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Transmission spectra of bistable systems: From the ultraquantum to the classical regime
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We present an analytical and numerical study of the fluorescence spectra of a bistable driven system by
means of the Keldysh diagram technique in pseudoparticle representation. The spectra exhibit smooth transition
between the ultraquantum and the quasiclassical limits and indicate the threshold value of the external field
when changing of the most probable stable state occurs. The analysis of the fluorescence spectra also allows
us to determine the most probable stable state of the system. It was also shown that, at integer and half-integer
detuning-nonlinearity ratios, multiphoton resonance leads to abrupt changes in fluorescence spectra. It was also
revealed that the fluorescence spectra are symmetric in the limit of zero environment temperature. The predicted
features of the spectra could be observed in experiments with ultrahigh-quality resonators in either microwave
or optical domains.
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I. INTRODUCTION

Classical and quantum systems with two or more sta-
ble states have been under intense investigation for several
decades. Bistability and multistability often appear in the
presence of an external coherent driving field [1,2]. Dis-
covered first in Fabry-Perot cavities filled with nonlinear
medium [3], the phenomenon of bistability has been ob-
served in a wide range of experimental setups including
laser cavities [4], whispering gallery resonators [5], exciton-
polaritons in semiconductor microcavities [6], etc. Recently,
bistability at small photon numbers (∼102) has been observed
in mesoscopic Josephson junction array resonators [7] with
ultrahigh-quality factors (∼104). Quantum optical and elec-
tronic systems exhibiting bistability are promising candidates
for developing logic elements, switching and memory devices,
various turnstiles, etc. A driven oscillator mode with Kerr-like
nonlinearity is one of the simplest models describing bistabil-
ity in various physical systems. The key features of bistable
systems including S-shaped response curves and hysteresis
cycles under varying external field amplitudes can be analyzed
by means of this model. This model also allows one to obtain
the stationary occupations and switching rates between two
stable states due to interaction with dissipative environment
[8–11].

The stationary populations of different stable states and
switching rates in the model of a driven nonlinear oscillator in
the presence of external noise have been thoroughly studied.
The stationary density matrix at zero environment temperature
is obtained from the quantum kinetic equation of the Fokker-
Planck type for the generalized Glauber P function [12]. For
small damping, numerical analysis based on the rate equation
was performed in Ref. [8]. The method suggested in Ref. [8]

allows one to calculate the switching rates and the station-
ary occupations of the stable states for arbitrary temperature,
which extends the analysis of Ref. [12]. The quasiclassical
limit of the model was considered in Ref. [9], where it was
demonstrated that in the limit of large photon numbers and
high temperature the model reduces to a classical stochastic
one. Such an approximation allows one to find analytical
expressions for the stationary occupations of the quasienergy
states and transition rates between two stable states for low
damping.

Despite the well-studied statistical properties of the con-
sidered bistable system, there is a lack of detailed analysis of
its fluorescence and transmitted light spectra. In Ref. [12], the
spectrum was obtained by linearization of the Fokker-Planck-
type kinetic equation for the generalized Glauber function. A
similar approach was exploited in Ref. [1], where a mean-
field model of atoms in a resonant cavity was discussed. In
Ref. [13], a factorization procedure of an infinite set of the
equations for correlation functions is used to get the spec-
trum. However, such procedures are valid only in the limit
of large damping constants and small quantum fluctuations.
In the opposite limit of small damping, one should expect
that the fluorescence spectrum is a combination of multiple
narrow Lorenzian peaks corresponding to transitions between
the quasienergy states, which totally differs from the quasi-
Lorenzian linearized spectrum of Ref. [12].

The spectrum in this limit is not studied enough nowadays
nor has it been studied enough in the intermediate regime
where linearization cannot be performed and the quasienergy
states are not well defined. However, this regime is of partic-
ular interest in the context of bistability in Josephson junction
array resonators [7] because the nonlinearity per quantum
in these resonators is comparable to the linewidth [14]. It
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is possible to find the spectrum in this regime by solving
numerically the master equation introduced in Ref. [12]. The
details of spectrum behavior near the external field threshold
value corresponding to the switching between the stable states
have not been clearly understood up to now. Moreover, the
influence of multiphoton resonance leading to degeneracy of
quasienergy states [15] on fluorescence spectra also needs
careful investigation.

