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The spontaneous emission spectrum of a multilevel atom or molecule with nonreciprocal transition is investi-
gated. It is shown that the nonreciprocal transition can lead to the elimination of a spectral line in the spontaneous
emission spectrum. As an application, we show that nonreciprocal transition arises from the phase-related driving
fields in chiral molecules with cyclic three-level transitions, and the elimination of a spectral line induced by
nonreciprocal transition provides us a method to determine the enantiomeric excess for the chiral molecules
without requiring the enantio-pure samples.
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I. INTRODUCTION

Nonreciprocity is a very general concept that arises in
many branches of physics, such as electronics, optics [1,2],
acoustics [3,4], and condensed-matter physics [5]. Nonre-
ciprocity means that some particles or waves exhibit different
transmission properties when their sources and detectors are
exchanged, such as the one-way electric conduction in the
semiconductor p-n junctions. In a recent paper [6], some of
us introduced the concept of nonreciprocity to investigate the
transitions between different energy levels, and proposed a
generic method to realize significant difference between the
stimulated emission and absorption coefficients of two non-
degenerate energy levels, which we refer to as nonreciprocal
transition [6]. The nonreciprocal transition can be used for
many applications, such as single-photon nonreciprocal trans-
porter [6], nonreciprocal phonon devices [7,8], and the echo
cancellation in quantum memory [9] and quantum measure-
ments [10].

In this paper, we will study the spontaneous emission of
a multilevel atom or molecule with nonreciprocal transition.
The spontaneous emission spectrum emitted from an atom
or molecule shows a valuable insight into the behavior of
transitions between different energy levels [11,12]. We find
that the nonreciprocal transition can be reflected with spectral-
line elimination in the spontaneous emission spectra, which
provides us a very simple way to test nonreciprocal transition
in experiment.
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On the other hand, chirality is important in chemistry
and biology for many chemical and biological processes are
chirality dependent [13]. But the chiral discrimination and
separation remain challenging works under the existing ex-
perimental technical conditions. Some spectroscopic methods
have been developed to determine enantiomeric excess, such
as circular dichroism [14,15], Raman optical activity [16,17],
and spectroscopy for a cyclic three-level model [18–20]
based on quantum interference effects [21], three-wave mix-
ing [22–33], ac Stark effect [34], or deflection effect [35]. In
addition, many methods were proposed to achieve inner-state
separating [36–43] or spatially separating [44–49] molecules
of different chiralities, and enantioconversion of chiral mix-
tures [50–55].

In the latter part of this paper, we apply the general the-
ory of the spontaneous emission of multilevel systems to the
chiral molecules. We show that nonreciprocal transition arises
from the phase-related driving fields for chiral molecules with
cyclic three-level transitions and the appearance of spectral-
line elimination in the spontaneous emission spectra around
some resonant frequencies is chirality dependent. Therefore,
the enantiomeric excess can be determined by measuring
the spontaneous emission spectra of chiral molecules. Dif-
ferent from the traditional methods of enantiomeric-excess
determination [14–16], the spectral-line elimination in the
spontaneous emission spectrum induced by nonreciprocal
transition provides us another method to determine the enan-
tiomeric excess for chiral molecules without requiring the
enantio-pure samples. Our work also strongly differs from the
previous study by Eibenberger et al. [30], who proposed a
dynamic method to create state-selective enantiomeric excess
of chiral molecules with the transitions driven by a sequence
of microwave pulses. In the dynamic method the lengths
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FIG. 1. Level diagram of an atom or molecule with cyclic transi-
tions for the three upper levels (|a〉, |b〉, and |c〉), and they are coupled
by the same vacuum modes to (a) the common lower level (|d〉) or
(b) different lower levels (|d1〉, |d2〉, and |d3〉).

and intensities of the pulses should be chosen properly for
enantiomer-specific state transfer, whereas in our work, the
transitions are driven by continuous-wave lasers with constant
intensities and the spontaneous emission spectra are measured
after a long period of stability, which give rise to markedly
different behaviors.

