
PHYSICAL REVIEW A 102, 042204 (2020)

Experimental test of tight state-independent preparation uncertainty relations for qubits
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The well-known Robertson-Schrödinger uncertainty relations miss an irreducible lower bound. This is widely
attributed to the lower bound’s state dependence. Therefore, Abbott et al. introduced a general approach to
derive tight state-independent uncertainty relations for qubit measurements [Mathematics 4, 8 (2016)]. The
relations are expressed in two measures of uncertainty, which are standard deviation and entropy, both functions
of the expectation value. Here, we present a neutron polarimetric test of the tight state-independent preparation
uncertainty relations for orthogonal, as well as nonorthogonal, Pauli spin observables. The final results, obtained
with pure and mixed spin states, reproduce the theoretical predictions clearly for arbitrary initial states of variable
degree of polarization.
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I. INTRODUCTION

The impossibility of assigning definite values to incom-
patible observables is a fundamental feature of quantum
mechanics. It manifests in the impracticality of preparing
quantum states that simultaneously have precise values of
position Q and momentum P. This is expressed in the well-
known position-momentum uncertainty relation �Q�P �
h̄
2 , which sets a lower bound on the product of stan-
dard deviations of the position and momentum observables.
The position-momentum uncertainty relation was generally
proved from basic principles of quantum mechanics by Ken-
nard in 1927 [1], following Heisenberg’s introduction of
the uncertainty principle illustrated by the famous γ -ray
microscope Gedankenexperiment [2]. However, the γ -ray
microscope sets a lower bound for the product of the mea-
surement error and the disturbance in a joint measurement of
position Q and momentum P on a single particle. Hence, the
position-momentum uncertainty relation in terms of standard
deviations quantifies how precise, with respect to the observ-
ables of interest, a state can be prepared, rather than the ability
to jointly measure them.

In 1929 Robertson generalized the uncertainty relation to
arbitrary pairs of incompatible (i.e., noncommuting) observ-
ables A and B as

�A�B � 1
2 |〈ψ |[A, B]|ψ〉|, (1)

for any state |ψ〉, where [A, B] represents the commutator
[A, B] = AB − BA and the standard deviation of an observable
X is defined as (�X )2 = 〈ψ |X 2|ψ〉 − 〈ψ |X |ψ〉2 [3]. How-
ever, Robertson’s uncertainty relation turned out to follow
from a slightly stronger inequality namely the Schrödinger
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uncertainty relation [4], given by

(�A)2(�B)2 �
∣∣ 1

2 〈ψ |{A, B}|ψ〉 − 〈ψ |A|ψ〉〈ψ |B|ψ〉∣∣2

+ 1
2 |〈ψ |[A, B]|ψ〉|2, (2)

where the anticommutator {A, B} = AB + BA is used. Here,
the right-hand side (RHS) of Eq. (2) yields a tighter bound
than Eq. (1), but is not necessarily saturated. A peculiarity
of Robertson’s and Schrödinger’s uncertainty relations is the
fact that the right-hand sides of Eqs. (1) and (2) are also
state dependent, even though the statistics of both observ-
ables are independently accessible and undisturbed after state
preparation.

Note that Kennard’s, Robertson’s, and Schrödinger’s un-
certainty relations all express a quantitative statement about
the measurement statistics for A and B of different ensembles
that are obtained separately (many times) on identically pre-
pared quantum systems; this is the reason why such relations
are usually referred to as preparation uncertainty relations.
They propose fundamental limits on the measurement statis-
tics for any state preparation.

The fact that in the case of preparation uncertainty rela-
tions the measurements are performed on different ensembles
is in total contrast to Heisenberg’s original discussion of
his uncertainty principle, which addresses the inability to
jointly (simultaneously or sequentially) measure incompatible
observables with arbitrary accuracy, which is described by
measurement uncertainty relations. Consequently, uncertainty
relations have a long history of being misinterpreted as exclu-
sive statements about joint measurements.