In the present manuscript, we demonstrate that fluores-
cence spectra of a bistable driven system indicate the external
field threshold value and allow one to find the most probable
state of the system. Our analysis is based on the calculation
of the polarization operator �< by means of the Keldysh dia-
gram technique in pseudoparticle representation. The Keldysh
diagram technique allows self-consistent treatment of the en-
ergy spectrum modification due to interaction processes and
the nonstationary changing of occupation numbers. Also, it
allows one to treat in a regular way the corrections arising
from finite bath correlation time. In the Keldysh diagram tech-
nique approach, such corrections are represented by subseries
of maximally crossing diagrams similar to cooperons in the
theory of weak localization and are proportional to correlation
time in the leading order. In the general case, the equations for
the fluorescence spectrum are solved numerically, but analyt-
ical expressions are also presented in two limiting cases of
small and large ratios between the detuning and damping con-
stants. This allows one to track the smooth transition between
the classical and the quantum fluorescence spectra behavior
and to analyze the spectrum properties for nearly degenerate
quasienergy states.

II. THE THEORETICAL MODEL

We consider a simple model of a bistable driven system
consisting of a resonant mode with Kerr-like nonlinearity
[8,12]. The effective Hamiltonian of such a system in the
rotating-frame approximation reads

Ĥ0 = −�â†â + α

2
(â†â)2 + f (â + â†). (1)

Here � is the detuning between the driving field and the
resonant oscillator frequency, α is the Kerr coefficient, and
f is proportional to the amplitude of the driving field.

In the classical limit, one should replace the operators â and
â† in Eq. (1) with the classical field amplitudes a and a∗ to ob-
tain the classical Hamiltonian. The S-shaped response curve is
depicted in Fig. 1. In the inset, the classical phase portrait of
the system is shown: The classical trajectories in the a plane
are given by the contour lines of the classical Hamiltonian.
In the phase portrait, there are two stable stationary states,
states 1 and 2, and one unstable stationary state, state S. The
only dimensionless parameter of the classical Hamiltonian,
α f 2/�3 ≡ β, governs the system dynamics. The bistability
range is limited by the maximal value of β = βcrit ≡ 4/27. For
the quantum Hamiltonian, there exists another dimensionless
parameter, m ≡ 2�/α. The quasiclassical limit is acquired at
large noninteger values of m.

Let us assume that the system is weakly interacting with
the environment, so the full Hamiltonian reads

Ĥfull = Ĥ0 + ξ̂ †â + ξ̂ â†. (2)

FIG. 1. The S-shaped response curve to the external driving field
of the nonlinear oscillator model (1) is shown. The oscillator field
amplitude a is given in units of

√
�/α. Blue solid lines denote the

stable states 1 and 2, and the gray dashed line corresponds to the
unstable state S. The classical phase portrait of the system is shown in
the inset for

√
β/βcrit = 0.3, where the stationary states are denoted

by black dots.

For the case of white noise, the damping operators ξ̂ and ξ̂ †

are δ-correlated:

〈ξ̂ (t )ξ̂ †(t ′)〉 = γ (N + 1)δ(t − t ′),

〈ξ̂ †(t )ξ̂ (t ′)〉 = γ Nδ(t − t ′). (3)

Here N is the number of thermal photons at the external field
frequency.

With such assumptions, the evolution of the system density
matrix can be described by the master equation [8,12,16–18]:

∂t ρ̂ = Lρ̂ = −i[Ĥ0, ρ̂] + γ

2
(2âρ̂â† − ρ̂â†â

− â†âρ̂ + 2N[[â, ρ̂], â†]). (4)

This equation can be derived in the quasienergy representa-
tion. It follows from the kinetic equation for the lesser Green’s
function G<

nn′ (t, t ) obtained by means of the Keldysh diagram
technique generalized for the pseudoparticle approach with an
additional constraint on the physically available states (see
Appendix A), where |n〉 are the eigenstates of the system
Hamiltonian Ĥ0.

The incoherent part of the photoluminescence spectrum
is given by the correlation function of the operators â
and â† [12]:

S(ω) =
∫

dteiωt 〈â†(0)â(t )〉. (5)

To obtain S(ω), one must calculate the polarization operator
�<(ω) in the pseudoparticle Keldysh diagram technique (see
Appendix B), which coincides with S(ω) in the stationary
case.
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The detailed calculation of �< given in Appendix B leads
to the following expression for the fluorescence spectrum:

S(ω) = 2 Re Tr {â[−iω1̌ − Ľ]−1ρ̂stâ
†}. (6)

Here the superoperator L is determined by Eq. (B8) and has
the following explicit form for white noise:

Li j,kl = −i(εi − ε j )δikδl j

+ γ (N + 1)

2
[2aika∗

jl − (â†â)ikδl j − δik (â†â)l j]

+ γ N

2
[2a∗

kial j − (ââ†)ikδl j − δik (ââ†)l j]. (7)

The stationary density matrix can be obtained from the kinetic
equation (4). The incoherent part of the spectra can be calcu-
lated numerically by means of Eq. (6).

