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Relativistic paradox exposing the ubiquity of hidden momentum
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The tight connection between mass and energy unveiled by special relativity, summarized by the iconic
formula E = mc2, has revolutionized our understanding of nature and even shaped our political world over the
past century through its military application. It is certainly one of the most exhaustively tested and well-known
equations of modern science. Although we have become used to its most obvious implication—mass-energy
equivalence —it is surprising that one of its subtle—yet, inevitable—consequences is still a matter of confusion:
the so-called hidden momentum. Often considered as a peculiar feature of specific systems or as an artifact to
avoid paradoxical situations, here we present a relativistic “paradox” which exposes the true nature and ubiquity
of hidden momentum. We also show that hidden momentum can be forced to reveal itself through observable
effects, hopefully putting an end to decades of controversy about its reality.
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I. INTRODUCTION

Einstein’s iconic mass-energy relation, E = mc2, is ar-
guably the most famous formula in modern science. It
expresses the equivalence between total mass m and total
energy E of a system (c being the speed of light in vacuum),
with wide-ranging consequences: from the unattainability of
the speed of light for massive objects to particle production
in high-energy accelerators, and from the origin of the en-
ergy of stars—less than 0.1% of the star’s mass, converted
into radiation over its entire existence—to violent bursts of
gravitational waves from merging black holes—some of them
sourced by several solar masses converted into energy in a
fraction of a second. Given the importance and generality
of mass-energy equivalence, it may strike one as a surprise
that one of its subtle—but inevitable—consequences is still
a matter of confusion: the concept of hidden momentum
(HM) [1]—here generalized as the (purely relativistic) part
of total momentum which is not encoded in the motion of the
center of mass-energy (CME) of the system.

In Newtonian mechanics, the total momentum P of a closed
mechanical system—one which does not exchange matter
with “the rest of the universe”— is always given by P =
MVc.m., where M is the total mass of the system and Vc.m.

is the velocity of its center of mass. This result, known as
the center-of-mass theorem, holds true regardless of whether
the Newtonian system is subject to external forces or not. In
contrast to that, a variety of relativistic systems possessing
nonzero total momentum in the rest frame of their CME has
been identified over the past decades (see, e.g., Refs. [1–15]).
Here, the term “relativistic” does not necessarily mean that
large velocities are involved, but rather that different inertial-
frame descriptions are supposed to be Lorentz covariant
instead of Galilean covariant. This covariance constraint leads
to “unfamiliar” results (i.e., results nonexistent in Newtonian
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mechanics) even in the rest frame of the system—such as
nonzero total momentum. Such rest-frame momentum has
been termed hidden momentum [1], which now seems to
be somewhat unfortunate because apparently this has misled
many to interpret its nature as somehow distinct from “regu-
lar” momentum—as we argue here, from the relativity-theory
perspective, it is not. Adding confusion to the story, all sys-
tems in which HM had been identified, until now, involved
interaction with electromagnetic fields—where it even bears
an interesting connection with the difference between canon-
ical and kinematic electromagnetic momenta [15]—and/or
moving inner parts subject to some external force field. This
masked the generic nature of HM as if it were an exotic
feature—undesired by some—of peculiar interaction laws or
specific systems.

Here, we present a relativistic “paradox” which shows that
this view is limited and that HM is ubiquitous in a relativistic
world (i.e., a world supposed to be covariant under Lorentz
transformations). Moreover, the general definition of HM we
propose, freeing its computation from the rest frame of the
system, leads to a formula which explicitly shows its relation
to asymmetric exchange (and hence flow) of energy. Finally,
in order to conclusively show that HM is as real as it could
be, in the end we discuss an observational consequence of its
existence. The present analysis is intended to put an end to
decades of confusion about the nature and reality of the so-
called HM.

The paper is organized as follows. In Sec. II, we present the
relativistic paradox involving a heat-conducting bar (HCB)
analyzed from different inertial-frame perspectives. In order
to make the presentation clearer, textbook-level relativistic
calculations which support statements made in this section
are described in the Appendix. In Sec. III, we put the HCB
paradox in context with other known pseudoparadoxes, stress-
ing their origin in our intuition based on space and time as
separate entities rather than in inconsistencies with known
theories. We also argue that the HCB paradox is a close ther-
mal analog of another relativistic pseudoparadox known as
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FIG. 1. Heat-conducting-bar paradox. (a) A bar stands still in an
inertial frame, connecting two thermal reservoirs. In the stationary
regime, the bar absorbs heat from the thermal reservoir at tempera-
ture T1, at a rate W , and delivers heat at the same rate to the thermal
reservoir at temperature T2 � T1. There are no net forces between
the bar and the reservoirs. (b) The same situation observed from an
inertial frame with respect to which the bar moves with velocity V
perpendicular to itself. According to observers static in this latter
frame, the reservoirs apply opposite forces ±F = ±W V/c2 on the
bar. Therefore, in this frame there exists a torque T = W (V × D)/c2

on the heat-conducting moving bar, where D is the spatial vector
depicted in the figure.

