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In this work, we address the question of how quantum is a collection of qubits, such as a chain of spins,
a two-mode Bose-Einstein condensate, or a multiphoton state. We demonstrate that a single element of the
density matrix carries the answer. Properly analyzed it brings information about the extent of the many-body
entanglement and the nonlocality. This method can be used to tailor and witness highly nonclassical effects
in many-body systems with possible applications to quantum computing, ultraprecise metrology, or large-scale
tests of quantum mechanics. As a proof of principle, we investigate the extent of nonlocality and entanglement
in ground states and thermal states of experimentally accessible interacting spin chains.
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I. INTRODUCTION

An ensemble of qubits is a paradigm of a complex
many-body quantum system—an ideal probe of various as-
pects of the theory, ranging from quantum phase transitions
[1] to many-body entanglement [2] or the nonlocality [3].
Correlated states of many qubits are at the core of quantum-
enhanced metrology [2,4], quantum-information processing
[5], and tests of foundations of quantum mechanics. The quan-
tum information aspects play an increasingly important role in
condensed matter physics [6]. The experimental advances in
the field of quantum simulators made it possible to prepare
and control with great precision quantum many-body states
[7]. The expanding toolbox includes ultracold atoms [8–15],
trapped ions [16–22], and superconducting qubits [23–25]
among others.

Given the growing interest it is relevant to adequately char-
acterize the quantum features of a multiqubit state. What can
we learn about it given a value of some correlation function? Is
it quantum or can this correlation be reproduced with a clas-
sical ensemble? We address these questions in a systematic
way relevant for experimentally realizable systems of dozens
of qubits. Many powerful measures of entanglement, such
as the entanglement entropy [6,26–32] or negativity [33–35],
require detailed knowledge of the density matrix which makes
their experimental measurements challenging [36,37]. In this
work we propose an alternative approach. We show that a
single element of the density matrix—related to the forma-
tion probability [38–41]—carries precise information about
the many-body entanglement [42] and the ultraquantum Bell
nonlocality [43–45].

The backbone of our work relies on a class of Bell in-
equalities, discussed in Sec. II, which make no assumption
on the number of particles/subsystems or on how the local
outcomes are bounded [46–48]. Our aim is in understanding
the extent of entanglement and nonlocality in the multiqubit
states, as explained in Sec. II, and for illustration in Sec. III we
take the paradigmatic and experimentally accessible quantum
Ising model [49–52], the XXZ spin chain [53,54], and the

Majumdar-Ghosh model [55,56]. For example, this method
allows one to distinguish the situation in which the six-spin
ground state of the Ising chain is actually a state where the
entanglement and nonlocality extends over all spins (six-
partite entanglement [57,58]), from a state in which quantum
correlation encompasses only four spins. The experimental
implementation of the devised protocol requires single-atom
resolved detection which is within the range of experimental
techniques [59,60]. Besides enriching our understanding of
quantum correlated states of matter, such information should
be useful in optimization of numerical approaches such as
density matrix renormalization groups [61,62] and related
methods [63,64]. Illustrated here with spin chains, this method
can be applied to any multiqubit state, such as formed with
Bose-Einstein condensates [65,66] or many-photon configu-
rations [67,68]. We present the conclusions and the outlook in
Sec. IV. Some details of the calculations leading to the results
presented in the main text are contained in the Appendices.

II. THE BELL INEQUALITY FOR N QUBITS

We consider a system composed of N parts. Measurements
of each yield two binary outcomes σ (k)

x = ±1 and σ (k)
y = ±1

(with k = 1 . . . N). We introduce a correlator

CN = 〈σ (1) · · · σ (N )〉, (1)

where σ (k) = 1
2 (σ (k)

x + iσ (k)
y ). The “+” sign here can be

changed to “−” independently for each party and the argu-
ments that follow hold. If the above mean can be reproduced
with a probability distribution p(λ) of a random (hidden)
variable λ, that correlates the outcomes in a classical way, i.e.,

CN =
∫

dλ p(λ)σ (1)(λ) · · · σ (N )(λ), (2)

then the correlator is consistent with a local hidden-variable
(LHV) theory. Using a Cauchy-Schwarz inequality (CSI) we
obtain the following Bell inequality [46,69] for EN = |CN |2:

EN �
∫

dλ p(λ)|σ (1)(λ)|2 · · · |σ (N )(λ)|2 = 2−N , (3)
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where the last step is a consequence of |σ (k)(λ)|2 = 1
2 . If

we consider quantum-mechanical systems, then σ (k)(λ)’s are
replaced by the Pauli rising operators for each qubit. The Bell
inequality then reads

EN =
∣∣∣∣∣
〈

N⊗
k=1

σ̂
(k)
+

〉∣∣∣∣∣
2

� 2−N . (4)

The breaking of this inequality proves that qubits form a
nonlocal state. The same correlator is also a witness of entan-
glement. For a separable state of N qubits, σ (k)(λ)’s in (3) are

replaced with 〈σ̂ (k)
+ 〉

λ
≡ Tr[�̂(k)(λ)σ̂ (k)

+ ]. Since |〈σ̂ (k)
+ 〉|2

λ
� 1

4 ,
then

EN �
∫

dλ p(λ)
N∏

k=1

|〈σ̂ (k)
+ 〉|2λ � 4−N (5)

holds for all separable states [48]. To summarize, when EN >

4−N , qubits are entangled. When EN > 2−N , they are entan-
gled and form a nonlocal state.

Note that, according to Eq. (4), EN = |�a,b|2, where �a,b

is a component of the density matrix that couples |ψa〉 ≡
|↑1, . . . ,↑N 〉 with |ψb〉 ≡ |↓1, . . . ,↓N 〉, while

σ̂
(k)
+ |↓k〉 = |↑k〉.

This is an important observation—the EN extracts entangle-
ment and nonlocality from a single element of the density
matrix. Moreover, this leads to a size-independent upper
bound

EN = |�a,b|2 � �a,a�b,b � 1
4 , (6)

which implies that the inequality (5) can be violated starting
already from N = 2, while the inequality (4) from N = 3.
Both are saturated by the maximally entangled Greenberger-
Horne-Zeilinger (GHZ) state

|ψ〉 = 1√
2

(|↑⊗N 〉 + |↓⊗N 〉). (7)

We now argue that the value of EN carries detailed information
on the multiparticle entanglement and nonlocality. We illus-
trate this with three density matrices of different character.

Many-body entanglement and nonlocality

In the first example we consider a system, where out of N
qubits, two form an entangled state, and the other N − 2 are
separable, i.e.,

�̂N =
∫

dλ p(λ)

(
N−2⊗
k=1

�̂(k)(λ)

)
⊗ �̂2(λ). (8)

[The lower index of the density matrix is the number of
qubits it describes, while the upper index (k) labels a single
kth qubit.] For this density matrix, the correlator EN can be
bounded using the CSI as follows:

EN �
∫

dλ p(λ) EN−2(λ)
∫

dλ p(λ) E2(λ) � 4−(N−1), (9)

where EN−2(λ) is calculated with the product state of N − 2
qubits, so EN−2(λ) � 4−(N−2), and E2(λ) is the two-qubit

correlator calculated with the density matrix �̂2(λ), so
E2(λ) � 4−1. Inequality (9) is saturated by a product
of a two-qubit GHZ state (7) and N − 2 states |ψk〉 =
1/

√
2(|↑k〉 + eiϕk |↓k〉), where ϕk is an arbitrary phase. The

violation of the bound (9), more stringent than (5), signals that
the entanglement extends either over more pairs than just one
or over more than a pair (three-qubit entanglement or more).

As a second example, we analyze the state with pairwise
entangled qubits, which reads

�̂N =
∫

dλ p(λ)
N/2⊗
k=1

�̂
(k)
2 (λ), (10)

where �̂
(k)
2 (λ) is a density operator of the kth pair (we took N

even for simplicity). In this case EN � 4−N/2 and if violated,
the state is at least three-qubit entangled.