There exist two complementary approximations allowing
one to get analytical expressions for S(ω). They correspond to
the quantum limit of well-defined quasienergy states and the
quasiclassical limit of small quantum and thermal fluctuations
considered in Ref. [12].

The first approximation is valid providing that γ is
smaller than any of the differences between eigenvalues of
the effective Hamiltonian, and the spectrum consists of dis-
tinct Lorenzian peaks corresponding to transitions between
quasienergy levels. When ω is close to a transition frequency
between the levels |n〉 and |n′〉, the following expression for
the spectrum is valid (see Appendix B):

S(ω) =
∑
n′n

Pn′ |ann′ |2 2n′n

(ω − εn + εn′ )2 + 2
n′n

, (8)

where the widths of the Lorenzian peaks are defined as

2n′n = γ (N + 1)[(â†â)n′n′ + (â†â)nn − 2 Re an′n′a∗
nn]

+ γ N[(ââ†)n′n′ + (ââ†)nn − 2 Re a∗
n′n′ann], (9)

and Pn′ are the stationary occupation probabilities of the
unperturbed Hamiltonian eigenstates |n′〉. The occupation
probabilities in this approximation are defined by the sta-
tionary rate equation (see Ref. [8]) which is the diagonal
approximation of the quantum master equation (4). The
Keldysh diagram technique is the most clear and straight-
forward way to obtain strong linewidth narrowing for the
transitions between two well-defined quasienergy states from
classical region 2 [Eqs. (9) and (B11)]. This effect can be seen
from Fig. 2 where the linewidths of the transitions between
different quasienergy states are shown. The narrowing of the
linewidth is described by �γnn′ [Eq. (B11)] and appears by
summing the series of ladder diagrams in the polarization
operator �< (see Appendix B). The total linewidth is not the
sum of the widths γn and γn′ of the quasienergy states involved
in the transition. For the states within region 2, the term �γnn′

leads to strong narrowing of the fluorescence spectrum peaks,
because for these states the diagonal matrix element of â
strongly deviates from zero. On the other hand, for the states
within region 1 these matrix elements are close to zero for
small external field amplitudes, so the narrowing is not well
pronounced. In addition, for transitions between quasienergy
states from different regions of the phase space, �γnn′ changes
sign, which leads to slightly increased linewidths.

FIG. 2. Linewidths of the fluorescence spectrum peaks of the
quantum driven nonlinear oscillator corresponding to transition be-
tween the quasienergy state n and the other quasienergy states are
shown (blue diamonds), where n corresponds to classical stable states
1 (a) and 2 (b). The model parameters are as follows: 2�/α = 15.4
and f / fcrit = 0.3. Sums of linewidths of individual quasienergy
levels are shown for comparison (red crosses). The values of the
quasienergies on the horizontal axis are given in units of �2/α.

Another approximation exploited in Ref. [12] is based on
the quantum Fokker-Planck equation for the density matrix in
the generalized P representation:

∂P(a, a∗)

∂t
=

[
i

∂

∂a
[(−� − iγ /2)a + αa2a∗ + f ]

− iα

2

∂2

∂a2
a2 + γ N

2

∂2

∂a∂a∗

]
P(a, a∗) + c.c.

(10)

This equation can be linearized near each of the classical
stable states which can be obtained from the solution of sta-
tionary classical equations of motion:

−(� + iγ /2)a + αa2a∗ + f = 0. (11)

The resulting expression for the spectrum reads

S(ω) =
∑

q=1,2

1

4π2|λq(ω)|2 γ
[
(1 + N )α2n2

q

+ N |ω − � + 2αnq − iγ /2|2]Pq, (12)

with

λq(ω) = −(ω − � + 2αnq − iγ /2)(ω + � − 2αnq − iγ /2)

− α2n2
q, (13)

where q = 1 and 2 correspond to two stationary states, Pq are
classical probabilities to find the system near each of the stable
states q, and nq is the mean value of â†â in the stable state q.