The remainder of this paper is organized as follows. In
Sec. II, the basic theory for spontaneous emission spectrum
of a general multilevel system with nonreciprocal transition

is introduced. The time evolution of the populations and the
corresponding spontaneous emission spectra of the multilevel
system with nonreciprocal transition are investigated in de-
tail in Sec. III. The application of the spontaneous emission
spectra in determining the enantiomeric excess for chiral
molecules are discussed in Sec. IV. Finally, a summary is
given in Sec. V.

II. BASIC THEORY FOR SPONTANEOUS
EMISSION SPECTRUM

We study the spontaneous emission of an atom or molecule
with three upper levels (|a〉, |b〉, and |c〉), which are coupled
to each other by three strong fields with frequencies (νab, νcb,
and νca), Rabi frequencies (�ab, �cb, and �ca), and phases
(φab, φcb, and φca). The spontaneous emission spectrum for the
system will be derived for two different cases: (A) the three
upper levels are coupled to one common lower level (|d〉) with
the same vacuum modes, as shown in Fig. 1(a), or (B) the three
upper levels are coupled to three different lower levels (|d1〉,
|d2〉, and |d3〉), respectively, with the same vacuum modes, as
shown in Fig. 1(b).

A. With one common lower level

Consider the three upper levels (|a〉, |b〉, and |c〉 ) coupled with one common lower level (|d〉) by the same vacuum modes.
The interaction Hamiltonian of the system in the interaction picture can be written as (h̄ = 1)

V = �abei�ei�abt |a〉〈b| + �cbei�cbt |c〉〈b| + �caei�cat |c〉〈a|
+

∑
k

[
gad

k ei(ωad −ωk )tvk|a〉〈d| + gbd
k ei(ωbd −ωk )tvk|b〉〈d| + gcd

k ei(ωcd −ωk )tvk|c〉〈d|] + H.c., (1)

where ωσσ ′ (σ, σ ′ = a, b, c, d ) are the frequency differences between levels |σ 〉 and |σ ′〉, �σσ ′ = ωσσ ′ − νσσ ′ is the detuning
of the driving fields, vk (v†

k ) is the annihilation (creation) operator for the kth vacuum mode with frequency ωk , and gσd
k is the

coupling constant between the kth vacuum mode and the atomic transition from |σ 〉 to |d〉. Here k denotes both the momentum
and polarization of the vacuum modes, and the total phase � = φab − φcb + φca is obtained by redefining e−iφcb |b〉 → |b〉 and
e−iφca |a〉 → |a〉. As the phase of the coupling constant gσd

k does not matter in the following discussions, real gσd
k is assumed for

notational convenience.
We assume the system is initially prepared in one of the upper levels, i.e., |ψ (0)〉 = |b〉|0〉, where |0〉 denotes the vacuum

state. The state vector at time t can be written as

|ψ (t )〉 =
[

A(t )|a〉 + B(t )|b〉 + C(t )|c〉 +
∑

k

Dk (t )v†
k |d〉

]
|0〉, (2)

where the modulus squares of the coefficients A(t ), B(t ), C(t ), and Dk (t ) are the occupation probabilities in the corresponding
state at time t . By using the Weisskopf-Wigner approximation [56,57], the dynamical behaviors for the coefficients are given by

d

dt
A(t ) = −γa

2
A(t ) − pab

√
γaγb

2
eiωabt B(t ) − pca

√
γaγc

2
e−iωcatC(t )

− i�abei�ei�abt B(t ) − i�cae−i�catC(t ), (3)

d

dt
B(t ) = −γb

2
B(t ) − pab

√
γaγb

2
e−iωabt A(t ) − pcb

√
γbγc

2
e−iωcbtC(t )