“Mansuripur’s paradox” [6]. In Sec. IV, we argue that HM is
just another inevitable consequence of Einstein’s mass-energy
relation E = mc2, obtaining a general expression for HM
in terms of the dipole moment of the energy-exchange rate
(Sec. IV A) and then applying this general result to solve the
HCB paradox (Sec. IV B). In Sec. V, we show that, contrary to
widespread belief expressed in the literature, the existence of
HM in a system can be objectively tested. Finally, in Sec. VI,
we present our final comments and discussion. It is important
to stress that (i) the HCB pseudoparadox (Sec. II) and (ii) the
general deduction of the HM formula (Sec. IV A) are inde-
pendent presentations; the former is discussed only because
it evidentiates, in a concrete scenario, the generic nature of
HM—which is the main point of this paper.

II. HEAT-CONDUCTING-BAR PARADOX

Consider the system depicted in Fig. 1(a), composed by
a free bar connecting two thermal reservoirs at tempera-
tures T1 and T2—with, say, T1 � T2—at rest in an inertial
frame. In order to avoid unnecessary subtleties, we consider
that (i) the stationary heat-flow regime has been established,
(ii) thermal contact between the bar and each reservoir is
symmetric (for instance, through the lateral surface of the
bar), and (iii) the bar is coated with a thermal insulator
all over the parts which are not in contact with the reser-
voirs. Conditions (i) and (ii) ensure that the CME of the
bar stays at rest in the inertial rest frame of the reservoirs
without the need for any mechanical constraint; the heat-
conducting bar in the stationary regime is in static mechanical
equilibrium. [Condition (iii) only serves to keep the system
simple.] From the rest-frame perspective, the effect of the
reservoirs on the bar is merely exchange of heat, with no
net forces or torques being applied. Let W > 0 represent
the (constant) rate at which heat is exchanged between the
bar and the reservoirs—flowing into (out of) the bar from
(to) the reservoir at temperature T1 (T2). (Side note: for any
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FIG. 2. Spacetime depiction of the world volume of the bar and
the energy-momentum exchange (given by the four-force densities
± f a) between the bar and the reservoirs. (a) From the rest-frame
perspective, f a has only a component along the time direction,
describing exchange of energy without net spatial forces. (b) From
the moving-frame perspective, the same f a clearly has nonvanishing
spatial projection. Therefore, in this frame, there are force densities
±f acting on the bar.

given heat-exchange rate W , we can consider the temperature
difference T2 − T1 to be arbitrarily small by choosing bars
with arbitrarily large thermal conductivities; therefore, al-
though unnecessary, one can simplify further the setup
considering the mass-energy and temperature distributions
along the bar to be arbitrarily close to homogeneous.)

Now, let us analyze the same setup from the perspective
of another inertial frame, with respect to which the bar (and
the whole system) moves with velocity V perpendicular to
itself—the “moving frame” for short. Although it may sound
odd at first, it follows directly from Einstein’s special relativity
that, in this frame, the reservoirs apply opposite net forces
±F = ±W V/c2 at the moving bar’s ends [see Fig. 1(b)].

The proof of this fact is actually quite simple (a textbook-
level exercise) and is explained in detail in the Appendix. In
essence, due to Lorentz covariance, what is seen in the rest
frame as a pure exchange of energy (i.e., a four-force density
f a with only a time component) corresponds to exchange of
both energy and momentum according to the moving frame
(see Fig. 2, which is the spacetime depiction of the bar in
Fig. 1).

Once the reader is convinced of the existence of such
forces, he/she promptly realizes that they lead to a torque on
the heat-conducting moving bar, which (neglecting the spatial
extension of the thermal contacts) is given by

T = W (V × D)/c2, (1)

where D is the separation vector between the thermal contacts
(see Fig. 1); although the opposite forces have no net effect
on the total momentum of the bar as time passes, they do
change the bar’s angular momentum. If we apply our New-
tonian intuition—as is customary when arriving at relativistic
paradoxes—this torque with respect to the instantaneous CME
position should try to rotate the bar. But this is obviously in
conflict with the fact that in the reservoirs’ rest frame the bar is
in static mechanical equilibrium; there is absolutely no reason
for rotation. We have stumbled on a relativistic paradox.
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FIG. 3. Mansuripur’s paradox. (a) A magnet stands still in an
inertial frame, with magnetic dipole moment m0 perpendicular to
a uniform electric field E. (b) The same situation observed from an
inertial frame with respect to which the magnet moves with velocity
V parallel to the electric field. Now, the magnet also carries an
electric dipole moment d, upon which the electric field exerts a
torque.