III. RESULTS AND DISCUSSION

Using the approach described in the previous section, we
calculated the incoherent part of the emission spectrum of the
quantum driven nonlinear oscillator. We considered different
values of the model parameters including the small-fluctuation
regime and the weak-coupling regime.

First of all, we explored the transition between the small-
fluctuation and weak-coupling regimes which occurs at the
decreasing dimensionless damping constant ϑ ≡ γ /� (see
Fig. 3). At small ϑ , the exact spectrum matches with the
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FIG. 3. The fluorescence spectra of the quantum driven nonlinear
oscillator model are shown for m = 12.5, N = 0, f / fcrit = 0.2, and
different values of ϑ . Black solid lines denote the spectra obtained
from Eq. (6), the red dashed line represents the spectrum obtained
from the Lorenzian approximation, and the blue dash-dotted line
represents the spectrum obtained from the linear approximation. At
small ϑ , the spectrum consists of multiple narrow Lorenzian peaks
corresponding to transitions between different quasienergy levels,
and it is well approximated by Eq. (8). With increasing ϑ , the
spectrum smoothly transforms to a set of quasi-Lorenzian peaks cor-
responding to the linearized approximation determined by Eq. (12).

Lorenzian approximation (8) and consists of many distinct
peaks corresponding to transitions between the quasienergy
states. With increasing ϑ , it becomes necessary to solve the
kinetic equations taking into account all nondiagonal elements
of the density matrix. For rather large ϑ , the solution of
the master equation leads to the same result as the linear
approximation of Eq. (12) corresponding to the vicinity of
each classical stable state. The relative height of the peaks
is determined by the occupation probabilities of these stable
states. The spectrum defined by Eq. (12) consists of two
quasi-Lorenzian peaks located at ±ω1,2, where ω1,2 are the
frequencies of the oscillator motion around the stable states 1
and 2. It is important to mention that a peak at zero frequency
is always present in the fluorescence spectrum. This peak is
connected with transitions between the classical stable states
lying in different regions of the system phase portrait.

Another interesting feature is that in both weak-coupling
and small-fluctuation regimes the spectra strongly depend on
the value of the external driving field, which is demonstrated
in Fig. 4. In particular, in the small-fluctuation regime when
Eq. (12) is applicable, the spectrum explicitly depends on n.
Obtained within the linearized approximation in the vicinity
of each stable state, the spectrum defined by Eq. (12) contains
two peaks at nonzero frequency. However, the position of
these peaks depends on n and therefore differs for the driving
fields below threshold ( f < f0) and above threshold ( f > f0).
At the threshold value of the external field f0, switching
between the most probable states 1 and 2 takes place. In the
vicinity of the threshold, f ≈ f0, the system can be found in

FIG. 4. The fluorescence spectra S(ω) of the quantum driven
nonlinear oscillator are shown for m = 12.5, ϑ = 0.03, N = 0, and
varying values of f . The spectra are normalized by the total flu-
orescence intensity Stot ≡ ∫

dω

2π
S(ω). For the external fields below

threshold ( f / fcrit = 0.3) and above threshold ( f / fcrit = 0.5), two
symmetric side peaks at nonzero frequencies corresponding to dif-
ferent classical stable states are present. Near the threshold, the
spectrum contains four side peaks corresponding to both classical
stable states.

both stable states with comparable probabilities, and the total
spectrum contains contributions from both of them. Therefore,
the spectrum exhibits a crossover when the external field
passes the threshold value. Below the threshold, it contains
two peaks at frequencies ±ω1 corresponding to the stable
state 1; in the vicinity of the threshold, it contains four peaks
at frequencies ±ω1 and ±ω2 corresponding to both stable
states; and above the threshold, there are two peaks again at
frequencies ±ω2 corresponding to the stable state 2. Similar
arguments can be applied to the weak-coupling regime. The
occupation numbers of the eigenstates also differ drastically
for f < f0 and f > f0, and different quasienergy states con-
tribute to the spectrum in these cases.

FIG. 5. The fluorescence spectra of the quantum driven nonlinear
oscillator are shown for f / fcrit = 0.29, ϑ = 0.005, N = 0, and vary-
ing values of m. For clarity, different spectra are shifted vertically by
arbitrary constants. With varying m, the relative heights of the peaks
corresponding to different classical stable states strongly change.
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FIG. 6. The fluorescence spectra are depicted for f / fcrit = 0.29,
ϑ = 0.03, m = 12.5, and varying N . Mirror symmetry with respect
to the vertical axis is present at N = 0, and it is violated at N 
= 0.

