponding to the choice of
the ONB |ηA

0 〉, |ηA
1 〉 (Proposition 3) and similarly let B, B′ be

the measurements for |ηB
0 〉, |ηB

1 〉. Let UA,UB : H → H denote
the unitaries given as

UA|i〉 = ∣∣ηA
i

〉
, UB|i〉 = ∣∣ηB

i

〉
.

Let 
 be a PR-channel that maximally violates the CHSH
inequality with this choice of measurements and let C = C(
)
have the block-diagonal form

C =
∑

α,β∈{0,1}2

Cα,β ⊗ |α〉〈β|in.

Then 
 must satisfy (10), where for all C ∈ {A, A′} and D ∈
{B, B′}, we have

P
(1, 1|C, D) = Tr(SWAP23(FC ⊗ FD)C)

P
(−1, 1|C, D) = Tr(SWAP23(F⊥
C ⊗ FD)C)

P
(1,−1|C, D) = Tr(SWAP23(FC ⊗ F⊥
D )C)

P
(−1,−1|C, D) = Tr(SWAP23(F⊥
C ⊗ F⊥

D )C),

where FC, F⊥
C are the PPOVM operators corresponding to C ∈

{A, A′} and FD, F⊥
D correspond to D ∈ {B, B′}. Let Qh, h =

1, . . . , 16 be operators obtained as

Qh = SWAP23(HA ⊗ HB),

where HA ∈ {FA, F⊥
A , FA′ , F⊥

A′ } and similarly for HB. Then Qh

are mutually orthogonal rank 1 product projections and all the

values of Tr(QhC) are either 0 or 1/2. Let

P =
∑

{Qh, Tr(QhC) = 1/2}.
Since C � 0 and Tr[(1 − P)C] = 0, we must have C = PCP.
One can check by (10) that

P =
∑

α∈{0,1}2

UαU ∗
α ⊗ |α〉〈α|in

for the isometries Uα : C2 → Hout, given as

Ukm = (
U k

A ⊗ U m
B V m.k

)
W, k, m = 0, 1,

where V = (
0 1
1 0) and W : C2 → Hout is the isometry given

as W |i〉 = |ii〉. It follows that

C = PCP =
∑
α,β

UαU ∗
αCα,βUβU ∗

β ⊗ |α〉〈β|in,

so that for α = km, β = ln we have

Cα,β =
∑
i, j

cα,β
i j U k

A |i〉〈 j|U −l
A ⊗ U m

B V k.m|i〉〈 j|V −l.nU −n
B

for some coefficients cα,β
i j .

Since 
 is nonsignaling, the Choi matrix must satisfy the
conditions

TrA,out (C) = 1A,in ⊗ CB, TrB,out (C) = 1B,in ⊗ CA,

where CB ∈ B+(HB,out ⊗ HB,in ) and CA ∈ B+(HA,out ⊗
HA,in ). This amounts to

TrA(Ckm,ln) = 0, k �= l, ∀m, n (D1)

TrA(C0m,0n) = TrAC1m,1n, ∀m, n (D2)

TrB(Ckm,ln) = 0, m �= n, ∀k, l (D3)

TrB(Ck0,l0) = TrB(Ck1,l1), ∀k, l. (D4)

If k = l , we have

TrA(Ckm,kn) =
∑

i

ckm,kn
ii U m

B V k.m|i〉〈i|V −k.nU −n
B .

By (D2), we see that we must have ckm,kn
ii = 0, ∀i whenever

m �= n. Similarly, by (D4) we obtain for k �= l that ck0,l0
ii = 0,

∀i and ck1,l1
i j = 0, ∀i �= j. Note also that ckm,km

ii = 1/2 by (10).
Looking at the conditions (D1) and (D3), we see that there

are two different possibilities on each side: either 〈i|UA| j〉 =
0 for some i, j or 〈i|UA| j〉 �= 0 for all i, j, the same for UB.
The first condition means that UA is diagonal or off-diagonal
(i.e., 〈i|UA|i〉 = 0). Since the diagonal (off-diagonal) elements
in these cases only correspond to scalar factors of the basis
vectors, they may safely be put to 1, so that UA = 1 (UA = V ).

Assume that UA �= 1, UA �= V , then we obtain from (D1)
that Ckm,ln = 0 whenever k �= l . There are essentially two off-
diagonal blocks left:

C00,01 = C∗
01,00 =

∑
i �= j

c00,01
i j |i〉〈 j| ⊗ |i〉〈 j|U ∗

B
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TABLE I. All possible forms of C.

UA/UB �= 1 V

�= r = 1 r = 2 r = 2
�1 = {00, 01} �1 = {10, 11}

Vout = W Vout = (UA ⊗ 1)W

1 r = 2 r = 3 r = 3
�1 = {01, 11} �0 = {11} �0 = {01}

Vout = W Vout = W Vout = W

V r = 2 r = 3 r = 3
�1 = {00, 10} �0 = {10} �0 = {00}

Vout = (1 ⊗ UB )W Vout = W Vout = (1 ⊗ V )W

and

C10,11(= C∗
11,10) =

∑
i �= j

c11,01
i j UA|i〉〈 j|U ∗

A ⊗ |i〉〈 j|V ∗U ∗
B .

The condition (D3) implies that C00,01 �= 0 only if UB is diag-
onal, in which case UB = 1 and

C00,01 =
∑
i �= j

c00,01
i j |i〉〈 j| ⊗ |i〉〈 j|.

Similarly, we can have C11,01 �= 0 only if UB = V , in which
case

C11,01 =
∑
i �= j

c11,01
i j UA|i〉〈 j|U ∗

A ⊗ |i〉〈 j|.

It follows that if also UB �= 1, UB �= V , then C = ∑
α Cα,α ⊗

|α〉〈α| is block diagonal, which means that is has the form
(17) with r = 1. If UB = 1 then we have �1 = {00, 01} and
Vout = U00 = U01 = W , for UB = V we obtain �1 = {10, 11}
and Vout = U10 = U11 = (UA ⊗ 1)W . We may apply similar
reasoning in all cases with UB �= 1, UB �= V .

Next we turn to the cases when UA,UB ∈ {1,V }. We will
provide a proof for UA = UB = 1, all other cases are similar.
Here we obtain from (D1)–(D4) that all off-diagonal blocks
Cα,β must have cα,β

ii = 0 and Ckm,ln = 0 whenever k.m �= l.n,
which implies that Cα,11 = 0 for all α �= 11. Note that U00 =
U10 = U01 = W , so that C has the form (17) with �0 = {11}
and Vout = W . All possible forms of C in the different cases
are summarized in Table I.
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