− i�cbe−i�cbtC(t ) − i�abe−i�e−i�abt A(t ), (4)

d

dt
C(t ) = −γc

2
C(t ) − pca

√
γaγc

2
eiωcat A(t ) − pcb

√
γcγb

2
eiωcbt B(t )

− i�caei�cat A(t ) − i�cbei�cbt B(t ), (5)
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d

dt
Dk (t ) = −igad

k e−i(ωad −ωk )t A(t ) − igbd
k e−i(ωbd −ωk )t B(t ) − igcd

k e−i(ωcd −ωk )tC(t ), (6)

where γa = [2π (gad
k )2ρ(ωk )]ωk=ωad , γb = [2π (gbd

k )2ρ(ωk )]ωk=ωbd , and γc = [2π (gcd
k )2ρ(ωk )]ωk=ωcd are the decay rates, ρ(ωk ) is

the mode density, pσσ ′ = �μσ · �μσ ′/(| �μσ | · | �μσ ′ |), and �μσ (�μσ ′ ) is the dipole moment of the transition from |σ 〉 (|σ ′〉) to |d〉
(σ, σ ′ = a, b, c). The coupling terms with pσσ ′ are induced by the decays from different upper levels (|σ 〉 and |σ ′〉) to the
common lower level |d〉, which can result in spontaneous emission cancellation and spectral-line elimination [11,12]. However,
here we have assumed min{ωab, ωca, ωcb} � max{γa, γb, γc,�ab,�cb,�ca,�ab,�ca,�cb} so that the rapidly rotating terms
(i.e., the decay induced coupling terms with pσσ ′

√
γσ γσ ′

2 e±iωσσ ′ t ) in Eqs. (3)–(5) can be neglected, and the dynamical equations
are simplified as

d

dt
A(t ) = −γa

2
A(t ) − i�abei�ei�abt B(t ) − i�cae−i�catC(t ), (7)

d

dt
B(t ) = −γb

2
B(t ) − i�cbe−i�cbtC(t ) − i�abe−i�e−i�abt A(t ), (8)

d

dt
C(t ) = −γc

2
C(t ) − i�caei�cat A(t ) − i�cbei�cbt B(t ). (9)

For convenience of calculations, let us define B̃(t ) ≡ ei�abt B(t ) and C̃(t ) ≡ e−i�catC(t ) and make the assumption of three-photon
resonance �ca + �ab = �cb; then we get dynamical equations with constant coefficients as

dA(t )

dt
= −γa

2
A(t ) − i�abei�B̃(t ) − i�caC̃(t ), (10)

dB̃(t )

dt
= −

(γb

2
− i�ab

)
B̃(t ) − i�cbC̃(t ) − i�abe−i�A(t ), (11)

dC̃(t )

dt
= −

(γc

2
+ i�ca

)
C̃(t ) − i�caA(t ) − i�cbB̃(t ). (12)

All the following calculations and discussions on the occupation probabilities are based on Eqs. (10)–(12).
In the following, we will use the Laplace transform method to solve the dynamic equations. By taking the Laplace transform,

i.e., O(s) = ∫ +∞
0 O(t )e−st dt , of Eqs. (10)–(12), with the initial condition 0 = [A(0), B̃(0), C̃(0)]

T
, we get [11,12]

 = M−10, (13)

with  = [A(s), B̃(s), C̃(s)]
T

, and

M =

⎛⎜⎝ s + γa

2 i�abei� i�ca

i�abe−i� s + γb

2 − i�ab i�bc

i�ca i�cb s + γc

2 + i�ca

⎞⎟⎠. (14)

The spontaneous emission spectrum of the system [11,12], S(ω), is the Fourier transform of

〈E−(t + τ )E+(t )〉t→+∞ ≡ 〈ψ (t )|
∑
k,k′

v
†
k eiωk (t+τ )vk′e−iωk′ t |ψ (t )〉t→+∞

=
∫ +∞

−∞
|Dk (+∞)|2ρ(ωk )eiωkτ dωk . (15)