Finally, if all but one qubit form an N − 1 entangled state,
separable with the N th qubit,

�̂N =
∫

dλ p(λ) �̂N−1(λ) ⊗ �̂(N )(λ), (11)

then EN < 1
16 . Values of the correlator from the range ] 1

16 , 1
4 ]

would imply then the N-particle entanglement.
Similarly, the value of EN brings information about the

extent of nonlocal correlations in the multiqubit system. For
instance, when the correlation among no more than three out
of N qubits cannot be explained with a LHV theory, then, in
analogy to (9)

EN �
∫

dλ p(λ)EN−3(λ)
∫

dλ p(λ)E3(λ) � 2−(N−1). (12)

Here we used the fact that for the locally correlated N − 3
qubits, EN−3(λ) � 2−(N−3), while E3(λ) � 2−2. When the
nonlocal correlation extends over N − 1 qubits but not over
the N th, then EN � 1

8 . Similarly to the entanglement witness,
values EN ∈] 1

8 , 1
4 ] are accessible only to systems where the

nonlocality encompasses all the qubits.

III. APPLICATION TO MANY-BODY PHYSICS

We now illustrate these general considerations with some
prominent examples of spin-chain systems. In this context, the
correlators of type Em are known as formation probabilities

Em = |〈σ̂ (1)
± ⊗ σ̂

(2)
± ⊗ σ̂

(3)
± · · · ⊗ σ̂

(m)
± 〉|2, (13)

where the expectation value is computed in a system consist-
ing of N spins (m � N), for instance using a ground state
of some Hamiltonian. Formation probabilities in spin chains
have been studied for some time [38–41,70–75] with the focus
on behavior of Em in the thermodynamically large system.
Here, instead we focus on finite systems and, even more
importantly, we build upon the hierarchy introduced above
to develop detailed “tomography” of the entanglement and
nonlocality in the ground states of experimentally relevant
Hamiltonians.

The choice of the signs in (13) that gives a maximal corre-
lator Em is motivated by the expected structure of correlations
in the considered state. For instance, a GHZ state from Eq. (7)
calls for a product of either rising or lowering operators. On
the other hand, for a superposition of antiferromagnetic states,
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FIG. 1. Correlators Em for m � 5 as a function of g calculated
with the ground state of Hamiltonian (14) with K = 0 and N = 6.
The horizontal dashed lines denote the entanglement bound 4−m

(lower, red) and the nonlocality bound 2−m (upper, blue).

as considered in the next section, a product of alternating σ̂+
and σ̂− is the correct one. Finally we remark that similar opti-
mization issues arise in other Bell tests as well. For instance,
orientation of the polarizers in the two-qubit Clauser-Horne-
Shimony-Holt inequality should match the geometry of the
state under consideration [76].

A. The Ising model with long-range interactions

We start with the Hamiltonian (with open boundary condi-
tions)

Ĥ =
N−1∑
j=1

σ̂ ( j)
z σ̂ ( j+1)

z + g
N∑

j=1

σ̂ ( j)
x + K

N−2∑
j=1

σ̂ ( j)
z σ̂ ( j+2)

z , (14)

where the control parameter g is the magnitude of the external
magnetic field in the x direction and K sets the strength of
the long-range interactions. Note that all the Hamiltonians
considered in this work are expressed in units of the nearest-
neighbors energy, thus all the parameters, such as g and K , are
dimensionless.

We first consider the K = 0 case, i.e., the Ising Hamil-
tonian in the antiferromagnetic phase. We solve the model
numerically by the exact diagonalization of the Hamiltonian
for N = 6. To detect the quantum properties in this antiferro-
magnetic phase, we adjust the correlator from (4) to

Em = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ σ̂

(3)
+ · · · ⊗ σ̂

(m)
± 〉|2, (15)

and consider five possibilities: m ∈ [2, 6], namely, the corre-
lators

E2 = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− 〉|2, (16a)

E3 = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ σ̂

(3)
+ 〉|2, (16b)

E4 = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ σ̂

(3)
+ ⊗ σ̂

(4)
− 〉|2, (16c)

E5 = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ σ̂

(3)
+ ⊗ σ̂

(4)
− ⊗ σ̂

(5)
+ 〉|2, (16d)

