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Acceleration noise constraints on gravity-induced entanglement
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It has been proposed that quantum features of the gravitational field can be exposed experimentally by
employing gravity as a mediator of entanglement. We show that in order to witness this type of entanglement
experimentally, strong limits on acceleration noise, which has been neglected in previous work, must be
overcome. In the case of two particles of similar mass, Casimir-Polder forces lead to a fundamental limit of
tenths of fm s−2/

√
Hz. Limits are between three and six orders of magnitude less strict for two particles of

unequal mass, depending on collisional decoherence.
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Despite tremendous efforts in quantum gravity research,
there is no empirical evidence, to date, as to whether or not the
gravitational field must be quantized [1,2]. Indirect arguments
for the necessity of its quantization [3,4] are generally consid-
ered inconclusive [2,5]. Proposals for experimental tests [6–8]
focus on the specific semiclassical model where curvature of a
classical space-time is sourced by the modulus squared of the
quantum state [1,9,10]. On the other hand, experiments to test
classical gravitational forces in micromechanical systems [11]
are still a long way from probing gravitational fields sourced
by nonclassical states, leaving a large gap between systems
with observed quantum features on the one hand and systems
whose gravitational fields have been measured on the other.

Quantum entanglement, which is often considered the most
characteristic feature that separates quantum systems from the
classical world, may serve as a means to close this gap. For
two quantum particles interacting only gravitationally, it is
expected that a quantized gravitational field can yield an en-
tangled state, whereas classical space-time curvature cannot.
In a recent letter, Bose et al. [12] propose an idea how to
use spin as a witness for this type of gravitationally induced
entanglement. Two spin- 1

2 particles are each put into a spatial
superposition state, where one part of the superposition of
each particle experiences a gravitational pull depending on the
state of the other particle. This results in a conditional phase
shift, which can yield nonclassical spin correlations.

As a concrete realization, Bose et al. propose to use
micrometer-sized diamonds, initially separated by 450 μm. In
a magnetic field gradient of 106 T/m these are split up for
half a second to yield a superposition of 250 μm each, such
that the two closer parts of the superposition approach each
other at 200 μm distance. After moving parallelly for 2.5 s, a
reversed magnetic field gradient rejoins both particle states.

These parameters are carefully chosen: distances between
particles must remain large enough for Casimir-Polder forces
not to supercede gravitational ones, flight times shorter than
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relevant decoherence times, and field strengths technologi-
cally feasible, with the gravitational potential still yielding a
sufficiently large phase shift.

There is, however, an obvious caveat: as the gravitational
acceleration scales with R3/L2, R being the source mass ra-
dius and L its distance, the acceleration resulting from the
micrometer particle at 200 μm distance is matched by the
gravitational acceleration of a centimeter particle in kilometer
distance. Hence, one should ask why an experiment sensitive
to the former should not be influenced by the latter.

As long as both the particles and the experimental set-
up, including the magnetic field gradient, are in perfect free
fall, the equivalence principle prevents any observable effect
of external homogeneous gravitational fields. The proposed
experiment, therefore, is ideally performed in a zero gravity
environment. If, however, external forces act on the particles
and the rest of the experiment differently, such that either
the particles or the magnetic fields experience an acceleration
relative to the geodesic motion of the center of gravity of
the entire experiment, one ends up with a residual observable
phase, similar to the famous Colella-Overhauser-Werner ex-
periment [13,14].

Residual acceleration cannot be entirely avoided even in
zero gravity, where it can be expressed in the form of noise
spectra that for subhertz frequencies resemble white noise.
On Earth, typical residual accelerations are micro-g; Selig
et al. [15] describe an approximately frequency-independent
noise spectrum around

√
S0 ∼ 10−7m s−2/

√
Hz for frequen-

cies below 10 Hz in drop tower experiments. In space, the
LISA pathfinder mission [16] minimized acceleration noise
as a main objective. The acceleration noise spectrum shows a
frequency-independent value around

√
S0 ∼ 5.6 fm s−2/

√
Hz

in the subhertz range, with a significant increase for frequen-
cies above 0.1 Hz. We will use these two values as a reference
for feasible noise levels on Earth and in space, respectively.

a. Gravitational phase in spatial superpositions. A quan-
tum particle in a gravitational potential experiences a phase
shift [13] which can be derived as a perturbative effect around
the quasiclassical trajectory. As in Ref. [12], we consider
two spin- 1