In recent years measurement uncertainty relations, as
originally proposed by Heisenberg [2], have received re-
newed attention. One particular challenge here is the fact that
measurement uncertainties are subtle to define, because no
experimental evidence of the target observable is available be-
tween preparation and measurement. A detailed experimental
investigation of this issue can be found in [5]. New uncertainty
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measures and uncertainty relations for error and disturbance
have been proposed [6,7], refined [8,9], and experimentally
tested in neutronic [10–15] and photonic [16–21] systems: In
Ozawa’s operator-based approach [6], or operator formalism,
the measurement process is described by an indirect mea-
surement model, introduced in [22]. Here the object system
is coupled to a probe system by a unitary operator acting
on the composite object-probe system. Then, the measure-
ment error is defined as root-mean-square deviation between
target observable before and meter observable after the mea-
surement interaction. Hence, the operator formalism defines
correlations between the measurement outcome and the target
observable. Note that the state dependence in this model is
necessary, because the value of the observable is (partially)
determined by the input state. The disturbance induced on
another observable by the first measurement is given by the
root-mean-square difference between that observable before
and after the measurement interaction.

Alternative approaches, for instance Busch, Lathi, and
Werner’s operational approach [7], aim to avoid the problem
of state dependency by evaluating error and disturbance from
differences between output probability distributions [7,23].
Therefore, single measurements (reference or control mea-
surements) of the target observables are performed first. In
a second step, a successive measurement of the two target
observables is carried out. The marginal distributions of the
joint probability distribution obtained from the successive
measurement are compared with the output statistics of the
single measurements. However, it should be emphasized here
that such an approach is insensitive to certain types of errors,
which has been pointed out in [24] (see [13] for an exper-
imental comparison of these two approaches). In general it
is difficult to avoid state dependence in measurement uncer-
tainties. However, there continues to be some debate as to
the appropriate measure of measurement (in)accuracy and of
disturbance [6–8,10,11,13,16,18–21,23,25–30].

This recent interest in measurement uncertainty relations
revealed that the well-known Robertson-Schrödinger uncer-
tainty relation lacks an irreducible or state-independent lower
bound of the RHS of Eq. (1). Owing to this fact the lower
bound on the right-hand sides of Eqs. (1) and (2) may be-
come zero for certain states, even for noncommuting A and
B, as is the case for instance for neutron spins. A solution
to this problem was already proposed by Deutsch in the
1980s, who looked for a theorem of linear algebra in the form
U (A, B, ψ ) � B(A, B), that is, a state-independent relation,
and furthermore suggested to use (Shannon) entropy as mea-
sure [31]. Note that Heisenberg’s (more precisely Kennard’s)
inequality �Q�P � h̄

2 has that form, but its generalizations
Eqs. (1) and (2) do not. Common to all entropic uncertainty
relations is the peculiarity of setting bounds on the sum of
the entropies of A and B rather than on the product. Deutsch’s
original entropic preparation uncertainty relation reads

H (A) + H (B) � −2 log2

(
1 + c

2

)
, (3)

where c = maxi, j |〈ai|b j〉| is the maximum overlap be-
tween the eigenvectors |ai〉 and |b j〉 of observables A
and B, respectively. Then the Shannon entropy H (A) =∑

i Tr[ρ Pi] log2(Tr[ρ Pi]), with Pi being a projector from the

spectral decomposition of the observable A, given by A =∑
i aiPi, provides a measure of uncertainty for the observable

A in the state ρ. Deutsch’s relation from Eq. (3) was later
improved by Maassen and Uffink [32], following a conjecture
of Kraus [33], as

H (A) + H (B) � −2 log2 c. (4)

Even better, but still not tight bounds for the sub-optimal
relation in Eqs. (4) and (3) are derived in [34–37].

More recently, entropic uncertainty relations have been
extended to include the case of quantum memories [38,39].
Uncertainty relations are often a powerful tool to witness
entanglement. This is due to the fact that entanglement
criteria based on uncertainties require state independence
because the local state of an entangled system cannot be
defined. State-independent uncertainties have been introduced
as entanglement witnesses in [40] and [41]. These recent
developments clearly indicate that uncertainty relations, in
fact both preparation and measurement uncertainty relations,
are an active field of research, where much of the theory
is still being developed, as can be seen from publications
such as [42].