E6 = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ σ̂

(3)
+ ⊗ σ̂

(4)
− ⊗ σ̂

(5)
+ ⊗ σ̂

(6)
− 〉|2. (16e)

Figure 1 shows the first four correlators (16a)–(16d) as a func-
tion of g ∈ [0, 5] with entanglement (4−m) and nonlocality

FIG. 2. The full six-spin correlator E6 (solid black line) calcu-
lated with the ground state of (14) as a function of g with K = 0 and
N = 6. The horizontal red (entanglement, pointing to the right) and
blue (nonlocality, pointing to the left) dashed lines separate regions,
where E6 can be reproduced with a spin system with a specific
multiparticle correlation (see the text for an explanation).

(2−m) bounds marked. While the appearance of entanglement
is witnessed by Em starting from the lowest order m = 2, the
Bell correlations are detected only at m = 5. All the correla-
tors drop to zero as g → 0. This is because for the vanishing
magnetic field, the ground state is a superposition of two
antiferromagnetic states

|ψ〉 = 1√
2

(| ↑↓↑↓↑↓〉 + | ↓↑↓↑↓↑〉). (17)

Tracing out a single (say, the sixth) spin from such a maxi-
mally entangled state gives a classical mixture

�̂ = 1
2 (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|), (18)

where |ψ1〉 = | ↑↓↑↓↑〉 and |ψ2〉 = | ↓↑↓↑↓〉. When g � 1,
the ground state is that of the noninteracting spins, which
explains why all the correlators drop as g grows and ultimately
tend to 4−m. We also observe that the Bell correlations are
persistent around the critical point g = 1 of the quantum phase
transition in quantum Ising chain. In the region of a phase
transition the correlation length is large (approaching infinity
in the thermodynamically large system). In such situation
tracing out part of the system does not destroy the correla-
tions within the subsystem what allows for Em to stay large.
This suggests the hierarchy of Em’s is an appropriate tool for
exploring entanglement and nonlocality around the quantum
phase transitions.

The m = 6 case, see Eq. (16d), is shown separately in
Fig. 2. The E6 reaches its maximal value for g = 0 as it detects
the quantum properties of the fully entangled state (17). We
mark not only the entanglement- and the nonlocality-lower
bound (4−6 and 2−6) but also all the other limits derived
from the considerations introduced in (8)–(12). This figure
should be read as follows. When E6 < 4−6, the correlation
can be reproduced with a separable state of six spins [all six
arrows on the right-hand side (RHS) of the plot unboxed].
When E6 ∈]4−6, 4−5[, the correlation can be reproduced with
a setup, where two spins are entangled and the other four
form a separable state (2 × 1 × 1 × 1 × 1: two spins in a
box, others unboxed). This is the most classical two-spin
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FIG. 3. The correlator E6 calculated with the Hamiltonian (14)
for K = 0 (solid black line), K = 0.4 (dashed), and K = −0.4
(dot-dashed). The horizontal lines separate regions of multiqubit
entanglement and nonlocality in the same fashion as in Fig. 2.

entangled state. Higher two-spin entangled states can be used
to explain the correlation strength in the range E6 ∈]4−5, 4−4[
(2 × 2 × 1 × 1) or E6 ∈]4−4, 4−3[ (2 × 2 × 2). All other cases
are visually shown on the RHS of Fig. 2. Similarly, when
E6 < 2−6, the correlator can be modeled with a full LHV
theory. When E6 ∈]2−6, 2−5[, at least two spins are nonlocally
correlated, and so forth.

We now test the impact of longer-range interactions on the
quantum correlations [K �= 0 in (14)]. We expect that turning
on ferromagnetic (K < 0) interaction should strengthen the
entanglement in the ordered (g < 1) phase and weaken it if the
interaction is antiferromagnetic (K > 0) and competes with
the nearest-neighbor interaction. Figure 3 compares the E6

for K = 0 and K = ±0.4 and confirms these expectations.
Turning on the K parameter allows us also to study more
deeply the relation between the hierarchy of the correlations
and the quantum phase transition. The position of the critical
point, for the competing interaction (K > 0), was studied be-
fore [77–79] with the conclusion that for intermediate values
of K < 0.5 the critical point is given by gc = 1 − 2K . From
Fig. 1 we observe that for the system size N = 6, the correla-
tor E3 has a maximal value close to the critical point gc = 1
of a short-range Ising model. Guided by this observation we
perform the finite-size scaling of the position of the maximum
of EN/2, always in the form of