2 particles at positions r(t ) and s(t ), respectively,
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FIG. 1. Depiction of the experimental scenario: spin- 1
2 particles

with masses mr and ms are put in spatial superposition states with
trajectories r↑↓ and s↑↓, respectively, in a magnetic field gradient
(with a spin flip after τacc/2 effectively inverting the field). This
acceleration phase of duration τacc is followed by a free flight phase
for time τ , followed by the deceleration (again for τacc). The final
state will exhibit a phase that depends on both the gravitational
interaction between both particles and the external acceleration gx (t ).

which for the remainder of this Rapid Communication will be
labeled by r and s. The initially separable state is subject to
a magnetic field gradient for a time τacc, entangling spin and
position. The time τ of free flight is followed by an opposite
field gradient, again for time τacc. If r↑(t ), r↓(t ), s↑(t ), and
s↓(t ) denote the quasiclassical trajectories of the spin eigen-
states, as depicted in Fig. 1, the final state will be

|�〉 = eiφ↑↑

2
|↑↑〉 + eiφ↑↓

2
|↑↓〉 + eiφ↓↑

2
|↓↑〉 + eiφ↓↓

2
|↓↓〉.

(1)

In an accelerated frame with time-dependent acceleration g(t ),
the phases are (cf. Supplemental Material S1 [17]):

φ↑↑ = Gmrms

h̄

∫ t

0

dt ′

|r↑(t ′) − s↑(t ′)|

+ 1

h̄

∫ t

0
dt ′ g(t ′)[mrr↑(t ′) + mss↑(t ′)], (2)

and accordingly for φ↑↓, φ↓↑, and φ↓↓.
We choose as a reference frame the initial rest frame of the

two particles, with the x axis defined by the particle positions
at time t = 0, i.e., r↑(0) = r↓(0) = (−d/2, 0, 0) and s↑(0) =
s↓(0) = (d/2, 0, 0).

We split up each of the phases into the contributions from
the mutual gravitational interaction during the free flight time
τ , during the initial and final acceleration periods, as well as
the phases for each trajectory due to the external acceleration:
φ↑↑ = φτ

↑↑ + φacc
↑↑ + φext

r↑ + φext
s↑ , and accordingly for the other

three phases.

With �x = (�xr + �xs)/2 and δx = (�xr − �xs)/2, we
find that these phases are

φτ
↑↑ = Gmrmsτ

h̄(d + δx)
,

φτ
↑↓ = Gmrmsτ

h̄(d + �x)
,

φτ
↓↑ = Gmrmsτ

h̄(d − �x)
,

φτ
↓↓ = Gmrmsτ

h̄(d − δx)
,

φext
r↑ = −mrd

2h̄
vx + 1

2
χ,

φext
r↓ = −mrd

2h̄
vx − 1

2
χ,

φext
s↑ = msd

2h̄
vx + 1

2
χ,

φext
s↓ = msd

2h̄
vx − 1

2
χ

(3)

with the velocity

vx =
∫ τ+2τacc

0
dt gx(t ), as well as (4)

χ ≈ μB ∂xB τ 2
acc

2h̄

∫ τ+τacc

τacc

dt gx(t ). (5)

Detailed calculations, including phases for the acceleration
periods, can be found in the Supplemental Material S1 [17].

b. Effect of random external acceleration. Let us now ad-
dress the phase χ due to the external acceleration. Evidently,
only the component gx of the acceleration parallel to the x
axis (defined by the particle positions) affects the phase. The
experimental setup will generally be chosen in such a way
that the time average is 〈gx(t )〉 ≈ 0, for instance by aligning
the field gradient and the particles parallel to the surface of
the Earth. However, there will be fluctuations of gx in time
which can be associated with a noise spectrum S(ω) through
the correlation functions

〈gx(0)gx(t )〉 =
∫

dω

2π
S(ω)e−iωt . (6)

We assume that the acceleration noise is well approximated
by white Gaussian noise, i.e., S(ω) ≈ S0. To obtain the vari-
ance of the phase χ over the averaging time τ , according to
Eq. (5), one can apply a low-pass filter with bandwidth 1/τ

[18] yielding

�χ2 =
(

μB ∂xB τ 2
acc

2h̄

)2

τ 2
∫

dω

2π

S0

1 + ω2τ 2

= mrms�x2

4h̄2 S0τ. (7)