II. THEORETICAL FRAMEWORK

The growth in the numbers of studies, both theoreti-
cal and experimental, in measurement uncertainty relations
has prompted renewed interest in the possibility of state-
independent preparation uncertainty relations also for the
standard deviations of observables, not only for entropic
relations. In 2014 Busch et al. [23] proposed two state-
independent uncertainty relations for qubits, more precisely
for arbitrary Pauli observables, denoted as A = �a · �σ and B =
�b · �σ . These additive versions of a preparation uncertainty
relations are expressed as a sum, instead of a product, of two
standard deviations as

�A + �B � |�a × �b|, (5a)

(�A)2 + (�B)2 � 1 − |�a · �b|. (5b)

Although these state-independent relations can be sat-
urated by certain states, they are not tight in general.
The following year, Abbott and Branciard proposed an ap-
proach for deriving tight state-independent and partially
state-dependent (that is depending on the mixing parameter
r of nonpure states) uncertainty relations for qubit measure-
ments that completely characterize the obtainable uncertainty
values reported in [43]. Their equivalent relations in terms
of expectation values, standard deviations and entropies can
more generally be transformed into other relations, in terms of
any measure of uncertainty that can be written as a function of
the expectation value. Any pair of Pauli observables A = �a · �σ
and B = �b · �σ , with �σ = (σx, σy, σz )T and an arbitrary quan-
tum state ρ = 1

2 (11 + �r · �σ ) satisfies the condition

|〈A〉�a − 〈B〉�b|2 = 〈A〉2 + 〈B〉2 − 2(�a · �b)〈A〉〈B〉
� (1− (�a · �b)2)|�r|2 � 1− (�a · �b)2 = |�a × �b|2,

(6)
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FIG. 1. (a) Experimental setup for determining the tight preparation uncertainty relation for neutron spins. Blue: preparation of incident
state ρ in

z . Ruby: the initial state ρ
θ,ϕ

in is chosen by the randomness generator (RG) and generated by DC coil 1, where polar angle θ is dependent
on the static magnetic field BRG

x and azimuthal angle ϕ on the position y0. Green: the projectors P+
z , P−

z , P+
y (P+

δ ), and P−
y (P−

δ ). are realized by
the action of the supermirror (analyzer), while applying the respective magnetic fields in DC coil 2. (b) Bloch sphere description of projectors
P+

z , P+
y , P+

δ and P−
z , P−

y , P−
δ .

where 〈X 〉 denots the expectation value of X , that is, 〈ψ |X |ψ〉
for pure states |ψ〉, or Tr(ρ X ) for mixed states ρ. Standard
deviation �X and expectation value 〈X 〉 are connected via

(�X )2 = 1 − 〈X 〉2 and 〈X 〉 = ±
√

1 − (�X )2, (7)

since every Pauli operator X satisfies X 2 = 11. Hence, the tight
state-independent uncertainty relation, given in Eq. (6), can be
rewritten in terms of standard deviations as

(�A)2 + (�B)2 + 2|�a · �b|
√

1 − (�A)2
√

1 − (�B)2

� 2 − [1 − (�a · �b)2]|�r|2 � 1 + (�a · �b)2. (8)

Note that Eq. (8) coincides with Eq. (5b) for orthogonal
observables, i.e., �a · �b = 0. An alternative approach studying
uncertainty relations that give lower bounds to the sum of
standard deviations was recently presented in [44].

In the case of qubits, the Shannon entropy of a Pauli ob-
servable X , H (X ), can be directly expressed in terms of the
expectation value 〈X 〉, namely

H (X ) = h2

(
1 + 〈X 〉

2

)
= h2

(
1 − 〈X 〉

2

)
, (9)

where h2 is the binary entropy function defined as

h2(p) = −p log2 p − (1 − p) log2(1 − p), (10)

or 〈X 〉 = ± f (H (X )) with f (x) := 1 − 2h−1
2 (x), where h−1

2
denotes the inverse function of h2. Then one obtains the fol-
lowing tight relation for two Pauli observables A and B:

f (H (A))2 + f (H (B))2 − 2|�a · �b| f (H (A)) f (H (B))

� [1 − (�a · �b)2]|�r|2 � 1 − (�a · �b)2. (11)

Note that the uncertainty relations in terms of standard devi-
ations and entropy, which are given by Eqs. (8) and (11), are
tight (state-independent) relations.

III. EXPERIMENTAL SETUP AND PROCEDURE

In this paper, we present a neutron optical test of the
tight state-independent preparations uncertainties described
by Eqs. (6), (8), and (11). The experiment was carried out
at the polarimeter instrument NepTUn (NEutron Polarimeter
TU wieN), located at the tangential beam port of the 250 kW
TRIGA research reactor at the Atominstitut, TU Wien, in
Vienna, Austria. A schematic illustration of the experimental
setup is depicted in Fig. 1. An incoming monochromatic neu-
tron beam with mean wavelength λ � 2.02 Å (�λ/λ � 0.02)
is polarized along the vertical (+z) direction by refraction
from a tunable CoTi multilayer array, henceforth referred
to as supermirror. The incident (mixed) state is given by
ρ in