EN/2 = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ · · · ⊗ σ̂

(N/2−1)
+ ⊗ σ̂

(N/2)
− 〉|2, (19)

for chains of length N = 8, 12, 16, 20 and for different val-
ues of K . The results are presented in Fig. 4 and show that
maximum of EN/2 coincides with the position of the phase
transition. We note, however, that EN/2 does not seem to ex-
hibit a singularity at the critical point and therefore is not a
standard order parameter [1].

The results for the Ising models show how the hierarchy
of correlations can be exploited to understand the quantum
features of the many-body ground states extending from the
detailed tomography of entanglement and nonlocality to the
detection of quantum phase transitions.

FIG. 4. Blue dots are the results of finite-size scaling of the
position of the maximum of EN/2 using N = 8, 12, 16, 20 (the inset
shows an example of scaling for K = 0.3). The solid red line de-
notes the quantum phase transition separating the antiferromagnetic
phase from paramagnetic [77–79]. Error bars are from the linear fit
estimation of the finite-size scaling. The shaded region in the inset
represents the 0.9 confidence interval.

B. The XXZ quantum spin chains

We now focus on the XXZ spin-chain model [38,80] with
the Hamiltonian

Ĥ =
N∑

j=1

(
σ̂ ( j)

x σ̂ ( j+1)
x + σ̂ ( j)

y σ̂ ( j+1)
y + �σ̂ ( j)

z σ̂ ( j+1)
z

)
, (20)

where � is the anisotropy parameter and we assume the
periodic boundary conditions. We will explore the effect of
the finite temperature on the hierarchy and show that the
correlations are naturally expressible in the language of the
Bethe ansatz solution. The XXZ Hamiltonian exhibits quan-
tum phase transitions at � = ±1 separating a ferromagnetic
phase (� < −1) from paramagnetic (|�| < 1) and antiferro-
magnetic (� > 1). We focus on the regime with � > −1. For
the chain of length N = 4 the correlator E4,

E4 = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ σ̂

(3)
+ ⊗ σ̂

(4)
− 〉|2, (21)

can be computed explicitly even at finite temperature (see
Appendix A) with the result

E4 = 1

Z2

[
− e−β(�+√

8+�2 )

2
+ 1

4

(
1 + �√

8 + �2

)

+ 1

4

(
1 − �√

8 + �2

)
e−2β

√
8+�2

]2

, (22)

Z = 1 + e−β(E+−E− ) + e−β(−�−E− ) + 2e−β(−1−E− )

+ 7eβE− + 2e−β(1−E− ) + 2e−β(�−E− ). (23)

This result is plotted in Fig. 5 for four values of β as a function
of �. Since � sets the energy scale in this problem, we expect
the Bell correlation to vanish for β � �, as confirmed in the
plot. Interestingly, even for quite large β = 2, the correlation
still cannot be modeled with a two-particle entangled state
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FIG. 5. E4 from (22) as a function of � for β = 10 (solid), β =
5 (dotted), β = 2 (dashed), and β = 1 (dot-dashed). The horizontal
lines separate regions of multiqubit entanglement and nonlocality, as
in Fig. 2, but calculated for N = 4.

around � = 1. In the limit of T → 0 we obtain

E4 = 1

16

(
1 + �√

8 + �2

)2

. (24)

This is bigger than the LHV limit 2−4 iff � > 0. It also crosses
other entanglement and nonlocality limits. For instance, when

� > 2
√√

2 − 1, then E4 > 2−3, which means that the cor-
relator can be reproduced only with a four-spin entangled
system where also all four spins are nonlocally correlated.
These results show that the hierarchy provides insights into
quantum-mechanical features of many-body systems also at
finite temperatures.

