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Theory of polaritonic quantum-vacuum detection
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Recent progress in electro-optic sampling has allowed direct access to the fluctuations of the electromagnetic
ground state. Here, we present a theoretical formalism that allows for an in-depth characterization and interpreta-
tion of such quantum-vacuum detection experiments by relating their output statistics to the quantum statistics of
the electromagnetic vacuum probed. In particular, we include the effects of absorption and dispersion. Our results
agree with available experimental data while leading to significant corrections to previous theoretical predictions
and generalizing them to new parameter regimes. We show that transverse (free-field) as well as longitudinal
(matter or near-field) fluctuations can be accessed individually by tuning the experimental parameters.
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Over 90 years ago, Heisenberg formulated the uncertainty
principle [1]. As one of its most fascinating consequences the
commutation relations in quantum electrodynamics (QED)
imply zero-point fluctuations of the electromagnetic field even
in the quantum vacuum. Indirect evidence for these fluctuat-
ing fields can be seen in experiments measuring spontaneous
decay rates [2], the Lamb shift [3], or the Casimir force [4].
These effects play an important role in many different areas
of science, such as nanotechnology [5] and adhesion [6]. Re-
cently, experiments based on nonlinear optics have opened up
an alternative route to the ground state of the electromagnetic
field [7,8]. In nonlinear optics photons can effectively be made
to interact with each other [9–11], which has become an inte-
gral component of a wide range of experimental techniques
[12–14] and permits remarkable insights into fundamental
physics [15,16]. These new experimental techniques include
electro-optic sampling [7,8] with a nonlinear crystal or the use
of a time-dependent refractive index (the dynamical Casimir
effect) [17,18].

In electro-optic sampling, a linearly polarized, ultrashort
laser pulse propagates through a nonlinear crystal which
mixes the laser pulse with any ambient electric field via its
nonlinear properties [9]. This leads to a change of the pulse’s
polarization so that one obtains information about the ambient
field inside the crystal [19,20]. The sensitivity of this setup to
extremely weak electric fields provides direct access to zero-
point fluctuations [7,21]. Using two such laser pulses (see
Fig. 1), it is possible to retrieve information about correlations
of the QED vacuum between distinct spatiotemporal regions
[8], for example.

Following the pioneering works using such setups
[7,8,20,22] and the accompanying theoretical analyses
[21,23–25], the question regarding the nature of the quan-
tum fluctuations accessed has been raised [26]. In particular,
as electro-optic sampling is necessarily carried out inside a
nonlinear optical crystal, the relation of the sampled quan-
tum vacuum to the paradigmatic free-space vacuum is an

important question. Here, we address this issue and offer a
general theoretical framework based on macroscopic QED
[27,28] which provides a basis for a detailed characteri-
zation and interpretation of quantum-vacuum detection via
electro-optic sampling. Our theory is capable of predict-
ing the output statistics of such experiments, accounting for
inhomogeneous dispersive and absorptive media by consid-
ering the full medium-assisted ground state of the system
as predicted by linear QED consisting of composite (po-
laritonlike) matter and free-field fluctuations—the vacuum
which is probed is the polaritonic vacuum which generalizes
the free-space vacuum to account for the nonlinear-crystal
environment.

Polaritonic matter-field states have recently been studied
in a variety of contexts. In photonic [29] and polaritonic
Bose-Einstein condensates [30], the matter-field ground state
emerges as a macroscopically occupied spatial mode of lowest
energy. In the emerging field of polaritonic chemistry [31],
molecules and solids of increasing complexity form polari-
tonic states inside cavities, significantly altering their physical
and chemical properties.

Our formalism allows for studying of the rich ontological
and spatiospectral structure of polaritonic quantum vacuum.
We show that by tuning the parameters of the experimental
setup within a realistic range, one can individually address
longitudinal near-field fluctuations generated by the charges
of the crystal and fieldlike propagating transverse ground-state
fluctuations. In addition, our formalism overcomes the limita-
tions of the paraxial approximation which is crucial to achieve
good agreement with experimental data.