z = 1
2 (11 + rσz ), where r = 1 corresponds to the pure state

|+z〉. The mixing parameter r is is adjusted by the incident
angle βr

z between the supermirror and the neutron beam, in
the required parameter region. Experimentally, initial degrees
of polarizations between rmin = 0.83(1) and rmax = 0.99(1)
were achieved. To avoid depolarization, the setup is covered
by a 13 G guide field in the vertical (+z) direction (not de-
picted in Fig. 1). The initial states are chosen by a classical
randomness generator (RG) and prepared by direct current
(DC) coil 1, which generates a static magnetic field Bθ

x point-
ing in the x direction. The magnetic field induces a unitary
Larmor precession UDC = eiθσx by an angle θ inside the coil,
expressed as

ρθ
in = U †

DCρ in
z UDC. (12)
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The angle of rotation θ = γ Bθ
x t is proportional to the mag-

netic field strength and the time t of passage of the neutron
through the coil, γ being the gyromagnetic ratio γ = − 2|μ|

h̄ ,
where μ denotes the magnetic moment of the neutron. Since
the transition time t is constant, the polar angle θ of the initial
spin state ρθ

in is entirely controlled by the electric current in
the coil that generates the magnetic field Bθ

x . The azimuthal
angle ϕ of the prepared initial state ρ

θ,ϕ
in , given by

ρ
θ,ϕ
in = U †

GFU †
DCρ in

z UDCUGF (13)

and UGF = eiϕσz , is induced by Larmor precession within the
static magnetic guide field (GF). The respective angle is ad-
justed by the appropriate position yϕ

0 of DC coil 1. Note that all
randomly selected initial states lie on the boundary region of
the respective tight uncertainty relation and belong to a subset
of all possible states.

Our experimental test of the tight uncertainty relations
Eqs. (6)–(11) is conducted for two fixed Pauli operators,
given by A = �a · �σ and B = �b · �σ , with (i) �a · �b = 0 and (ii)
�a · �b = 1

2 . For (i) we chose �a = (0, 0, 1)T and �b = (0, 1, 0)T ,
thus the four projectors P+

z , P−
z , P+

y , and P−
y were measured

for every randomly chosen initial state ρ
θ,ϕ
in , resulting in an

observed intensity denoted as I = Tr(ρθ,ϕ
in P j

i ), with i = z, y
and j = +,−. The projectors are realized by the action of the
supermirror (analyzer) while applying the respective magnetic
fields in DC coil 2. Inside DC coil 2, the magnetic field Bδ

x
induces spinor rotations of δ = 0, π,+π

2 and δ = −π
2 about

the x axis, required for projective measurements along the
+z,−z,+y, and −y directions, respectively. Since all four
projectors lie in the y-z plane, the position of DC coil 2
remains unchanged. For (ii) �a · �b = 1

2 , which corresponds to

an angle of δ = 60◦ between �a and �b, we have again �a =
(0, 0, 1)T but �b = (0,

√
3

2 , 1
2 )

T
now. The respective projectors

are denoted as P+
z , P−

z , P+
δ , and P−

δ , respectively.

IV. EXPERIMENTAL RESULTS

A. State-independent relations

The lowest or state-independent bound, expressed by the
very RHSs of Eqs. (6), (8), and (11), for expectation values,
standard deviations and entropies, respectively, is saturated for
pure initial states (r = 1), which will be studied first.

1. Configuration�a ·�b = 0

Two Pauli observables A = �a · �σ and B = �b · �σ , with �a =
+ẑ and �b = +ŷ, yielding �a · �b = 0, are selected (see Fig. 2).
Pure initial states, located on the great circle in the plane
spanned by the observables’ unit vectors �a and �b, depicted
in blue on the Bloch sphere in Fig. 2, form the lower bound
of allowed values. However, the lower bound is not given by
a closed curve in case of standard deviations and entropies.
Therefore, additional initial states, indicated by the green arc
[connection points (2)–(3)] and light green arc [connection
points (1)–(3)] on the Bloch sphere, are required to close the
boundary of all allowed values.