Bethe ansatz solution

The XXZ spin chain of an arbitrary length can be exactly
solved with the Bethe ansatz technique giving a direct access
to the correlator EN in the ground state

EN = |〈σ̂ (1)
+ ⊗ σ̂

(2)
− ⊗ σ̂

(3)
+ · · · 〉|2

= |〈GS|↓↑↓ . . .〉|2|〈↑↓↑ . . . |GS〉|2. (25)

The overlaps 〈GS|↓↑↓ . . .〉 and 〈↑↓↑ . . . |GS〉 are known
exactly for arbitrary N and � (for details, see Appendix A).
Lower-order correlators are also accessible. Figure 6 shows
the results for N = 10, together with the outcome of the
numerical diagonalization of the Hamiltonian (20). In the
analysis of the results we focus on two isotropic points � =
±1 noting that the correlators are much larger for the former.
This can be traced back to the structure of their ground states.
Namely, for the � = 1 the ground state is best understood as
an entangled state of many magnons, whereas for � = −1 it
corresponds to a structureless vacuum [80].

C. Majumdar-Ghosh model

Finally, we consider the Majumdar-Ghosh model [55,56]
with periodic boundary conditions, depicted by the Hamilto-
nian

Ĥ =
∑
{ j}

̂σ ( j) ̂σ ( j+1) + 1

2

∑
{ j}

̂σ ( j) ̂σ ( j+2). (26)

Its (translationally invariant) ground state

|ψ〉 = N−1(|ψ1〉 + |ψ2〉) (27)

FIG. 6. The ground-state correlators E10 and E8 for the XXZ spin
chain of length N = 10 as a function of the anisotropy � (solid black
lines). We show the analytic results (gray points) of Bethe ansatz
(25) and the results of numerical diagonalization (black solid line) of
the XXZ Hamiltonian (20). In the � → ∞ the correlators approach
those of the Ising model with g = 0. The horizontal lines denote the
lower bounds for 8- and 10-qubit entanglement (4−8 and 4−10) and
nonlocality (2−8 and 2−10).

is a superposition of two products of singlet states

|ψ1〉 =
(N/2)−1⊗

j=0

| ↑2 j+1,↓2 j+2〉 − | ↓2 j+1,↑2 j+2〉√
2

, (28)

|ψ2〉 =
(N/2)−1⊗

j=0

| ↑2 j+2,↓2 j+3〉 − | ↓2 j+2,↑2 j+3〉√
2

. (29)

Here, N stands for the normalization. The explicit construc-
tion of the ground state for arbitrary N allows for analytic
computations of the antiferromagnetic correlator, as in (15).
For N/2 even we obtain, using the antiferromagnetic correla-
tor as in Eq. (15),

EN = 1

(1 + 2N/2−1)2
, (30)

which brakes the Bell limit 2−N (and therefore also the en-
tanglement limit 2−2N ). For details, see Appendix B. The
lower-order correlations are also accessible. For EN−2 we find

EN−2 = 1
4EN . (31)

We observe that breaking the Bell limit is solely because
the ground state is the superposition of |ψ1〉 and |ψ2〉 states.
Indeed, the Em correlator on |ψ1〉 is equal to 2−m and it is
the admixture of |ψ2〉 that lifts it above the threshold. Thus
the ground state of the Majumdar-Ghosh model is a simple
example of a state for which the hierarchy of the correlators
breaks the Bell limit.

IV. CONCLUSIONS AND OUTLOOK

We have demonstrated that the multiparticle entanglement
and the Bell nonlocality in many-body systems of qubits can
be traced back to a single element of the density matrix.
We have shown that the value of this element contains in-
formation about the number of entangled and Bell-correlated
qubits. This allows one to track how the quantum features
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expand over a large distance and number of particles, for
instance in spin chains. This method could be used to tailor
and witness highly nonclassical effects in many-body systems
with possible applications to quantum computing, ultraprecise
metrology, or large-scale tests of quantum mechanics. Fur-
thermore, the observable, formation probability, is accessible
experimentally with the current state-of-the-art in the field of
quantum simulators. Moreover, a preliminary investigation of
some experimentally reconstructed density matrices suggests
that detailed information about quantum correlations can be
extracted from the existing data [81–83].