Also, we considered the behavior of spectra near the
integer values of the ratio between double detuning and non-
linearity m (see Fig. 5). As shown in Ref. [15], at integer
values of m the multiphoton resonance leads to the enhanced
probability of the system to occupy the classical stable state
with higher amplitude. This could be interpreted as a decrease
in the threshold value f0 of the driving field near the integer
values of m. So, varying m changes the relative heights of the
peaks corresponding to different classical stable states. When
m is close to an integer, the height of the spectrum peaks
corresponding to the stable state 2 abruptly increases, whereas
the magnitude of the peaks corresponding to the stable state 1
strongly decreases.

In addition, we considered the spectra at different bath tem-
peratures. As can be seen in Fig. 6, the spectra are perfectly
symmetric at N = 0 and become asymmetric at N > 0.

IV. CONCLUSIONS

The fluorescence spectra of a bistable driven system were
studied analytically and numerically by means of the Keldysh
diagram technique in pseudoparticle representation. The spec-
tra exhibit a smooth transition between the ultraquantum
and the quasiclassical limits. It was shown that fluorescence
spectra indicate the external field threshold value which cor-
responds to switching between the most probable states of
a bistable system. Moreover, in the vicinity of the external
field threshold value the system can be found with compa-
rable probabilities in both stable states. Thus, nearly equal
contributions from both states can be clearly seen in the total
spectrum. So, it is possible to determine the most probable
state of the system from fluorescence spectra in a wide range
of external field intensities. In addition, it was revealed that,
at integer and half-integer values of the detuning-nonlinearity
ratio, multiphoton resonance leads to an enhanced probability
of the system to occupy the classical stable state with higher
amplitude. So, when this ratio is close to an integer or a
half-integer, the height of the spectrum peaks corresponding
to the stable state 2 with higher amplitude abruptly increases,
whereas the magnitude of the peaks corresponding to the

stable state 1 with lower amplitude strongly decreases. Also,
we found out that the fluorescence spectra are symmetric at
zero bath temperature, and this symmetry breaks down with
increasing temperature.
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APPENDIX A: THE DERIVATION OF
THE MASTER EQUATION

The Hamiltonian Ĥ0 can be diagonalized so that |n〉 is the
set of its eigenvectors. It is convenient to introduce the pseu-
doparticle operators ĉ†

n and ĉn which correspond to creation
and annihilation of the system eigenstates |n〉. This implies the
constraint on the space of possible physical states:

∑
n ĉ†

nĉn =
1. The operators Ĥ0, â, and â† can be expressed through the
pseudoparticle creation and annihilation operators ĉ†

n and ĉ:

Ĥ0 =
∑

n

εnĉ†
nĉn,

â =
∑
nn′

ann′ ĉ†
nĉn′ . (A1)

Although it does not affect physical results, we assume
that the pseudoparticles are fermions. We derive the kinetic
equation for the density matrix of the system which is di-
rectly related to the G<(t, t ′) Green’s function: ρnn′ (t ) =
−iG<

nn′ (t, t ).
The constraint on the Hilbert space, which means the pres-

ence of exactly one pseudoparticle in the system, leads to
the following additional rules for constructing the Keldysh
diagram technique [19,20]:

(i) Among all diagrams only the diagrams with one G<
0

line are kept, which denotes a one-particle Green’s function
of the noninteracting system.

(ii) If G< is present in some diagram, the other Green’s
functions cannot contain the pseudoparticle occupation num-
bers. Therefore, in all diagrams containing G<, the Green’s
function G> reduces to GR − GA, and the self-energy parts for
GR,A also don not contain G<.

In the self-consistent Born approximation, diagrams for
GR, GA, and G< are shown in Fig. 7. In the case of white noise,
the diagrams with crossing bath Green’s functions (shown by
dashed lines in Fig. 7) vanish, which provides the validity of
the Born approximation. The diagram with crossing lines de-
picted in Fig. 7 is of the order of γ τc compared to noncrossing
diagrams, where τc is the noise correlation time. This is clear
from time representation: for diagrams with crossings, the
integration domain is restricted by τc. The sum of all diagrams
depicted in Fig. 7 can be represented by the following self-
consistent equations:

G< = (1 + GR�R)G<
0 (1 + �AGA) + GR�<GA,

GR = GR
0 + GR

0 �RGR, (A2)

GA = GA
0 + GA�AGA

0 ,
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= +

+ + . . .