(i) Expectation values (EV): Equation (6) sets tight con-
straints on the allowed values for the expectation values 〈A〉

FIG. 2. Bloch sphere of initial states saturating boundaries of
Eqs. (6), (8), and (11), for expectations values, standard deviations,
and entropies, respectively, in the case �a · �b = 0.

and 〈B〉 which is experimentally tested with a set of ran-
domly chosen initial states ρθ

in. The state-independent bound
of Eq. (6), given by bEV = |�a × �b|2, is saturated only by pure
states, distributed on the great circle connecting north and
south poles of the Bloch sphere via +y. This great circle,
depicted in blue in Fig. 2, is embedded in the plane spanned
by the observables’ unit vectors �a and �b and parametrized by
the polar angle θ ∈ [0, 2π ] and ϕ = π

2 . There is a one-to-one
correspondence between the initial states’ polar angle θ and
the angle on the circle forming the boundary of allowed values
for expectation values of 〈A〉 and 〈B〉, plotted in Fig. 3(a).
Therefore, in the actual experiment the position of DC coil
1 remains fixed for this measurement. Starting at the north
pole (θ = 0), indicated as point (1) in Fig. 2, we have 〈A〉 = 1
and 〈B〉 = 0. At θ = π

2 (+y direction), indicated by point
(2), the situation reverses with 〈A〉 = 0 and 〈B〉 = 1. Closing
the great circle on the Bloch sphere from θ = π

2 to θ = 2π

yields a closed curve for the boundary of all possible values
of expectation values 〈A〉 and 〈B〉. Initial states outside the
blue great circle, for instance states connecting points (2) and
(3)—light green states in Fig. 2—are unbounded pure states,
as seen from Fig. 3(a). At point (3) (−x direction) expectation
values yield 〈A〉 = 〈B〉 = 0, and are therefore found at the
origin, which is the center of the region of allowed values for
expectation values 〈A〉 and 〈B〉.

(ii) Standard deviations (SD): Since expectation value
and standard deviation of Pauli observables are one-to-one
related via �X =

√
〈X 〉2 − 1, the data obtained above are ac-

cordingly transformed to evaluate the tight state-independent
preparation uncertainty relations as expressed in Eq. (8), with
lower state-independent bound bSD = 1 + (�a · �b)2. Unlike in
the case of expectation values, pure states on the great circle
in the y-z plane saturate only the (state-independent) lower
bound (curved boundary) but do not cover the entire region
of allowed values for standard deviations �A and �B, which
can be seen in Fig. 3(b). At θ = 0 [point (1), +z direction],
standard deviation �B starts at maximal value (for r = 1 this
is �B = 1) and �A is minimal (for r = 1 this is �A = 0).
For increasing values of θ (while keeping ϕ = π

2 constant)
�B decreases while �A increases. At θ = π

2 [point (2), +y
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FIG. 3. Plots of the experimentally obtained values for Pauli observables �a · �b = 0, in terms of (a) expectation values 〈A〉, 〈B〉; (b) standard
deviations �A, �B [including bounds from Busch’s Eqs. (5a) (dotted red line) and (5b) (dashed orange curve)]; and (c) entropies H (A), H (B)
[including bounds from Deutsch’s Eq. (3) (dotted green line), from Maassen and Uffink (4) (dashed violet line), and from [34–37] (dashed
beige line; same as dashed violet line)]. Blue curves [same as dashed orange curve in (b)] indicate the theoretic predictions of lower bounds
from Eqs. (6), (8), and (11), for expectation values, standard deviations, and entropies, respectively. Dark green line [connecting points (1)–(3)]
and light green line [connecting points (2)–(3)] represent the theoretic predictions for values of the corresponding initial states indicated by the
respective color (points) on the Bloch sphere in Fig. 2.

direction) �B is minimal (for r = 1, �B = 0) and �A is
maximal (for r = 1, �A = 1). In the interval θ ∈ [π

2 , π ] the
reverse behavior is observed and at (θ, ϕ) = ( π

2 , π ) [point
(3), −x direction], we have again �A = 0 and �B = 1 (as
for θ = 0). For θ ∈ [π, 2π ], the results of θ ∈ [0, π ] are
reproduced. The vertical boundary, corresponding to a con-
stant (maximal) value of �A = 1, is obtained for initial states
ρ

θ,ϕ
in with constant polar angle θ = π

2 and randomly generated
azimuthal angle ϕ ∈ [π

2 , π ], these states are found on the
dark green region of the equatorial plane of the Bloch sphere
in Fig. 2. For (θ, ϕ) = ( π

2 , π ), point (3), the upper right corner
with �A = �B = 1 is reached. For the horizontal boundary
(�B = 1), ϕ is kept constant at ϕ = π , while θ is randomly
chosen from the interval [0, π

2 ] (light green curve on the
Bloch sphere), where for θ = 0 (+z direction) the boundary
becomes a closed curve. Figure 3(b) also shows Busch’s two
additive versions of state-independent preparation uncertainty
relations from Eq. (5a) (dotted red line) and Eq. (5b) (dashed
orange curve). While the former is saturated only in points (1)
and (2), the latter coincides with the bound from Eq. (8) (only
for orthogonal observables A and B).