We find that in repeated measurements the phase will be
distributed around χ = 0 with a probability density

P(χ ) = (2π�χ2)−1/2 exp

(
− χ2

2�χ2

)
. (8)

c. Constraints on witnessing entanglement. Focusing, for
now, on the situation where both particles have similar masses,
mr ≈ ms, we have �x ≈ �xr ≈ �xs and δx 
 �x < d . If we
extract from the phases (2) the global phase φ we can write the
final state as

eiφ

2
(eiχ̃ |↑↑〉 + eiδφ |↑↓〉 + ei�φ |↓↑〉 + e−iχ̃ |↓↓〉), (9)

040202-2



ACCELERATION NOISE CONSTRAINTS ON … PHYSICAL REVIEW A 102, 040202(R) (2020)

with χ̃ = χ − δχ (cf. Supplemental Material S2 [17]) and

�φ = Gmrmsτ

h̄(d − �x)
− Gmrmsτ

h̄d
+ �φacc

− , (10a)

δφ = Gmrmsτ

h̄(d + �x)
− Gmrmsτ

h̄d
− �φacc

+ . (10b)

Repeated measurements yield a density matrix [using Eq. (8) in the basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}]:

ρ̂ =
∫

dχ P(χ ) | �(χ )〉〈�(χ )|= 1

4

⎛
⎜⎝

1 e−γ−i(δφ+δχ ) e−γ−i(�φ+δχ ) e−4γ−2iδχ

e−γ+i(δφ+δχ ) 1 e−i(�φ−δφ) e−γ+i(δφ−δχ )

e−γ+i(�φ+δχ ) ei(�φ−δφ) 1 e−γ+i(�φ−δχ )

e−4γ+2iδχ e−γ−i(δφ−δχ ) e−γ−i(�φ−δχ ) 1

⎞
⎟⎠. (11)

With γ = �χ2/2 and the spin correlations

〈σx ⊗ σz〉 = e−γ

2
[cos(�φ + δχ ) − cos(δφ − δχ )], (12a)

〈σy ⊗ σy〉 = 1

2
[cos(�φ − δφ) − e−4γ cos(2δχ )], (12b)

one finds for the entanglement witness W as in Ref. [12],

W = |〈σx ⊗ σz〉 + 〈σy ⊗ σy〉| � 1

2
+ e−γ + e−4γ

2
. (13)

Evidently, for γ = 0 one recovers the result by Bose et al., that
0 � W � 2. However, for finite γ , in order to find W > 1
and, therefore, evidence for nonclassical behavior, one re-
quires γ � γmax ≈ 0.75 or

S0 � 8γmaxh̄2

mrmsτ�x2
≈ 6h̄2

mrmsτ �x2
. (14)

Equation (14) puts a limit on witnessing entanglement.
To stay below the limit where acceleration noise constraints
the entanglement witness to values below unity, either the
masses, or flight time τ , or the superposition size �x must be
sufficiently small. On the other hand, those exact parameters
need to be sufficiently large for the gravitational phase to be
significantly different from zero.

d. Closest approach and Casimir-Polder forces. For the
gravitational interaction of the two particles to dominate, it
must be stronger than all other interactions between the two
particles. Otherwise, the gravitationally induced phase dif-
ference will be obfuscated. For neutral particles, the most
long-range forces stem from the Casimir-Polder interaction.
Hence, we require, as has been required in Ref. [12], that the
gravitational potential must be significantly stronger than the
Casimir-Polder energy [19,20]:

Gmrms

a
� 23

4π

( 3

4π

)2 h̄cαrαsmrms

ρrρsa7
, (15)

where ρr,s are the densities of the two particles (still assuming
that both particles are of almost equal size). The polarizability
α = (ε2 − 1)/(ε2 + 2) can be derived from the static relative
permittivity ε (for nonferromagnetic materials with relative
permeability μ ≈ 1). In the limit ε → ∞ (metals), one finds
α = 1, whereas the lowest naturally occurring permittivities
for dielectrics are around 2.6 for lead(II) acetate [21], limiting
the polarizability to values between 0.35 � α � 1.