III. NO REAL PARADOX

Relativistic paradoxes—more precisely, situations the de-
scriptions of which from different inertial perspectives seem
paradoxical when compared to each other—are numerous and
even serve as teaching tools in relativity. Rather than pointing
to inconsistencies in fundamental theories, they reveal how
our Newtonian perception of space and time as separate en-
tities, instead of interwoven in an absolute four-dimensional
spacetime, can be deceiving. Their nature can be loosely clas-
sified as kinematical—those which involve only time-interval
and spatial-distance measurements—and dynamical—those
which involve forces. The twins’, barn-pole, and Bell’s space-
ship paradoxes are well-known textbook samples of the
kinematical type—see, e.g., Ref. [16]—whereas the Trouton-
Noble [17], right-angle-lever [18], and submarine [19–22]
paradoxes are representative of the dynamical type. The HCB
paradox presented above clearly fits into this latter class. Con-
trary to kinematical paradoxes, the dynamical ones are rarely
addressed in relativity textbooks and introductory courses.
This may explain why many of them are unknown to nonrel-
ativists or, when known, concepts involved in their resolution
are seen with suspicion.

In 2012, Mansuripur [6] analyzed in detail an ingenious dy-
namical paradox—previously discussed in Ref. [23]—which,
in a simplified but equivalent version, can be realized by
a neutral magnet at rest in an inertial frame, where there
exists a uniform (external) electric field E perpendicular to
the magnet’s magnetic dipole moment m0 (see Fig. 3). In the
magnet’s rest frame [Fig. 3(a)], the magnet “seems” oblivi-
ous to the presence of the electric field—apart from induced
polarization, which can be made negligible. However, look-
ing at the same system from another inertial frame, with
respect to which the magnet moves with velocity V along
the electric field’s direction [Fig. 3(b)], the magnet now also
bears an electric dipole moment d = V × m0/c2—since m0

is ultimately due to electric currents, not pairs of magnetic
monopoles [24]. Thus, according to this inertial frame, there
must exist a torque T = d × E = (V · E) m0/c2 acting on the
magnet, which would supposedly make it spin—in gross con-
tradiction with the fact that in its inertial rest frame the magnet
stands still. Mansuripur concludes that this contradiction is an
“incontrovertible theoretical evidence of the incompatibility
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FIG. 4. Four-dimensional representation of (the cross section
z = 0 of) the system depicted in Fig. 3: (a) privileging the magnet’s
rest frame and (b) privileging the moving frame. The Lorentz four-
force density is future directed ( f a) where the electric field favors the
current density (j · E > 0) and past directed otherwise (j · E < 0).
Note that it has null projection on �′—therefore, no forces according
to the magnet’s rest frame— while being nonzero and circulating
on �—therefore, applying a torque on the magnet according to the
moving frame.

of the Lorentz law [of force] with the fundamental tenets of
special relativity” [6].

The HCB paradox presented earlier is a close thermal
analog of Mansuripur’s, with the thermal reservoirs playing
the role of the external electric field and the heat-conducting
bar substituting the magnet. Less obvious is the analog, in
Mansuripur’s setup, of the heat exchange rate W between the
bar and the reservoirs. But recalling that magnetism in mate-
rials is ultimately due to current densities j (even if quantum
mechanical in nature), one concludes that the magnet in its rest
frame does exchange energy with the external electric field at
a rate, per volume, j · E: the magnet predominantly absorbs
(delivers) energy from (to) the external field where j · E > 0
(j · E < 0), leading to a net flow of energy across the magnet.
This completes the analogy between the HCB paradox and
Mansuripur’s (compare Fig. 4 with Fig. 2). Notwithstanding,
there is one important difference: in the thermal analog, there
is no specific “law of force” to blame for the apparent con-
tradiction between different inertial-frame descriptions; the
torque on the bar seen from the moving-frame perspective is
enforced by Lorentz covariance and, particularly, by E = mc2.
Certainly, no one would hold that Einstein’s mass-energy re-
lation is “incompatible with the fundamental tenets of special
relativity.” Therefore, there is no logical reason for taking this
stand regarding the Lorentz force.