(iii) Entropies: The approach presented in [43] for a tight
state-independent uncertainty relations for qubits is based on
the fact that in the case of Pauli observables the expectation
value contains all information necessary to derive the uncer-
tainty. Consequently, the uncertainty can also be expressed in
terms of entropy H , which is also a function of the expectation
value. The lower (state-independent) bound is consequently
calculated as bH = 1 − (�a · �b)2. All arguments on the initial
states saturating the boundary for standard deviations �A and
�B also apply to entropies H (A) and H (B), which are plot-
ted in Fig. 3(c). Figure 3(c) includes Deutsch’s (suboptimal)
bound from Eq. (3) (dotted green line) as well as the two
bounds, in the case of orthogonal observables A and B being
identical, from the Maasen-Uffink Eq. (4) (dashed violet line)

and from [34–37] (dashed beige line), which are saturated
only in points (1) and (2).

2. Configuration�a ·�b = 1
2

Next, expectation values, standard deviations, and en-
tropies for Pauli observables A = �a · �σ and B = �b · �σ , with
�a · �b = 1

2 (plotted in Fig. 4), which corresponds to a relative
angle δ = 60◦ (see Bloch sphere in Fig. 5), are investigated.

(i) Expectation value: The obtained values for 〈A〉 and 〈B〉
now have an elliptical boundary, which is depicted in Fig. 4(a).
For pure states with θ = 0 [point (1), +z direction), neither
of the two expectation vales 〈A〉 and 〈B〉 is zero, more pre-
cisely 〈A〉 = 1 and 〈B〉 = 1

2 . For increasing values of θ (while
keeping ϕ = π

2 constant) 〈A〉 = 1 decreases, while 〈B〉 = 1
increases, reaching a maximum of 〈B〉 = 1 (with 〈A〉 = 1

2 ) at

θ = π
3 = δ, that is the polar angle of unit vector �b, indicated

by point (2) on the Bloch sphere in Fig. 5. In the interval θ ∈
[π

3 , π
2 ] both 〈A〉 and 〈B〉 are decreasing. At θ = π

2 [point (3),
+y direction] 〈A〉 = 0 and 〈B〉 = 0.87. Polar angle θ = 5π

6
yields 〈B〉 = 0 and 〈A〉 = −0.87, at point (4′). A minimum
for 〈A〉 is reached at θ = π [point (5′), −z direction] with
〈A〉 = −1 (and 〈B〉 = − 1

2 ). In the interval θ ∈ [π, 2π ] the
reverse behavior is observed. Initial states outside the blue
great circle, for instance states connecting points (3) and (4),
are unbounded pure states.

(ii) Standard deviations: Initial states that saturate the
state-independent lower bound of Eq. (8) [curved boundaries
from point (5) to point (3) in Fig. 4(b)] are located on the
blue great circle in the z-y plane of Fig. 4(a) with polar
angle θ ∈ [−π

6 , π
2 ]. For pure states with θ = 0 [point (1),

+z direction] �A = 0 (�B = 0.87) is obtained. At θ = π
3 =

δ, point (2), we have �B = 0 (�A = 0.87) and at θ = π
2 ,

point (3), �A = 1 and �B = 1
2 . The vertical boundary, rep-
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(a) (b) (c)

FIG. 4. Plots of the experimentally obtained values for Pauli observables �a · �b = 1
2 , in terms of (a) expectation values 〈A〉, 〈B〉; (b) standard

deviations �A, �B [including bounds from Busch’s Eqs (5a) (dotted red line) and (5b) (dashed orange curve)]; and (c) entropies H (A), H (B)
[including bounds from Deutsch’s Eq. (3) (dotted green line), Maassen and Uffink (4) (dotted-dashed violet line), and from [34–37] (dashed
beige line)]. Blue curves indicate the theoretic predictions of lower bounds from Eqs. (6), (8), and (11), for expectation values, standard
deviations, and entropies, respectively. Light green line [connecting points (3)–(4)] and magenta line [connecting points (4)–(5)] represent the
theoretic predictions for values of the corresponding initial states indicated by the respective color (points) on the Bloch sphere in Fig. 5.