Assuming ρr = ρs = ρ and αr = αs = α, Eq. (15) results
in a limit on the distance a between particles:

a � 1

2
√

π

(
3α

ρ

√
23h̄c

G

)1/3

. (16)

For a 
 �x, we find the phases �φ ≈ Gmrmsτ/(h̄a) and
δφ ≈ 0 (cf. Supplemental Material S2 [17]). According to
Eq. (12), entanglement occurs if �φ is close to an odd multi-
ple of π , which together with Eqs. (16) and (14) yields a limit
on the acceleration noise:

S0 
 4√
π�x2

(
81h̄5 G7ρ2

23cα2

)1/6

. (17)

This is an interesting result, showing that for given mass
density and permittivity (which are both limited by material
choices) the only way to overcome acceleration noise is to
decrease the size of the superposition �x. If this may sound
unintuitive at first, remember that the phase uncertainty �χ

scales with �x.
It is intuitively clear (and we show in Supplemental Ma-

terial S2 [17]) that for �x 
 a no entanglement can be
witnessed due to the closeness of the classical trajectories.
Hence, Eq. (17) poses the least strict constraint in the situation
where a ≈ �x. The requirement for a detectable gravitational
phase is then

�φ − δφ ≈ 2

3

Gmrmsτ

h̄a
≈ (2n + 1)π (n ∈ N ). (18)

For W > 1 one then requires γ � 0.5 from Eqs. (12), which
together with Eqs. (18) and (14) yields

S0 � 8h̄G

3πa3

 64ρ

9α

√
π h̄G3

23c
. (19)

We found an absolute limit for the acceleration noise,
depending only on the material properties (density and po-
larizability). Essentially, the Casimir-Polder force puts an
absolute limit on the particle distance a; the requirement
to have a detectable gravitational phase shift then requires
�x � a as well as m2τ above some limit. Hence, the phase
uncertainty �χ ∼ m2�x2τS0 is limited from below by the
noise S0 only, yielding the absolute limit for said noise.

With the values for diamond (as used in [12]), ε = 5.7 and
ρ = 3.5 g/cm3, Eq. (19) yields

√
S0 
 0.07 fm s−2/

√
Hz.

If instead we take into account that for realistic materials
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α > 0.35 and the element with the largest density is os-
mium with ρ = 23 g/cm3, we get an absolute limit of

√
S0 


0.24 fm s−2/
√

Hz, which is more than an order of magnitude
below the acceleration noise achieved by the LISA Pathfinder
mission [16].

It should be stressed, that this represents a best case sce-
nario, which cannot be superceded by any choice of materials,
particle mass, distances, magnetic field gradients, etc. The
only major assumption entering our considerations which
could fundamentally change this result is the similarity of the
masses mr ≈ ms.

e. Particles of different mass. Let us now consider the case
where the two particles are of considerably different masses,
mr 
 ms. Firstly, note that in the situation where a single
magnetic field gradient is used to create the superpositions
we have �xr � �xs and the smaller superposition �xs will
be too small to allow for significant entanglement (cf. Supple-
mental Material S3 [17]).

Hence, we assume two different field gradients, chosen
such that �xr ≈ �xs despite the largely different masses
mr 
 ms. Then only the mass ms contributes to the phase χ ,
which will be half as large with otherwise identical results
as in the case mr ≈ ms before. Instead of Eq. (14), we then
have

S0 � 32γmaxh̄2

m2
s τ�x2

. (20)

Rather than by Casimi-Polder forces, the minimal ap-
proach distance is determined by the radius R of the larger
particle. As before, observable entanglement with the largest
possible acceleration noise is achieved in the case �x ≈ a ≈
R ≈ d/2, requiring γ � 0.5. Hence, Eq. (20) leads to

√
S0 � 3h̄

πρR4
√

τ
, (21)

implying that smaller radius R and flight time τ allow for
larger acceleration noise. However, since the second particle
must be smaller and mrmsτ sufficiently large for an observable
phase, R4√τ cannot be arbitrarily small.

Firstly, the time τ must be smaller than the decoherence
time from collisional decoherence [22],

τ <

√
kBT mgas

16
√

3ζ (3/2)PR2
, (22)

where we assume a gas environment with particles of mass
mgas at pressure P and temperature T, kB being the Boltzmann
constant and ζ the Riemann zeta function. In combination
with the requirement (18) for a detectable phase we then find
a limit on the smaller mass mr :

mr �
9h̄

8GρR2τ
>

18
√

3ζ (3/2)h̄P

Gρ
√

kBT mgas
. (23)

On the other hand, Eq. (23) also implies

R4√τ = 3

4πρ
msR

√
τ � 9

√
h̄ms

8π
√

2Gρ3mr

� 27h̄
√

ζ (3/2)P

8πGρ2

(1

3
kBT mgas

)−1/4

, (24)

where we used ms � mr together with (23) in the last step.
Inserting this result into Eq. (21), we obtain a limit for the
acceleration noise:

√
S0 
 8Gρ

9
√

ζ (3/2)ngas

( mgas

3kBT

)1/4
, (25)

where we used the ideal gas equation P = ngaskBT with parti-
cle density ngas.