Then we have S(ωk ) = |Dk (+∞)|2ρ(ωk ), where Dk (+∞) is the long-time behavior (t → +∞) of Dk (t ) and can be obtained by
integrating time t ′ in Eq. (6) as

Dk (+∞) =
∫ +∞

0

[−igad
k e−i(ωad −ωk )t ′

A(t ′) − igbd
k e−i(ωbd −ωk+�ab)t ′

B̃(t ′) − igcd
k e−i(ωcd −ωk−�ca )t ′

C̃(t ′)
]
dt ′

= −igad
k A(−iδk ) − igbd

k B̃
(−iδb

k

) − igcd
k C̃

( − iδc
k

)
, (16)

with the detunings δk ≡ ωk − ωad , δb
k ≡ δk + ωab − �ab, and δc

k ≡ δk − ωca + �ca. Finally, the spontaneous emission spectrum
is given by

S(ωk ) = 1

2π

∣∣√γaA(−iδk ) + √
γbB̃

(−iδb
k

) + √
γcC̃

( − iδc
k

)∣∣2
, (17)

with A(s), B̃(s), and C̃(s) given by Eq. (13).
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B. With three different lower levels

In the case with three different lower levels, the interaction Hamiltonian of the system is given in the interaction picture by

V ′ = �abei�ei�abt |a〉〈b| + �cbei�cbt |c〉〈b| + �caei�cat |c〉〈a|
+

∑
k

[
gad1

k ei(ωad1 −ωk )tvk|a〉〈d1| + gbd2
k ei(ωbd2 −ωk )tvk|b〉〈d2| + gcd3

k ei(ωcd3 −ωk )tvk|c〉〈d3|
] + H.c., (18)

where ωσd j denote the frequency differences between levels |σ 〉 (σ = a, b, c) and |dj〉 ( j = 1, 2, 3), and g
σd j

k is the coupling
constant between the kth vacuum mode and the atomic transition from |σ 〉 to |dj〉. The state vector for the system at time t can
be written as

|ψ ′(t )〉 =
[

A(t )|a〉 + B(t )|b〉 + C(t )|c〉 +
∑

j=1,2,3

∑
k

Dj,k (t )v†
k |d j〉

]
|0〉, (19)

where the modulus square of the coefficient Dj,k (t ) is the occupation probability in the state v
†
k |d j〉|0〉 at time t .

By substituting the Hamiltonian and state vector into the Schrödinger equation and using the Weisskopf-Wigner approx-
imation, the dynamic equations of the coefficients [A(t ), B(t ), and C(t )] are obtained and they have the same forms as
those given by Eqs. (7)–(9), with the decay rates replaced by γ ′

a = [2π (gad1
k )2ρ(ωk )]ωk=ωad1

, γ ′
b = [2π (gbd2

k )2ρ(ωk )]ωk=ωbd2
, and

γ ′
c = [2π (gcd3

k )2ρ(ωk )]ωk=ωcd3
. The spontaneous emission spectrum is obtained as S(ωk ) = ∑

j=1,2,3 |Dj,k (+∞)|2ρ(ωk ), where

D1,k (+∞) = −igad1
k A(−iδ′

k ), (20)

D2,k (+∞) = −igbd2
k B̃

(−iδb′
k

)
, (21)

D3,k (+∞) = −igcd3
k C̃

( − iδc′
k

)
, (22)

the coefficients [A(s), B̃(s), and C̃(s)] are given by Eq. (13), and the detunings are defined by δ′
k ≡ ωk − ωad1 , δb′

k ≡ ωk − ωbd2 −
�ab = δ′

k + ω′
ab − �ab, and δc′

k ≡ ωk − ωcd3 + �ca = δ′
k − ω′

ca + �ca, with ω′
ab ≡ ωad1 − ωbd2 and ω′

ca ≡ ωcd3 − ωad1 . Thus the
spontaneous emission spectrum for the case with three different lower levels can be specifically expressed as