resented by points (3) to (4) is covered by initial states on the
equatorial plane of the Bloch sphere with azimuthal angle ϕ ∈
[π

2 , π ] [light green line in Fig. 4(b)]. Initial states saturating
the horizontal lower bound [magenta in Fig. 4(b)] are located
on a great circle (magenta in Fig. 5) embedded in a plane per-
pendicular to �b. Here both polar angle θ and azimuthal angle
ϕ are varied, namely θ between π

2 and −π
6 and ϕ between π

and π
2 , before reaching point (4), thereby closing the boundary

of allowed values for standard deviations �A and �B. Initial
states on the blue great circle in the z-y plane of Fig. 5 (ϕ = π

2 )
with θ > π

2 are located inside the boundary (unbounded pure
states), more precisely on the blue curve in Fig. 4(b) between
point (3) and point (4′). At θ = 5π

6 , point (4′) is reached,
yielding the same values as θ = −π

6 of point (5). Busch’s
bound from Eq. (5a) (dotted red line) is saturated again only
in points (1) and (2), whereas the bound from Eq. (5a) (dashed

FIG. 5. Bloch sphere of initial states saturating boundaries of
Eqs. (6), (8), and (11), for expectations values, standard deviations,
and entropies, respectively, in the case �a · �b = 1

2 .

orange curve) touches the uncertainty region only in one point,

namely (�(A), (�(B)) = (
√

1−|�a·�b|
2 ,

√
1−|�a·�b|

2 )=( 1
2 , 1

2 ).
(iii) Entropies: Initial states saturating the boundary

for entropies H (A) and H (B) are again the same as
for standard deviations �A and �B, which is plotted
in Fig. 4(c). Values for entropies H (A) and H (B) in
point (i), denoted as {p(i); H (A), H (B)}, are given by
{p(1); 0, 0.81}, {p(2); 0.81, 0}, {p(3); 1, 0.35}, {p(4); 1, 1},
and {p(5); 0.35, 1}. Deutsch’s bound from Eq. (3) (dotted
green line) and the bound from the Maasen-Uffink Eq. (4)
(dotted-dashed violet line) are both suboptimal in the case
of nonorthogonal observables A and B. However, the bound
from from [34–37] (dashed beige line) is saturated in a single

point, that is found at (H (A), (H (B)) = (h2( 1+c
2 ), h2( 1+c

2 )) =
(0.345, 0.345), where c = maxi, j |〈ai|b j〉| is the maximum
overlap between the eigenvectors |ai〉, |b j〉 of observables A
and B.

B. Partially state-dependent relations

1. Expectation values

As already discussed in Sec. IV A 1, the state-independent
bound of Eq. (6), given by bEV = |�a × �b|2, is saturated only by
pure states, found on the surface of the y-z-plane on the Bloch
sphere. The partially state-dependent lower bound, expressed
as b′

EV(r) = (1 − (�a · �b)2)|�r|2, is covered by mixed states lo-
cated in the y-z plane of the Bloch sphere, with respective
degree of polarization r. For expectation values the lower
bound of Eq. (6) is a closed curve representing the entire
boundary of allowed values for 〈A〉 and 〈B〉, which can be seen
in Figs. 6(a) and 6(b), for �a · �b = 0 and �a · �b = 1

2 , respectively.
The measurement is carried out for three initial degrees of
polarization, which are tuned by the angle βr

z between the
supermirror and the neutron beam, namely rmin = 0.83(1),
rmid = 0.94(1), and rmax = 0.99(1). The theoretical predic-
tions for expectations vales 〈A〉 and 〈B〉, indicated by solid
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FIG. 6. Plots of the experimentally obtained values for ex-
pectation values 〈A〉 and 〈B〉 for (a) �a · �b = 0 and (b) �a · �b = 1

2 .
The colored ellipses indicate the lower bounds of Eq. (6), of al-
lowed values for 〈A〉 and 〈B〉 for three different initial degrees of
polarization r.

blue, dotted red, and dashed orange lines in Fig. 6 for initial
degrees of polarization rmax, rmid, and rmin, respectively, are
reproduced clearly.