IV. MASS-ENERGY EQUIVALENCE AND
HIDDEN MOMENTUM

Relativistic thermodynamics has its own history of sub-
tleties and controversies. The most emblematic of them is
probably the question of how temperature transforms from
one inertial frame to another. It took about 90 years for this to
be recognized as an ill-posed question—hence, the conflict-
ing answers given during this period (see Refs. [25,26] and
references therein). Fortunately, none of these subtleties—not
even temperature transformation—concerns us; the purpose of
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thermal reservoirs in the setup of Fig. 1 is only to guarantee an
eventual stationary situation in the rest frame of the system.

As mentioned earlier, several systems with nonvanishing
total momentum in their rest frames have been found and
discussed in the literature (see, e.g., Refs. [1–5])—including
Mansuripur’s setup [7–11,15]. All such systems involved in-
teraction with electromagnetic fields and/or moving inner
parts subject to some external force field, which led many to
view it as a feature of peculiar interaction laws or systems.
Mansuripur, for instance, considered HM to be an ad hoc
addition to materials interacting with electromagnetic fields,
with no justification other than artificially avoiding paradoxi-
cal situations [12–14]. A better law of electromagnetic force,
he reasoned, should be one which leads to no torque on the
moving magnet in an electric field—hence, doing away with
HM. The advantage of the HCB paradox we discuss in this pa-
per is that it does not depend on the inner details of the system
(the bar and the heat or energy flow) or of the interaction with
“the rest of the universe” (the thermal or energy reservoirs).

The resolution of the HCB paradox—as well as
Mansuripur’s—consists in taking mass-energy equivalence to
its ultimate consequences. As heat (i.e., energy) flows through
the bar, it contributes to momentum in very much the same
way as would a flow of matter. In fact, distinguishing contribu-
tions to the total momentum coming from “different forms” of
energy flows is quite contrary to the spirit of relativity theory.
Therefore, the total momentum of the bar in its rest frame
[Fig. 1(a)] does not vanish—a purely relativistic effect.

For the same reason, according to the inertial frame with
respect to which the bar moves with velocity V perpendicular
to itself [Fig. 1(b)], there is a momentum contribution along
the bar. Consequently, the bar’s total momentum P and the
CME velocity V are misaligned, and dragging momentum
P along a spatial direction which is not aligned to it in-
evitably leads to a time-varying angular momentum L (with
dL/dt = V × P) and, therefore, demands a torque—which,
as we shall see below, is precisely the one supplied by the
thermal reservoirs in the moving frame.

A. General treatment: Hidden momentum as the
dipole moment of the energy-exchange rate

Mass-energy equivalence has a very straightforward con-
sequence which, nonetheless, is overlooked when arriving
at dynamical relativistic paradoxes: the distinction between
closed and isolated systems, as usually made in Newtonian
(i.e., Galilean-covariant) physics (including nonrelativistic
thermodynamics), has no absolute meaning in relativistic
physics. While in Newtonian physics a system can exchange
energy without exchanging mass (i.e., it can be nonisolated
but closed), this is obviously impossible if mass and energy
are the same physical quantity. In this sense, the relativistic
dynamics of the heat-conducting bar depicted in Fig. 1—
which, in the Newtonian context, is a closed system for which
the center-of-mass theorem would apply—is essentially the
same as that of a pipe segment carrying a steady fluid or
particle current, with fluid or particles entering the system at
one end of the pipe and leaving at the other—which, in the
Newtonian context, is an open system, for which the center-
of-mass theorem does not apply. No one would object that

the pipe segment carrying a particle or fluid current possesses
nonzero momentum in the rest frame of its center of mass.
Distinguishing this momentum from the one carried by the
heat-conducting bar—or, for that matter, from the one carried
by the magnet in Mansuripur’s setup—is solely motivated by
our Newtonian view of the world.

Although distinguishing HM from “regular” momentum
is artificial as far as relativistic dynamics is concerned, it
is useful, in order to demystify it further, to pin down the
elements which compel our Newtonian intuition to make
such a distinction. Basically, all instances of HM involve
systems where there is a clear notion of a velocity field v of
their “constituents” —usually taken to be particles or fluid
elements—and an associated non-negative (not identically
null) number density n which, together, satisfy the continuity
equation ∂t n + ∇ · (nv) = 0 in all inertial frames.