S(ωk ) = 1

2π

{
γa|A(−iδ′

k )|2 + γb

∣∣B̃(−iδb′
k

)∣∣2 + γc

∣∣C̃( − iδc′
k

)∣∣2}
. (23)

For comparison with the case of one common lower level given by Eq. (17) in the following, we assume that ωad1 = ωad ,
ωbd2 = ωbd , and ωcd3 = ωcd , i.e., the three lower levels |d j〉 ( j = 1, 2, 3) are degenerate, so that we have δ′

k = δk , ω′
ab = ωab,

ω′
ca = ωca, δb′

k = δb
k , δc′

k = δc
k , γ ′

a = γa, γ ′
b = γb, and γ ′

c = γc. However, we should point out that this assumption does not bring
significant differences in physical appearance except the positions of resonance peaks in the spectra.

III. NONRECIPROCAL TRANSITION AND
THE SPONTANEOUS EMISSION SPECTRA

First, let us investigate the time evolution of the upper-level
populations and the transition probabilities Tab(t ) and Tba(t )
between the upper levels |a〉 and |b〉. As the decay induced
coupling terms with pσσ ′

√
γσ γσ ′

2 e±iωσσ ′ t in Eqs. (3)–(5) are
high-frequency oscillating terms and neglected safely under
the assumption {ωab, ωca, ωcb} � {γa, γb, γc,�ab,�ca,�cb},
the time evolutions of the upper-level populations are the same
for both the two cases with one common or three different
lower levels.

The populations |A(t )|2 (black solid curve) and |B(t )|2 (red
dashed curve) obtained from Eqs. (10)–(12) are plotted as
functions of the time t in Figs. 2(a)–2(d). It is clear that
the population can transfer from the level |a〉 to level |b〉
for � = π/2, but almost no population will transfer from
the level |b〉 to level |a〉. In contrast, the population can
transfer from the level |b〉 to level |a〉, but almost no pop-
ulation will transfer from the level |a〉 to level |b〉 when
� = 3π/2.

The transition probabilities from |b〉 to |a〉 [Tab(t )] and
from |a〉 to |b〉 [Tba(t )] can also be obtained from Eqs. (10)–

(12); see the Appendix for details. They are plotted as
functions of time t in Figs. 2(e) and 2(f). It is clear that
Tab(t ) � Tba(t ) for φ = π/2 and Tab(t ) � Tba(t ) for φ =
3π/2, i.e., the transitions between levels |b〉 and |a〉 are nonre-
ciprocal. As discussed in Ref. [6], there are two ingredients for
nonreciprocal transitions in the system: One is the synthetic
magnetic flux, i.e., the total phase � in the cyclic transition,
which breaks the time-reversal symmetry of the system, and
the other one is the decay rates of upper levels, which play
a key role in suppressing the transition probabilities in one
direction but not the other.

The nonreciprocal transitions can be observed by measur-
ing the spontaneous emission spectra of the system. As an
example, the system is prepared in level |b〉 initially. When
� = 3π/2, as the population can transfer from the level |b〉 to
level |a〉, there should be a peak around the resonant frequency
ωad . In contrast, if � = π/2, almost no population can be
transferred from the level |b〉 to level |a〉, so that the peak
around the frequency ωad will be eliminated (i.e., a dip should
appear there).

In Fig. 3, the spontaneous emission spectra of the system
are plotted for the three upper levels (|a〉, |b〉, and |c〉) coupled
by the same vacuum modes to (a) the common lower level
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FIG. 2. Populations |A(t )|2 (black solid curve) and |B(t )|2 (red dashed curve) are plotted as functions of the time �t for � = π/2 in (a) and
(c) and � = 3π/2 in (b) and (d). The initial conditions are A(0) = C(0) = 0 and B(0) = 1 for (a) and (b) and B(0) = C(0) = 0 and A(0) = 1
for (c) and (d). The transition probabilities Tab(t ) and Tba(t ) are plotted as functions of the time �t for (e) � = π/2 and (f) � = 3π/2. The
other parameters are γa = γb = �/100, γc = 100�, �ab = �/2, �ca = �cb = 5�, and �cb = �ca = �ab = 0.