We begin with a brief account of the underpinnings
of our theory. The propagation of a coherent laser pulse
through a medium with second-order nonlinearity induces
a nonlinear polarization field given by [9] P̂NL(r, ω) =∫ ∞
−∞ d�χ (2)(r,�, ω − �) � Ê(r,�)Ê(r, ω − �). Here, χ (2)

is the nonlinear susceptibility tensor of the medium, we
use the convention Ê(r, t ) = ∫ ∞

0 dω Ê(r, ω)e−iωt + H.c., and
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(χ (2)�ÊÊ)i ≡ ∑
jk χ

(2)
i jk Ê j Êk . The nonlinear polarization acts

as an additional source term in the wave equation for the
electric field, which can be formally solved as a Lippmann-
Schwinger equation

Ê(r, ω) = Êvac(r, ω) + Ep(r, ω)

+μ0ω
2
∫

VC

d3r′ G(r, r′, ω) · P̂NL(r′, ω), (1)

where μ0 is the vacuum permeability, G(r, r′, ω) is the
Green’s tensor of the vector Helmholtz equation [32], and VC

is the volume of the nonlinear crystal. In the vacuum picture,
the coherent laser pulse is given by the sum of the vacuum
field operator Êvac(r, ω) and a classical laser pulse Ep(r, ω)
[33]. Note that Ep(r, ω) may represent two spatially and tem-
porally separated laser pulses, such as those featuring in the
recent experiment [8]. To obtain the statistical properties of
Êvac one could rely on microscopic models [34]. Here, we use
the equivalent, but more general macroscopic QED which in-
stead characterizes the polaritonic quantum vacuum inside the
crystal via its linear permittivity, the classical Green’s tensor,
and polaritonic creation and annihilation operators f̂ (†), i.e.,

Êvac(r, ω) = i
ω2

c2

√
h̄ε0

π

∫
d3r′ √Imε(r′, ω)

× G(r, r′, ω) · f̂ (r′, ω). (2)

The formal solution (1) for Ê(r, ω) is infinitely recursive.
To solve it we use a Born series, which can be seen as a
perturbation expansion in χ (2) to the desired order. The
zeroth-order contribution Ê(0) is given by the first line of
Eq. (1) and the ith-order contribution reads

Ê(i)(r, ω) = −
i∑

j=1

μ0ω
2
∫
VC

d3r′ G(r, r′, ω)
∫ ∞

−∞
d�χ (2) �

× Ê(i− j)(r′,�)Ê( j−1)(r′, ω − �). (3)

This way, one obtains the electric field emerging from the
nonlinear crystal as a function of the input fields and the
Green’s tensor.

We use our solution to Eq. (1) to find the output statistics of
an electro-optic sampling experiment (see Fig. 1). These are
found from the variance of the electro-optic operator Ŝ, which
for the single-beam setup used in Ref. [7] reads [21]

Ŝ =
∫ ∞

0
dω A(ω)

∫
d2r‖[iÊ†

y (r‖, ω)Êx (r‖, ω) + H.c.], (4)

where A(ω) = 4πε0cn(ω)η(ω)/h̄ω, where η is the efficiency
of the photodetector. For the more general setup used in
Ref. [8] where two laser pulses E1,2 are used and which is
also depicted in Fig. 1, one accesses the quantity Ŝ2(δt, δr‖) =
(Ŝ1Ŝ2 + Ŝ2Ŝ1)/2. Here, Ŝi is defined as in Eq. (4) but with
the replacement Ep → Ei. Note that Ŝ2(0, 0) = Ŝ2. Using the
perturbation expansion outlined above up to second order in
χ (2) we can evaluate Ŝ2(δt, δr‖) and find [32]

〈: Ŝ2(δt, δr‖) :〉 =
∫ ∞

0
d�

∫ ∞

0
d�′

∫
VC

d3r′
∫

VC

d3r′′〈Êvac,x(r′,�)

×〈Ê†
vac,x(r′′,�′)〉F (r′, r′′,�,�′)〉, (5)

FIG. 1. Correlation measurement of the quantum vacuum via
electro-optic sampling: Two linearly polarized laser pulses with mu-
tual offset δr‖ and delay δt propagate through a nonlinear crystal with
refractive index n, nonlinear susceptibility χ (2), and volume VC . The
pulses mix inside the crystal via the nonlinear coupling with quantum
fluctuations of the electromagnetic field, leading to a polarization
shift of the laser pulses. Via an ellipsometry analysis of the emerging
pulses from the crystal, it is possible to observe the quantum vacuum
[8].