Put in spacetime language: these systems in which HM
can be identified possess, associated to their constituents, a
timelike future-directed four-vector field na—the four-current
number density, the components of which in inertial Carte-
sian coordinates read nμ = (nc, nv)—satisfying the tensorial
equation ∇ana = 0. The key point is that the existence of
such a four-current number density allows us to extend to
the relativistic context, in a consistent manner, the notion of
“closed systems.”

Definition: A system will be said to be closed if one of the
following holds.

(a) The system is isolated—i.e., its extended (see below)
stress-energy-momentum tensor T̄ ab satisfies ∇aT̄ ab ≡ 0 (and
goes to zero sufficiently fast at spatial infinity so that any flux
vanishes).

(b) The system possesses a “natural” notion of four-current
number density na (as defined above) the extension n̄a of
which (see below) satisfies ∇an̄a ≡ 0 (and goes to zero suf-
ficiently fast at spatial infinity so that any flux vanishes).

(c) The system itself is a collection of closed systems as
defined in the previous items.

[Given a tensor field T ab...
cd... with support supp(T ), its exten-

sion T̄ ab...
cd... is the tensor field defined over the whole spacetime

which coincides with T ab...
cd... in supp(T ) and is zero otherwise.

This is a mere technicality, useful when treating systems
which are, themselves, part of larger ones. Due to possible
discontinuities in T̄ ab...

cd... , the equations above are to be taken in
the distributional sense.]

The definition above clearly recovers, in the Newtonian
regime, the notion of closed systems as those which do not
exchange matter or mass, for in this case the mass density
itself satisfies the continuity equation and can be taken to be
n up to a multiplicative constant. This fact will be used later
when we restrict attention to closed systems.

Let S be a system with a stress-energy-momentum tensor
the components of which in inertial Cartesian coordinates
{(ct, x)} are given by T μν

S . We assume that, at each instant
t , T μν

S goes to zero sufficiently fast at spatial infinity so that
the manipulations and integrals which follow below are well
defined. The CME of S is given by

XCME := 1

Mc2

∫
d3x T̄ 00

S x, (2)
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where M = ∫
d3x T̄ 00

S /c2 is the (possibly time-dependent)
total mass of the system. (All integrations are carried over
the entire spatial section t = const, hence the use of T̄ μν

S
instead of T μν

S .) Multiplying Eq. (2) by M and taking the time
derivative, we get

MVCME = −dM

dt
XCME + 1

c

∫
d3x ∂0T̄ 00

S x

= 1

c

∫
d3x ∂0T̄ 00

S (x − XCME), (3)

where VCME := dXCME/dt is the velocity of the CME of S .
The fact that system S is not necessarily isolated means

that ∂μT̄ μν

S = f ν , where f μ is the four-force density acting
on S—in particular, f 0 is related to energy exchange rate
W through d3x f 0 = dW/c. Substituting ∂0T̄ 00

S = f 0 − ∂ j T̄
j0
S

into Eq. (3) leads to

MVCME − 1

c

∫
d3x f 0 (x − XCME)

= −1

c

∫
d3x ∂ j T̄

j0
S (x − XCME)

= −1

c

∫
d3x ∂ j

[
T̄ j0
S (x − XCME)

] + 1

c

∫
d3x T̄ j0

S ∂ jx

=
∫

d3x p = P, (4)

where (p) j = T̄ j0
S /c are the components of the momentum

density of the system.
So far, very little has been imposed on the system S . In fact,

the only assumptions are that the integrals above converge
and that the surface term coming from the first integral in
the right-hand side of the third line of Eq. (4) vanishes at
spatial infinity. But now we restrict attention to closed sys-
tems, as defined earlier. The reason is that for closed systems
the second term in the left-hand side of Eq. (4) is purely
relativistic, since in the Newtonian regime n is proportional to
mass density and, therefore, f 0/c ∝ ∇an̄a ≡ 0. This expresses
the well-known fact that in Newtonian mechanics the total
momentum of an arbitrary closed system (isolated or not) is
completely encoded in the motion of its center of mass and its
total mass—the center-of-mass theorem. In relativity theory,
on the other hand, we see that asymmetric (with respect to
the CME) exchanges of energy between S and the rest of
the universe contribute to the total momentum of the system;
now, P cannot be assessed only by keeping track of the sys-
tem’s mass-energy distribution. This motivates us to define
the “hidden” part of the total momentum of the system as
Ph := P − MVCME, which can then be calculated by

Ph = −1

c

∫
d3x f 0 (x − XCME) = − 1

c2

∫
dW (x− XCME).