(|d〉) or (b) different lower levels (|d1〉, |d2〉, and |d3〉). The
black solid curves are for phase � = π/2 and the red dashed
curves for � = 3π/2 . As expected for the spectra in both
Figs. 3(a) and 3(b), there is a peak at the transition frequency
ωad when � = 3π/2 or a dip when � = π/2. Comparing the
curves of Figs. 3(a) and 3(b), we find that there is another
dip around δk/� = −6.7 in the spectrum of the system with

FIG. 3. Spontaneous emission spectra for the three upper levels
(|a〉, |b〉, and |c〉) coupled by the same vacuum modes to (a) the
common lower level (|d〉) or (b) different lower levels (|d1〉, |d2〉,
and |d3〉). The system is initially in level |b〉. The black solid curves
are for phase � = π/2 and the red dashed curves for � = 3π/2.
The other parameters are γa = γb = �/100, γc = 100�, �ab = �/2,
�ca = �cb = 5�, �cb = �ca = �ab = 0, and ωab = ωca = 103�.

one common lower level when � = π/2, which is induced by
destructive interference between different decay paths to one
common lower level. As the dip around δk/� = −6.7 is not
induced by the nonreciprocal transitions, we do not explore it
in the following.

IV. SPONTANEOUS EMISSION SPECTRA
OF CHIRAL MOLECULES

As an important application, we will discuss how to re-
alize the determination of enantiomeric excess based on the
spectral-line elimination in the spontaneous emission spectra
of chiral molecules. Our method is based on the model of chi-
ral molecules with cyclic-transition three upper levels coupled
with one common lower level by the same vacuum modes, as
shown in Fig. 4, where |a〉Q, |b〉Q, |c〉Q, and |d〉Q (Q = L, R)
are the inner states of the left- and right-handed molecules.
Both the models of left- and right-handed molecules can be

FIG. 4. Level diagram of a chiral molecule with cyclic transi-
tions for the three upper levels (|a〉Q, |b〉Q, and |c〉Q), and they are
coupled by the same vacuum modes to the common lower level
(|d〉Q): (a) Q = L for left-handed chiral states and (b) Q = R for
right-handed chiral states.
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FIG. 5. Populations |A(t )|2 (black solid curve), |B(t )|2 (red dashed curve), and |C(t )|2 (blue dot curve) are plotted as functions of the time
�t for left-handed molecules in (a) and (c) and right-handed molecules in (b) and (d). The initial conditions are A(0) = C(0) = 0 and B(0) = 1
for (a) and (b) and B(0) = C(0) = 0 and A(0) = 1 for (c) and (d). The transition probabilities Tab(t ) and Tba(t ) are plotted as functions of the
time �t for (e) left-handed molecules and (f) right-handed molecules. The other parameters are γa = γb = γc = �, �ab = �ca = �cb = �/2,
�cb = �ca = �ab = 0, and � = π/2.

described by the Hamiltonian given in Eq. (1) with � = �L

for left-handed molecules and � = �R − π for right-handed
molecules.