with the field correlation function given through macroscopic
QED via Eq. (2) as [27,28]

〈Êvac,x(r′,�)Ê†
vac,x(r′′,�′)〉

= 2h̄μ0

π
�2δ(� − �′)

[1

2
+ nT (�)

]
Im[Gxx(r′, r′′,�)],

(6)

where nT (�) is the average thermal photon number at tem-
perature T . The filter function F can be found in the
Supplemental Material [32], and depends on the spatiotem-
poral probe beam profile, the relative spatial offset δr‖ and
temporal delay δt , the optical and geometric properties of
the crystal and its environment through the Green’s tensor
and the linear part of the crystal’s permittivity, accounting
for dispersion and absorption. It determines which spatial
and spectral parts of the vacuum field are accessed via this
quantum-vacuum detector (see Fig. 3). For a single laser pulse
with a Gaussian profile and beam waist w, taken at equal
frequencies and neglecting absorption, it reads [32]

F (r′, r′′,�,�) =
(

2|χ (2)|cμ0Nωp

w2n

)2

f (�)2

× e−(r′2
‖ +r′′2

‖ )/w2
e−ing(�/c)(z′−z′′ ) (7)

(N , total number of detected photons; ωp, average detected
frequency; n, refractive index at the central frequency of the
pulse ωc; ng, group refractive index; f (�), spectral autocorre-
lation function [21,32]).

The structure of Eq. (5) furnishes us with a clear physical
picture for electro-optic sampling of vacuum fluctuations. The
fluctuating electromagnetic fields inside the crystal (which
cannot be directly detected by a photodetector) imprint their
signature on the probe field. The ground-state correlation
function of the electric field is hence sampled in a confined
spatial region and a certain frequency interval defined by the
spectral and spatial profile of the probe. Which part of the
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FIG. 2. Distinguishing contributions from the vacuum and from
the filter function: We consider one y polarized laser pulse with
Gaussian beam profile with beam waist w = 3 μm and du-
ration �t = 5.9 fs to propagate through a ZnTe crystal with
length L = 7 μm [32]. Using Eqs. (5)–(7) we plot the normal-
ized filter function F (r, r′,�), ground-state correlation function
〈Êvac,x (r, �)Ê †

vac,x (r′, �)〉, and signal density s2(r, r′, �) defined by
〈: Ŝ2 :〉 = ∫

d�
∫

d3r
∫

d3r′s2(r, r′, �) for two different cases: In
the first row we plot them as functions of x and y by setting z =
z′ = r′

‖ = 0 and � = 300 × 2π TH, whereas in the second row we
set r‖ = r′

‖ = z′ = 0 such that the only free variables are z and �.

correlation function is accessed can be adjusted by tuning
the experimental parameters such as the pump pulse profile
or properties of the crystal which in turn determine the fil-
ter function, as shown in Fig. 2. This flexibility means that
electro-optic sampling represents a much more versatile ex-
perimental route to accessing the quantum ground state of
the medium-assisted electromagnetic field compared to more
well-established methods such as the Purcell effect (which
only accesses the two-point correlation function in the coin-
cidence limit) or the Casimir force (to which all frequencies
contribute). Since we left the laser pulse profile and the
electromagnetic environment of the crystal unspecified and
included absorption effects, Eq. (5) can be used as a start-
ing point for studying the structure of the medium-assisted
quantum vacuum in general absorptive and dispersive en-
vironments targeted at chosen spectral and spatial regions.
This allows one to study the polaritonic nature of the electro-
magnetic ground state inside the crystal with unprecedented
versatility. Note, however, that as for other methods of access-
ing the quantum vacuum, electro-optic sampling experiments
can alternatively and equivalently be described in terms of
radiation reaction [35]. Such an approach can, for exam-
ple, predict Casimir forces without any reference to vacuum
fluctuations of the electromagnetic field at all [36], instead
considering a microscopic picture relying on correlated fluc-
tuations of the atomic systems making up each plate. In
electro-optic sampling, the corresponding microscopic picture
consists of correlated up- and down-conversion processes,