(5)

In words, the hidden momentum of a closed system is given by
(minus 1/c2 times) the dipole moment (with respect to XCME)
of its energy-exchange rate. Notice that our definition not only
frees HM from being identified only in the rest frame of the
system (where VCME = 0), but also shows that HM does not
depend on the inner details of the system; it does not depend

on the nature of T ab
S (electromagnetic, thermal, mechanical,

etc.), but only on how it fails to be conserved (see “Note
added” section).

B. Hidden momentum in a heat-conducting bar

Applying the definition given in Eq. (5), or its discrete
version

Ph = − 1

c2

∑
j

(x j − XCME)Wj, (6)

to the system depicted in Fig. 1, we promptly obtain

Ph = W D/c2. (7)

Therefore, in the situation depicted in Fig. 1(b), dragging
the total momentum P = MV + Ph of the bar at a constant
velocity V leads to an angular momentum L which changes at
a rate

dL
dt

= V × P = V × Ph = W V × D/c2.

Comparing this result with the torque given in Eq. (1), pro-
vided by the forces ±F, we see that everything fits perfectly:
the torque provided by the forces seen from the moving frame
is exactly the one needed to keep the spinless bar in uniform
motion.

Obviously, Eq. (5) can also be applied to the magnet de-
picted in Fig. 3 [7]. Recalling that j = ∇ × M, where M is
the magnet’s magnetization, we have

Ph = − 1

c2

∫
d3x (j · E) (x − XCME)

= − 1

c2

∫
d3x [∇ · (M × E)] (x − XCME)

= 1

c2

∫
d3x (M × E) = 1

c2

(∫
d3x M

)
× E

= 1

c2
m0 × E. (8)

Therefore, in the situation depicted in Fig. 3(b), the total
angular momentum L of the magnet changes at a rate

dL
dt

= V × P = V × Ph = (V · E)m0/c2,

which matches exactly the torque applied on the magnet ac-
cording to the moving frame—see Sec. III.

V. HIDDEN BUT REAL AND OBSERVABLE

By now, we hope we have convinced the reader that HM,
far from being a peculiar property of specific systems or
interaction laws, is simply a legitimate relativistic contribution
to total momentum coming from energy flows in a closed,
nonisolated system—a distinction motivated solely by our
Newtonian intuition. In this sense, not only is it ubiquitous
in a relativistic world, but also it is as real as any other form
of momentum. In fact, we present below a final conclusive
evidence which corroborates this view: we show that HM
can be converted into “regular” momentum and, as such, its
existence has observable consequences.
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Consider the same system depicted in Fig. 1(a) in the
stationary regime of heat flow. Suppose, now, that the ther-
mal contacts with both reservoirs are suddenly interrupted
simultaneously in the bar’s frame (e.g., by some clever prepro-
grammed mechanism attached to the bar itself which shields
the contacts with some thermal insulator). Since this interrup-
tion can be performed without any external forces applied on
the bar, its total momentum will not change in the process.
However, once the thermal contacts are interrupted, the bar is
isolated and, as such, the center-of-mass theorem must hold.
This implies that the bar’s initial total momentum, which was
completely hidden, now has to manifest itself as motion of the
bar’s CME:

VCME = Ph

M
= W D

Mc2
,

where M is the mass of the bar in the situation depicted in
Fig. 1(a). [Note that if, in preparing the setup represented in
Fig. 1(a), we had not held the bar fixed until the stationary
heat-flow regime had been established, the bar might have
acquired a velocity in the opposite direction in order to keep
its total momentum zero—in case thermal contacts are es-
tablished with no net external forces acting on the bar in
its rest frame. This is the reason for assumption (i) made
in Sec. II.] Although this velocity is probably too small in
realistic situations, it constitutes evidence that HM is not some
imaginary concept with no objective existence. (Obviously,
HM contained in the rest of the universe will also be converted
into motion of the CME of the latter, but since the rest-of-
the-universe mass is supposedly much larger than that of the
system of interest such effect may be completely neglected.)

The same conclusion holds for the magnet represented in
Fig. 3: if the electric field is removed without exerting net
forces on the magnet—which may be difficult due to possibly
inhomogeneous magnetic fields generated in the process—the
magnet would acquire a velocity

V = Ph

M
= m0 × E

Mc2
,

with M being the magnet’s mass. This may be seen as
somewhat similar to the Richardson–Einstein–de Haas ef-
fect [27,28], but now for linear instead of angular velocity or
momentum. (In this hypothetical scenario, it seems reasonable
to conjecture that the opposite momentum of the rest of the
universe may become manifest through emission of electro-
magnetic waves.) Since both M and m0, in ideal situations,
scale with the magnet’s volume, we can make an order-
of-magnitude overestimation for V := ‖V‖ using Bohr’s
magneton, m0 := ‖m0‖ ∼ μB ∼ 10−13 GeV/T, and the pro-
ton’s mass, M ∼ Mp ∼ 1 GeV/c2: V ∼ [E/(1 kV/m)] ×
10−1 nm/s, where E := ‖E‖. As expected, the typical veloc-
ities for real magnets in realistic external electric fields are
extremely small. However, one might try to amplify this effect
by using systems in which M scales with size slower than does
m0—as in solenoids, in the macroscopic scenario, or Rydberg
atoms, in the atomic realm.