Let the chiral molecule initially be prepared in one of the
upper levels |a〉Q and |b〉Q. The time evolution of the popu-
lations in the three upper levels is shown in Figs. 5(a)–5(d).
For the left-handed molecule, as shown in Fig. 5(a) with the
molecule initially prepared in level |b〉L, the population is
transferred from |b〉L to |c〉L first, then to |a〉L, and last back to
|b〉L, with the maximum population decaying exponentially;
if the left-handed molecule is initially prepared in level |a〉L

as shown in Fig. 5(c), the population is transferred from |a〉L

to |b〉L first, then to |c〉L, and last back to |a〉L. In contrast,
for the right-handed molecule, the population is transferred
in the order |b〉R → |a〉R → |c〉R → |b〉R with the molecule
initially prepared in level |b〉R as shown in Fig. 5(b), or in the
order |a〉R → |c〉R → |b〉R → |a〉R with the molecule initially
prepared in level |a〉R as shown in Fig. 5(d).

The chirality-dependent population transfer can be used
for inner-state enantio separation [36–43,53]. We note that
the similar cyclic transitions between three levels have been
observed in a ring with three transmon superconducting qubits
[58] and a single spin under closed-contour interaction [59].
Nevertheless, the exponential decay of the maximum popu-
lation is one ingredient for nonreciprocal transition between
the three upper levels, and the direction of the transition
is chirality dependent. In Figs. 5(e) and 5(f), the transition
probabilities Tab(t ) and Tba(t ) are plotted as functions of the
time t for � = π/2. The nonreciprocity is dynamical, i.e.,
sometimes the transition probability of |a〉Q to |b〉Q is greater
than the one of |b〉Q to |a〉Q and sometimes the transition
probability of |b〉Q to |a〉Q is greater than the one of |a〉Q to
|b〉Q. However, on average, the probability for the transition
from |a〉L to |b〉L is greater than that from |b〉L to |a〉L in

left-handed molecules and the probability for the transition
from |b〉R to |a〉R is greater than that from |a〉R to |b〉R in
right-handed molecules.

The nonreciprocal transition in the chiral molecules can
be reflected in the spontaneous emission spectra. The spon-
taneous emission spectra for chiral molecules are plotted
as a function of detuning δk in Fig. 6(a) with the black
solid curves for left-handed molecules and the red dashed
curves for right-handed molecules when � = π/2. The most
obvious difference between the two curves is there is one
peak (with value SL) at transition frequency ωcd for left-
handed molecules, but the peak is eliminated and a dip
appears for right-handed molecules. By contrast, there is one
peak (with value SR) at transition frequency ωad for right-
handed molecules, but the peak is eliminated for left-handed
molecules. Then, the strengths of the spontaneous emission
spectra of a chiral mixture, SM (ω), at frequencies ωcd and
ωad are proportional to the molecule numbers of the two
enantiomers, respectively,

SM (ωcd ) ≈ NLSL, (24)

SM (ωad ) ≈ NRSR, (25)

where NL (NR) is the number of left-handed (right-handed)
molecules. For the enantiomeric excess of a chiral mixture de-
fined by ε ≡ (NL − NR)/(NL + NR), the enantiomeric excess
can be determined by

ε = SM (ωcd ) − ηSM (ωad )

SM (ωcd ) + ηSM (ωad )
, (26)

with the coefficient η ≡ SL/SR. Here, we have η ≈ 1 with the
parameters used in Figs. 5 and 6. In addition, the spontaneous
emission spectra for chiral molecules show a sinusoidal de-
pendence on the phase �, as shown in Fig. 6(b). � = π/2 and
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FIG. 6. Spontaneous emission spectra for a (left-handed or right-
handed) chiral molecule with three upper levels (|a〉Q, |b〉Q, and |c〉Q)
coupled by the same vacuum modes to a common lower level (|d〉Q).
The molecule is initially in level |b〉Q. The black solid curves are
for the (Q = L) left-handed molecule and the red dashed curves for
the (Q = R) right-handed molecule. (a) The spontaneous emission
spectra versus δk for � = π/2; (b) the spontaneous emission spectra
versus � for ωk = ωad . The other parameters are γa = γb = γc = �,
�ab = �ca = �cb = �/2, �cb = �ca = �ab = 0, and ωab = ωca =
103�.