We have also shown that the lower-order correlators detect
a quantum phase transition: the critical value being correlated
with the maxima of the correlators. Whether an honest order
parameter exhibiting singularity at the phase transition can be
constructed from Em is an interesting open problem.

The results of our work create a new incentive to study
formation probabilities and further extend existing techniques
of their computations in the Bethe ansatz models. Another
interesting problem is the computation, with the techniques of
the asymptotic expansion [41,71], of the thermodynamic limit
of EN/2, given its relation to the quantum phase transition.
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APPENDIX A: CORRELATIONS IN THE XXZ SPIN CHAIN

In this Appendix we show the computation of correlator Em

for the XXZ Hamiltonian

Ĥ =
N∑

j=1

(
σ̂ ( j)

x σ̂ ( j+1)
x + σ̂ ( j)

y σ̂ ( j+1)
y + �σ̂ ( j)

z σ̂ ( j+1)
z

)
. (A1)

This Hamiltonian is exactly solvable by the Bethe ansatz
methods for any N [38,80]. For a short chain of length N = 4
the eigenproblem can be solved by a direct diagonalization of
the Hamiltonian, e.g., see [84]. We start with this special case
as it allows one to easily include thermal effects, and turn to
the Bethe ansatz solution afterwards.

1. Four-spins chain

The thermal density matrix is

�̂T = 1

Z
∑

n

e−βEn |ψ (n)〉〈ψ (n)|, (A2)

where the summation runs through all the eigenlevels
(Ĥ |ψ (n)〉 = En|ψ (n)〉) of the four-spin Hamiltonian from (20)
and β = (kBT )−1 (T is the temperature, kB the Boltzmann

constant, and Z is the statistical sum). The spectrum consists
of 16 states out of which 3 have nonzero expectation values

|〈E±|σ̂ (1)
+ σ̂

(2)
− σ̂

(3)
+ σ̂

(4)
− |E±〉| = 1

4

∣∣∣∣1 ∓ �√
8 + �2

∣∣∣∣, (A3)

|〈E�|σ̂ (1)
+ σ̂

(2)
− σ̂

(3)
+ σ̂

(4)
− |E�〉| = 1

2
, (A4)

where Ĥ |E±〉 = E±|E±〉 and Ĥ |E�〉 = −�|E�〉 with

E± = 1
2 (−� ±

√
8 + �2), (A5)

and |E−〉 being the ground state for � > −1. In the local spin
basis these states are

|E±〉 = N±

(
� ± √

8 + �2

2
√

2
|AF2〉 + |AF 〉

)
, (A6)

|E�〉 = 1√
2

(|↑↓↑↓〉 − |↓↑↓↑〉), (A7)

with

|AF2〉 = 1

2
(|↑↑↓↓〉 + |↓↑↑↓〉 + |↓↓↑↑〉 + |↑↓↓↑〉),

(A8)

|AF 〉 = 1√
2

(|↑↓↑↓〉 + |↓↑↓↑〉), (A9)

and N± appropriate normalization factors. The correlator
reads

E4 = 1

Z2

[
− e−β(�+√

8+�2 )

2
+ 1

4

(
1 + �√

8 + �2

)

+ 1

4

(
1 − �√

8 + �2

)
e−2β

√
8+�2

]2

, (A10)

Z = 1 + e−β(E+−E− ) + e−β(−�−E− ) + 2e−β(−1−E− )

+ 7eβE− + 2e−β(1−E− ) + 2e−β(�−E− ), (A11)

for the antiferromagnetic product of four rising and lowering
operators as in (15).

2. Bethe ansatz solution

Bethe ansatz provides the exact eigenstates of the system
expressed as a superposition of states in the local spin basis
[38,80]

|	M (λM )〉 = 1

M!