VI. DISCUSSION

Although Mansuripur’s speculation on alternative laws of
electromagnetic force is a valid inquiry—which can only

be definitely settled by experiments—the generic nature of
the HCB paradox—with electromagnetism and moving inner
parts playing no explicit essential role—shows that the exis-
tence of torques acting on spinless, uniformly moving objects
is a ubiquitous feature of relativistic dynamics. As stated ear-
lier, this torque (T = VCME × P) is responsible for translating
the CME of the system (with velocity VCME) along a direc-
tion which is not aligned to its total momentum (P)—which
exposes the existence of HM. The generalized definition
of HM as

Ph := P − MVCME,

proposed in Sec. IV A—which makes sense not only in the
rest frame of the system (where VCME = 0)—led to a formula
relating HM with asymmetric (with respect to the system’s
CME) exchange of energy with the rest of the universe:

Ph = − 1

c2

∑
j

(x j − XCME)Wj, (9)

where XCME is the CME position and x j is the position where
energy exchange occurs at a rate Wj (Wj > 0, if energy enters
the system; Wj < 0, if energy leaves the system). The interpre-
tation is simple: this asymmetry leads to energy flows in the
system which, regardless of their nature, contribute to momen-
tum in very much the same way as do matter flows—thanks to
mass-energy equivalence. As stressed earlier, distinguishing
contributions to the total momentum coming from “different
forms” of energy flows is quite contrary to the spirit of relativ-
ity theory—which is why a covariant, observer-independent
definition of HM does not (and cannot) exist. Notwithstand-
ing, although artificial and not strictly necessary, thinking in
terms of HM may help our Newtonian intuition to spot effects
which might pass unnoticed otherwise—as the one discussed
in Sec. V.

Obviously, only experiments can decide on the correctness
of candidate laws of nature. For instance, whether or not HM
is in fact present in a magnet subject to an external electric
field strongly depends on the ultimate origin of its magnetic
dipole moment [15]. Here, in order to arrive at the well-known
Eq. (8), we have adopted the standard view that any magnetic
moment is ultimately due to electric currents, even if of a
quantum nature. Notwithstanding, Eq. (9) is equally valid
whatever is the microscopic modeling of magnetic dipoles.
Be that as it may, the point is that aiming at substituting a law
of force solely on the basis that it leads to HM is a misguided
effort. As made explicit by the HCB paradox and Eq. (9), HM
is simply an inevitable consequence of E = mc2 when seen
from an arbitrary inertial frame. Moreover, its existence can,
in principle, be tested by forcing it to reveal itself as motion
of the CME of the system—as shown in Sec. V. Looking
at this the other way around, measuring the amount of HM
in atomic-size “magnets” subject to external fields may end
up being useful for investigating or confirming the ultimate
nature of elementary magnetic moments.

Note added. Recently, Ref. [29] came to our attention,
where “internal momentum,” defined in a similar manner as
HM here, is proposed to substitute for the latter. We essentially
agree with the key points of Ref. [29], the attempt of which
to demystify HM is aligned with ours. Notwithstanding,
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Ref. [29] still limits its discussion to an electrodynamic sys-
tem, restricting energy exchanges to mechanical work: f 0 =
f · v/c. In particular, its definition of “internal momentum”
[following from its Eq. (5)] would vanish for the scenario
depicted in Fig. 1(a), in conflict with both our Eq. (7) and
the observable effect predicted in Sec. V. The HCB paradox,
the precise characterization of systems which bear HM, and
the observational consequence of HM which we discuss in
Sec. V constitute important ingredients to showing that HM
(or “internal momentum”) is a generic relativistic feature—as
we had already claimed in Ref. [7].
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APPENDIX: ENERGY-MOMENTUM TRANSFER IN
INELASTIC COLLISIONS AND FORCE EXCHANGE

WITH THERMAL RESERVOIRS

Consider the symmetric process depicted in Fig. 5(a),
where two identical particles with opposite momenta (p′