� = 3π/2 are two optimal phases to make the determination
of enantiomeric excess mostly efficiently.

V. CONCLUSIONS

In conclusion, we have studied the spontaneous emission
spectrum of a multilevel system with nonreciprocal transition.
Spectral line elimination appears in the spectra when there
is almost no population transferring in one of the transi-
tion directions for nonreciprocal transition. To observe these
phenomena, it is most important to realize cyclic three-level
transition by breaking the symmetry of the potential of the
emitters. The cyclic three-level transition has been proposed
and observed in the superconducting qubit circuit with three
Josephson junctions [19,60], a single nitrogen-vacancy center
embedded in a mechanical resonator [59], and also the chiral
molecules [22–33] .

As an important application, the spectral-line elimina-
tion induced by nonreciprocal transition provides us a
method to determine the enantiomeric excess for the chiral
molecules without requiring the enantio-pure samples. When
the spectral-line elimination appears at some resonant fre-
quencies for molecules with one chirality, the strengths of
the spontaneous emission spectra at those frequencies are
proportional to the numbers of the molecules with the opposite
chirality, so the enantiomeric excess can be determined by
measuring the strengths of the spontaneous emission spectra
at these frequencies. The model of the chiral molecules for de-
termining the enantiomeric excess is general and the method
may be used to distinguish the enantiomers of 1,2-propanediol
[23], 1,3-butanediol [24], and 4-carvomenthenol [29].

In order to realize these in experiments, some more
problems should be considered. To obtain real single-loop
three-level configuration with no connections to other states,
the tops of the chiral molecules should be asymmetric [20,32].
If the real single-loop cyclic three-level subsystem is con-
structed with rotational transitions, the wave vectors of the
three driving fields cannot be parallel [20], thus leading to
inevitable phase mismatching.

In order to ensure all molecules are approximately in
phase, the characteristic length of the medium should be much
smaller than the largest wavelength of the three driving fields
[2,39]. In practice, two of the three states |a〉, |b〉, and |c〉 can
be chosen in the same vibrational excited state. Then, they
are coupled with a microwave field. In this way, it is easier
to make the molecules approximately phase matched than
the case that the three states are in three different vibrational
states.

Moreover, to achieve enantiomeric-excess determination,
the three states in the cyclic three-level model can have differ-
ent vibrational sublevels so that the energy spacings of them
may be large enough to assume all population starting in one
state. If the three states in the cyclic three-level model have the
same vibrational sublevel, in order to assume all population
starting in one state, the rotational temperature should be
cooled sufficiently initially [30], such that there is almost no
population in the upper states before one upper state being
populated by selective pumping.

In addition, the Purcell effect [61] is an important phe-
nomenon in spontaneous emission and may enhance the
predicted effects in this work.
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APPENDIX: DERIVATION OF THE TRANSITION
PROBABILITIES

The dynamic equations (10)–(12) can be concisely ex-
pressed as

i
d(t )

dt
= Heff(t ), (A1)

where (t ) = [A(t ), B̃(t ), C̃(t )]
ᵀ

, and

Heff =

⎛⎜⎝ −i γa

2 �abei� �ca

�abe−i� −�ab − i γb

2 �cb

�ca �cb �ca − i γc

2

⎞⎟⎠. (A2)

Then we have

(t ) = U (t )(0), (A3)
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with the initial conditions (0) = [A(0), B(0),C(0)]ᵀ, and
the time-evolution matrix

U (t ) ≡ e−iHeff t . (A4)

The transition probabilities from |a〉 to |b〉 [Tba(t )] and from
|b〉 to |a〉 [Tab(t )] are defined as

Tba(t ) ≡ |U21(t )|2, (A5)

Tab(t ) ≡ |U12(t )|2, (A6)

where Ui j (t ) (for i, j = 1, 2, 3) represents the element at the
ith row and jth column of the matrix U (t ) given by Eq. (A4).
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