×

FIG. 3. Vacuum fluctuations in a bulk medium. Upper plot: We
plot s2(�)/N2 without approximations (“Full result”), and in the
different various approximations: laser paraxial, Taylor expanded
integrand, and the paraxial approximation. Note that we have sim-
plified the numerics by replacing the full simulation with the laser
paraxial approximation in the frequency range � < 50 × 2π THz,
where the two are indistinguishable in the absence of absorption.
The cutoff discussed in the main text is shown by the dashed vertical
line. Lower plot: We plot the signals spectrum s2(�) normalized by√

C = 2χ (2)LωpN/nε0c, which is obtained from 〈: Ŝ2(δt ) :〉 shown in
the inset via a Fourier transformation. The experimental data and its
standard deviation taken from Ref. [8] are shown in gray. Note that
we used a different convention for the Fourier transform in order to
obtain the spectrum from the time domain data compared to Ref. [8].

which can themselves be described by radiation reaction
[37,38].

Our results generalize the theoretical framework previ-
ously obtained in Ref. [21] by including matter fluctuations
in the quantum ground state and the effect of absorption on
field propagation, and by allowing for arbitrary pulse profiles;
by going beyond the paraxial approximation. In the limit of
a Gaussian pulse profile, no absorption, and the paraxially
approximated laser and vacuum fields, we recover the result
of Ref. [21]. The latter is achieved by taking k(ω) 
 1/w,
then q(�) 
 1/w, where k(ω) and q(�) are the wave vectors
of the laser and the vacuum fields, respectively. The most
dominant consequence of relaxing this last assumption is that,
in that case, our theory is capable of including off-axis phase
matching; using a (2 + 1)-dimensional Weyl decomposition,
we find that in the phase-matching factor sinc[L�k] with
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�k = ng�/c − q the wave vector of the quantum fluctuations

q is replaced by its z component
√

q2 − q2
x − q2

y . In order to
assess the validity of the different approximations we use the
same parameters as in Ref. [21] (also listed in the Supplemen-
tal Material [32]), which were in turn realized experimentally
in Ref. [7]. The result for the integrand s2(�) defined by
〈: Ŝ2 :〉 = ∫ ∞

0 d� s2(�) in the case of different approxima-
tions is shown in Fig. 3. We find that in this parameter regime
absorption can be neglected, since the frequency of the only
relevant material resonance is well below the most relevant
frequency range sampled in the experiment. However, while
the result with the paraxial approximation applied to the laser
field agrees reasonably well with the full result obtained by
direct evaluation of Eq. (5), not applying the paraxial ap-
proximation to the vacuum field reduces the signal by 50%,
which is mainly due to unfavorable off-axis phase-matching
conditions. Note that when following the suggestion of the
authors of Ref. [21] of using a cutoff of the signal’s spec-
trum at n(�)� < cπ/w, the predicted integrated signal differs
from our more complex theory by 12%. A good tradeoff
between simplicity of expression and inclusion of all relevant
physical effects is found by Taylor expanding the integrand to
find a next-to-leading order paraxial approximation applied to
the vacuum field which agrees with the full result to around
6% [32].

Next, we turn our attention to the parameter regime
exploited in Ref. [8] where two spatially and temporally sep-
arated laser beams are used. Again, we can derive a filter
function from first principles for this experimental setup using
Eq. (1) as a starting point. The derivation and the resulting
expression together with the parameters under consideration
can be found in the Supplemental Material [32]. Strikingly,
by using two laser beams one can make a correlation mea-
surement of the polaritonic ground state between different
spatiotemporal regions, allowing one to obtain the spectrum
s2(�) by Fourier transforming the measured signal Ŝ2(δt )
[8], i.e., 1/(2π )

∫ ∞
−∞dδ t〈:Ŝ2(δt ):〉eiδt� = 1

2 s2(|�|) [32]. In the
parameter regime used in Ref. [8], which is also summarized
in the Supplemental Material [32], we find that one can neither
neglect absorption nor apply the paraxial approximation to
the fluctuating field, but only the laser paraxial approximation
applies. Neglecting absorption would lead to an additional
unphysical peak of the signal around 2.25 THz, which has
been avoided in the analysis of Ref. [8] by using a heuristic
high-frequency cutoff. The result for the spectrum is com-
pared to the experimental data in Fig. 3.