2 =
−p′

1) and vanishing total angular momentum collide with
a surface at rest. We shall allow the collisions to be in-
elastic, each delivering an energy �E ′/2 into the surface.
The symmetry of the setup makes it clear that, in this
frame, the net momentum transferred to the surface is zero

FIG. 5. (a) Symmetric inelastic collisions of two identical parti-
cles with a surface at rest. The symmetry of the setup leads to no net
momentum transfer to the surface. (b) The same process analyzed
from an inertial frame with respect to which the surface is moving
with velocity V. In this frame, the collisions are no longer symmetric
and a net momentum �P = �EV/c2 is transferred to the surface,
where �E is the energy delivered into the surface during the process.
Assuming processes like this occurring at a constant rate, a net force
given by F = W V/c2 would be exerted on the surface, where W is
the rate at which energy is delivered into the surface. By modeling
a thermal reservoir as an isotropic bath of particles, this implies
that an object at rest in a thermal reservoir is subject to a net force
F = W V/c2 when seen from a reference frame with respect to which
the whole system (object and reservoir) is moving—with W being
the rate at which energy (heat) is absorbed by the object. Note that
this force is exactly the one needed to keep an object with increasing
mass, dM/dt = W/c2, in uniform motion.

(�P′ = −(�p′
1 + �p′

2) = 0). In Fig. 5(b), the same process
is depicted as seen from an inertial frame with respect to
which the surface moves with velocity V. Obviously, the
whole process is determined from its description above; all
one has to do is to Lorentz transform the primed quantities
to this frame. By doing so—which is a textbook exercise—,
one realizes that the momentum exchanges between the parti-
cles and the surface are no longer symmetric (�p2 �= −�p1)
and that a net momentum �P = �EV/c2 is transferred to
the surface, where �E = γ�E ′ is the net energy delivered
into the surface in this frame (γ is the Lorentz factor). The
implication is clear: inelastic collisions which are symmetric
in the rest frame of the surface exert a net force on the surface
when analyzed from inertial frames with respect to which the
surface is moving.

Modeling a thermal reservoir as an isotropic bath of par-
ticles, the result above inevitably leads to the conclusion
that an object static (and symmetrically immersed [31]) in a
thermal reservoir is subject to a (purely relativistic) net force
F = W V/c2 when seen from an inertial frame with respect
to which the whole system (object and reservoir) is moving
with velocity V, with W being the rate at which energy (heat)
is absorbed by the object. Although this may sound odd at
first, it becomes quite obvious when one realizes the need for
an external force in order to keep the constant velocity of an
object with increasing rest energy (i.e., rest mass). In fact, the
existence of this relativistic force F = W V/c2 can be inferred
from this more general argument, independent of microscopic
modeling of the reservoir (see Fig. 6). The importance of
the microscopic collisional model is explicitly showing that
the existence of such a force does not depend on the fate of the
absorbed energy �E—for instance, whether it is accumulated

(a) (b)

x’

y’

x

y
V

ΔE = 0

ΔP = 0 ΔP = ΔE V/c2

ΔE = γΔE

V

x’

y’

F

FIG. 6. Force applied on a moving object by a comoving thermal
reservoir. (a) An object at rest in the reservoir’s frame exchanges an
amount �E ′ of energy in a time interval �t ′, with no momentum
transfer (due to the symmetry of the reservoir in its rest frame).
According to mass-energy equivalence, this corresponds to a (rest-
)mass variation �M ′ = �E ′/c2. (b) The same situation seen from
another reference frame: a variation �M = γ�M ′ in the object’s
mass, at constant velocity V, corresponds to a momentum transfer
�P = �MV = γ�E ′ V/c2 from the reservoir, in a time interval
�t = γ�t ′. Therefore, in this frame, the reservoir must (and does)
apply a net force F = �P/�t = �E ′ V/(c2�t ′) = W V/c2 on the
object, where W = �E ′/�t ′ = �E/�t is the energy exchange rate.
Causality and locality ensure that this final result cannot depend on
whether the energy exchange �E ′ is accumulated in the object or if
it is used to sustain a stationary heat flow, as in Fig. 1.
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in the object or constantly drained to sustain a heat flow (as
in Fig. 1) [32]. Therefore, although, strictly speaking, the
situations depicted in Fig. 1 and in Figs. 5 and 6 represent
different systems, the origin of the forces seen according to

the moving frame is the same in all of them. For an inter-
esting quantum microscopic scenario where this force is also
needed to conciliate different inertial-frame descriptions, see
Ref. [30].
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