N∑
m1,...,mM=1

χ (mM |λM )|mM〉, (A12)

where

|mM〉 = σ̂
(m1 )
− · · · σ̂ (mM )

− |0〉+, (A13)

and |0〉+ is the fully polarized state with all the spins up. Here
the bold symbol denotes set, λM = {λ j}M

j=1. The amplitude
χ (mM |λM ) is determined by the Bethe ansatz methods and is
parametrized by the rapidities λM solving the Bethe equations

θ1(λ j ) = 2π I j

N
− 1

N

M∑
k=1

θ2(λ j − λk ), j = 1, . . . , M,

(A14)
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The momentum and two-body scattering phase shift in the
gapless phase (|� < 1|) are

p(λ) = iln
cosh(λ − iη)

cosh(λ + iη)
, (A15)

θ (λ) = iln
sinh(2iη + λ)

sinh(2iη − λ)
. (A16)

The quantum numbers I j in (A14) for a ground state |GS〉 (in
the zero external magnetic field) are IGS

j = −M+1
2 + j for j =

1, . . . , M with M = N/2. The amplitudes are

χ (mM |λM ) = 1

|NM |
∑

σ∈PM

(−1)|σ | exp

(
−i

M∑
j=1

mj p(λσ j )

)

× exp

(
− i

2

∑
k> j

θ
(
λσk − λσ j

))
. (A17)

where the normalization NM is

|NM |2 = det GM∏M
j=1 K1(λ j )

, (A18)

and guarantees that 〈	M |	M〉 = 1. The factors appearing in
the normalization are the Gaudin matrix

Gjk = δ jk

(
NK1(θ j ) −

M∑
m=1

K2(λ j − λm)

)
+ K2(λ j − λk )

(A19)
and functions

K1(λ) = sin 2η

cosh(λ − iη) cosh(λ + iη)
, (A20)

K2(λ) = sin 4η

sinh(λ − 2iη) sinh(λ + 2iη)
. (A21)

The representation of the wave function in the Bethe ansatz
solvable systems is specifically convenient for computation of
the correlation functions Em. In the ground state the maximal
correlator

EN = |〈GS|↓↑↓ . . .〉|2|〈↑↓↑ . . . |GS〉|2 (A22)

and the overlaps 〈GS|↓↑↓ . . .〉 and 〈↑↓↑ . . . |GS〉 are given
directly by the corresponding component of the ground-state
wave function (A12)

〈GS|↓↑↓ . . .〉 = χ (ON|λM), (A23)

〈↑↓↑ . . . |GS〉 = χ (EN|λN). (A24)

Here Em = {2, 4, . . . , m} and Om = {1, 3, . . . , m − 1}.
Lower-order correlation functions are also directly expressible
in terms of the amplitudes χ (mM |λM ). For example,

EN−2 = |χ∗(ON−2, N |λM )χ (EN−2, N |λM )

+ χ∗(ON−2, N −1|λM )χ (EN−2, N −1|λM )|2. (A25)

APPENDIX B: CORRELATIONS IN THE
MAJUMDAR-GHOSH MODEL

The explicit construction of the ground state of the
Majumdar-Ghosh for arbitrary N [see Eq. (27)] allows for
analytic computations of the antiferromagnetic correlator

ÂN = σ̂
(1)
+ σ̂

(2)
− · · · σ̂ (N−1)

+ σ̂
(N )
− . (B1)

This gives

〈ψ1,2|ÂN |ψ1,2〉 = (− 1
2

)N/2
, (B2)

〈ψ2,1|ÂN |ψ1,2〉 = (
1
2

)N/2
, (B3)

which leads to the correlator

〈ψ |ÂN |ψ〉 = 1 + (−1)N/2

2

1

1 + 2N/2−1
, (B4)

yielding, for N/2 even,

EN = 1

(1 + 2N/2−1)2
, (B5)

which breaks the Bell limit 2−N (and therefore also the entan-
glement limit 2−2N ).

We also compute EN−2 (as EN−1 = 0). To this end we
observe that

〈ψ1|ÂN−2|ψ1〉 = (− 1
2

)N/2−1
, (B6)

〈ψ2|ÂN−2|ψ1〉 = −(
1
2

)N/2
, (B7)

〈ψ2|ÂN−2|ψ2〉 = 0. (B8)

Therefore

〈ψ |ÂN−2|ψ〉 = −1

2

1

1 + 2N/2−1
, (B9)

and we obtain

EN−2 = 1
4EN . (B10)
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