For the parameters assumed by Bose et al. [12], diamond
at 10−15 Pa and 150 mK, with mgas for nitrogen we obtain a
limit of 1.4 pm s−2/

√
Hz.

f. Discussion. Although Eq. (25) poses a weaker limit
than (19), noise requirements are still orders of magnitude
below what is usually achieved on Earth. Contrary to the
limit (19) for particles of similar mass, the constraint (25)
is not limited in an absolute sense by fundamental parame-
ters and material properties. Nonetheless, even at the vacuum
quality of the interstellar medium with ngas ∼ 1/cm3 and mi-
crokelvin temperatures one would require acceleration noise
below nm s−2/

√
Hz. Verifying gravitationally induced entan-

glement with an acceleration noise background above this
value, which includes typical experiments on Earth, seems
extremely challenging, if not infeasible.

As far as potential loopholes in our arguments are
concerned, neither the assumption of white noise, nor im-
perfections of the field gradient indicate any obvious path
towards overcoming the limitations posed by acceleration
noise. Quite to the contrary, it seems reasonable that loos-
ening these assumptions will only result in additional noise.
Stochastic fluctuations in the preparation of the experiment
have been studied by Nguyen and Bernards [23]. Inverting the
requirement that the acceleration period be short compared
to the free flight, τacc 
 τ , dominant contributions to both
the gravitational phase �φ and the noise phase χ will stem
from the acceleration period rather than the free flight, and
decoherence will restrict τacc rather than τ . Although calcu-
lations are more tedious for this case, it seems evident that
our considerations remain valid, at least as far as the orders
of magnitude of relevant effects are concerned. Similarly, a
deviation from the assumption that �xr ≈ �xs in the scenario
of unequal particle masses will not result in significantly dif-
ferent bounds. The proposal to screen Casimir forces with a
thin, perfectly conducting plate [24] can avoid the stronger
limit (17); however, the limitation (25) remains in effect even
in the case of similar particle masses.

One could think about a setup where one gains statisti-
cal data from an arrangement of identical and simultaneous
experiments, rather than in a series of repeated measure-
ments. A time-dependent external acceleration g(t ) would
only contribute to an overall phase which is the same for all
measurements, although spatial fluctuations of g would still be
required to be sufficiently small. It is beyond the scope of this
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Rapid Communication to judge the feasibility of such an idea.
However, relative acceleration between the different copies
would pose problems and creating copies of the experiment
that are almost perfectly identical regarding particle masses,
distances, and magnetic fields appears to be a tremendous
challenge.

A slightly more promising workaround could be to pre-
cisely monitor the acceleration noise and actively correct for
it when calculating correlations. At least for the pm s−2/

√
Hz

noise limit for realistic pressures and temperatures, this
would, however, push the capability limits of state-of-the-art
accelerometers. Therefore, a detailed discussion of a feasible
mitigation mechanism is still pending and should be far up on
the list of challenges to be faced in order to test gravitationally
induced entanglement on Earth.

Our analysis focused on the specific scenario outlined by
Bose et al. [12], where spin is used as an entanglement witness
for gravitational interactions. The main results, however, are

quite generally applicable. The precise mechanism used to
create spatial superposition states is irrelevant, as long as
different parts of the superposition are subject to different
gravitational potentials. The decision to use spin as an en-
tanglement witness is also merely a practical consideration:
essentially the entanglement occurs purely due to the position
superposition and could potentially be witnessed in any way.
Our results, therefore, show with rather general applicabil-
ity that experimental attempts to witness the entanglement
between two massive particles due to their gravitational in-
teraction can only be successful in an environment with very
low acceleration noise. There seems no obvious route towards
conducting such an experiment on Earth. Acceleration noise
should play a crucial role in the evaluation of the feasibility of
any possible scenario, including space missions.
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