2. Standard deviations

All states that saturate the state-independent bound of
Eq. (8), denoted as bSD = 1 + (�a · �b)2, are pure states, found
on the surface of the y-z plane on the Bloch sphere. For

FIG. 7. Plots of the experimentally obtained values for standard
deviations �A and �B for (a) �a · �b = 0 and (b) �a · �b = 1

2 . The col-
ored curves indicate the lower bounds of Eq. (8) of allowed values
for �A and �B for three different initial degrees of polarization r.

�a · �b = 0 the partially state-dependent lower bound of Eq. (8),
that is b′

SD(r) = 2 − [1 − (�a · �b)2]|�r|2, is saturated by the cor-
responding mixed states in the y-z plane of the Bloch sphere
with polar angle θ ∈ [0, π/2]. Unlike the case of expectation
values, the lower bound of Eq. (8) is not a closed curve, which
can be seen Fig. 7. While initial states ρθ

in, that lie in the
y-z plane, cover the entire the lower bound of Eq. (6), they
are insufficient to enclose the remaining boundaries (vertical
and horizontal lines in Fig. 7) of allowed values for standard
deviations �A and �B. For standard deviations, the situation
is different compared to expectation values; the vertical and
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FIG. 8. Plots of the experimentally obtained values for entropies
H (A) and H (B) for (a) �a · �b = 0 and (b) �a · �b = 1

2 . The colored
curves indicate the lower bounds of Eq. (11) of allowed values for
H (A) and H (B) for three different initial degrees of polarization r.

horizontal boundaries can be saturated not only by pure states
(which cover again the entire bound), but (partially) also
by certain mixed states (r < 1). The vertical and horizontal
boundaries of allowed values are occupied by initial states
of all mixing angles. For �a · �b = 1

2 , depicted in Fig. 7(b),
the partially state-dependent lower bounds of Eq. (8) (curved
boundaries), are obtained for pure and mixed initial states
ρθ

in with θ ∈ [−π
6 , π

2 ], which are randomly generated. For
all three initial degrees of polarization (rmin = 0.83, rmid =
0.94, and rmax = 0.99) the theoretical predictions of the tight
state-independent and tight partially state-dependent uncer-

tainty relations in terms of standard deviations �A and �B
(solid blue, dotted red, and dashed orange lines in Fig. 7) are
experimentally confirmed.

3. Entropy

The obtained results for three initial degrees of polariza-
tion (rmin = 0.83, rmid = 0.94, and rmax = 0.99) are depicted
in Fig. 8. Again, as in the case of standard deviations for
�a · �b = 0, depicted in Fig. 7(a), all states that saturate the state-
independent bound of Eq. (11), denoted as bH = 1 − (�a · �b)2,
are pure states, located on the surface of the y-z plane on the
Bloch sphere with polar angle θ ∈ [0, π

2 ]. The partially state-
dependent lower bound of Eq. (11), expressed as b′

H (r) =
[1 − (�a · �b)2]|�r|2, is saturated by the corresponding mixed
states in the y-z plane of the Bloch sphere with polar angle
θ ∈ [0, π

2 ]. For �a · �b = 1
2 , depicted in Fig. 8(b), the bounds

of Eq. (11) are obtained for pure and mixed initial states ρθ
in

with θ ∈ [−π
6 , π

3 ]. The theoretical predictions (solid blue,
dotted red, and dashed orange lines in Fig. 8) are reproduced
clearly, demonstrating tight state-independent and tight par-
tially state-dependent uncertainty relations for entropies H (A)
and H (B).

V. DISCUSSION AND CONCLUSION

The presented experiment investigates the relationship
between the expectation values of Pauli spin observables
and two standard measures of uncertainty, namely standard
deviations and Shannon entropies. The tightness of state-
independent uncertainty relations for Pauli measurements on
qubits is experimentally demonstrated. In addition, we ob-
served bounds on these relations, expressed in terms of the
norm |�r| of the Bloch vector, resulting in (partially) state-
dependent uncertainty relations with lower bounds. We have
experimentally confirmed the tightness of state-independent,
as well as partially state-dependent, uncertainty relations for
pairs of Pauli measurements on qubits. The observed uncer-
tainty relations, expressed in terms of standard deviations and
Shannon entropy (both functions of the expectation value),
completely characterize the allowed values of uncertainties
for Pauli spin observables. The theoretical framework al-
lows for uncertainty relations for three (or more) observables,
which will be a topic of forthcoming publications. Finally,
we want to emphasize that it is also possible to go be-
yond projective measurements and give similar relations for
positive-operator-valued measures (POVMs) for qubits with
binary outcomes, which will be investigated in upcoming
experiments.
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