We find reasonable agreement between experiment and
theory considering the errors on the input parameters. Note
that our theoretical prediction does not contain any fitting
parameter but is based on independently measured optical
properties such as the linear and nonlinear response of the
crystal. Also note that in this parameter regime, one mainly
accesses thermal fluctuations and not zero-point ones, but
these are treated on an equal footing in our generalized
theory.

Having validated our theoretical approach we can now use
it to gain a more fundamental insight into the nature of the
quantum vacuum inside the crystal. The ground state inside
the crystal is that of the coupled system of the electromagnetic
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FIG. 4. Contribution to the variance for different pulse durations

distinguishing longitudinal near-field and transverse propagating
fluctuations: We see in (a) that there is an intermediate interval of �t
in which 〈: Ŝ2 :〉 is dominated by longitudinal contributions. This can
be explained by considering the spectra plotted for different values
of �t in (b), (c), and (d) as explained in the main text.

field and the charges. Hence, the ground-state fluctuations
consist of both fieldlike propagating fluctuations and the near
field generated by the fluctuating charges inside the crystal.
Note that the latter is not the same as the fluctuating field
in empty space, but its generalization in the presence of an
absorbing background medium, the photonlike part of the in-
teracting system of photon and charges. It is well known (see,
e.g., Ref. [39]) that in Coulomb gauge one can distinguish the
two different types of contributions to the quantum vacuum
of the electromagnetic field by decomposing the electric-field
operator into its longitudinal (‖) and transverse (⊥) compo-
nents [40]. Using this in Eq. (5), we find contributions to
the signal’s variance stemming from transverse and longitu-
dinal fluctuations allowing one to analyze which of the two
is accessed in the experiments. We use the same parameters
as in Refs. [7,21] except that we vary the pulse duration �t
as shown in Fig. 4. We find that in the parameter regime of
Refs. [7,21] where �t = 5.9 fs, only transverse and hence
fieldlike propagating fluctuations contribute to the signal, and
the detected fluctuating field is dominated by photonlike fluc-
tuations. Since the longitudinal part is proportional to Im(ε)
[32], this can be understood from the fact that the main
frequency range which is resolved is far from any material
resonances [cf. Fig. 4(b)].

The situation changes for an intermediate pulse duration,
where the resolved frequency range coincides with a mate-
rial resonance [cf. Fig. 4(c)]. This leads to the detection of
polaritonic modes which are dominated by their matter con-
tent resulting in mainly longitudinal fluctuations. For longer
pulse duration, only field fluctuations spectrally far below the
material resonance are detected, leading to a signal which
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is dominated by transverse fluctuating fields as indicated in
Fig. 4(d). This analysis reveals the possibility of unambigu-
ously interpreting and identifying different properties of the
richly structured polaritonic quantum vacuum inside the crys-
tal using the formalism developed here.

In conclusion, we have outlined a theoretical framework
for analyzing and interpreting the quantum-vacuum detector
as provided by electro-optic sampling experiments sensitive
to the QED vacuum. Our model includes absorption effects,
goes beyond the paraxial approximation, and takes the full
medium-assisted or polaritonic ground state into account.
It agrees well with experimental data and offers significant
improvements on previous theoretical works in an experimen-
tally realized parameter regime. It also provides a detailed
theoretical description which can be used to study, and per-
haps reinterpret the conclusions of Ref. [7]. In addition, it
provides a starting point for a detailed analysis of the po-
laritonic quantum vacuum and its rich structure in new, so
far theoretically inaccessible, regimes. As an example, it was
shown that transverse and longitudinal fluctuating fields can
be analyzed individually, revealing the polaritonic nature of
the QED ground state in media. This analysis applies more
generally to photonic and polaritonic Bose-Einstein conden-

sates and molecular polaritonic systems. Other characteristics
of the quantum vacuum might be accessible using electro-
optic sampling such as the influence of additional surfaces
onto the electromagnetic ground state which is of relevance
to, e.g., the Purcell or Casimir effect, or adhesion forces. Apart
from electro-optic sampling, the general formalism resulting
from our combining of macroscopic QED with nonlinear op-
tics has applications in a wide range of fields such as recent
studies of analogs of the dynamical Casimir effect [18], pair
generation in ε-near-zero material or metamaterials [41], and
photonic Bose-Einstein condensates [42].
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