FIG. 7. Graphical representation of the Dyson equation for GR,
GA, and G< is shown. The thin solid line corresponds to the pseu-
doparticle Green’s function, the thick solid line corresponds to the
dressed pseudoparticle Green’s function, the dashed line corresponds
to the bath correlation function. Diagrams with crossing bath corre-
lation function lines give contributions proportional to γ τc and are
neglected in the Dyson equation.

where (GR,A
0 )nn′ (t, t ′) = ∓ie−iεn (t−t ′ )θ [±(t − t ′)]δnn′ ,

(G<
0 )nn′ (t, t ′) = ie−iεn (t−t ′ )nnδnn′ , nn are pseudoparticle

occupation numbers, �R,A are sums of irreducibble
diagrams containing no G<

0 lines, and �< is the sum of
irreducible diagrams containing exactly one G<

0 line. In the
self-consistent approximation, they can be expressed as

�
R(A)
i j (t, t ′) = i

∑
kl

aikGR(A)
kl (t, t ′)D>(<)(t, t ′)a∗

jl

+ a∗
kiG

R(A)
kl (t, t ′)D<(>)(t ′, t )al j, (A3)

�<
i j (t, t ′) = i

∑
kl

aikG<
kl (t, t ′)D>(t, t ′)a∗

jl

+ i
∑

kl

a∗
kiG

<
kl (t, t ′)D<(t, t ′)al j, (A4)

where

D<(t, t ′) = −i〈ξ̂ †(t ′)ξ̂ (t )〉,
(A5)

D>(t, t ′) = −i〈ξ̂ (t )ξ̂ †(t ′)〉,

and the correlation functions of ξ̂ and ξ̂ † are defined by
Eq. (3). By applying G−1

0 ≡ i∂t − Ĥ0 to the first equation
of Eqs. (A2) from the left and from the right, one gets the
following equation:

(i∂t + i∂t ′ − εn + εn′ )G<
nn′ (t, t ′)

=
∫

dt ′′ [�R(t, t ′′)G<(t ′′, t ′) + �<(t, t ′′)GA(t ′′, t ′)

− GR(t, t ′′)�<(t ′′, t ′) − G<(t, t ′′)�A(t ′′, t ′)]nn′ , (A6)

where the self-energies �R, �A, and �< are defined as

�R(A)
n1n2

(t, t ′) = iγ δ(t − t ′)
2

[(1 + N )(â†â)n1n2 + N (ââ†)n1n2 ],

(A7)

�<
n1n2

= γ δ(t − t ′)[(1 + N )an1kG<
kk′ (t, t )a∗

n2k′

+ Na∗
kn1

G<
kk′ (t, t )ak′n2 ]. (A8)

In the above equation and below, we omit the summation over
repeating indices. After substituting these expressions into
Eq. (A6), we obtained exactly the quantum master equation

Π< = â Φ1

<

R

− Φ2 â†

<

A

Φ1 = â† + Φ1

A

R

Φ2 = â + Φ2

A

R

FIG. 8. Diagram ladder representing the polarization operator
�< is shown. Solid lines represent pseudoparticle fermion Green’s
functions, dashed lines represent bath Green’s functions, and circles
denote effective vertices �1,2.

for the δ-correlated bath:

(i∂t − εi + ε j )G
<
nn′ (t, t )

= iγ (1 + N )

2
[2anka∗

n′l − (â†â)nkδn′l − δnk (â†â)n′l ]G
<
kl (t, t )

+ iγ N

2
[2a∗

knaln′ − (ââ†)nkδn′l − δnk (ââ†)n′l ]G
<
kl (t, t ).

(A9)

Equation (A9) is equivalent to the quantum master equation,
Eq. (4):

∂tρnn′ = (Lρ)nn′ = −i(εn − εn′ )ρnn′

+ γ

2
(2aρa† − ρa†a − a†aρ + 2N[[a, ρ], a†])nn′ .

(A10)

APPENDIX B: POLARIZATION OPERATOR

The polarization operator �<(t, t ′) ≡ 〈TCâ−(t )â†
+(t ′)〉 is

represented as a sum of diagrams shown in Fig. 8. For white
external noise, it consists of a ladder of diagrams without
crossing bath propagators. The sum of all such diagrams can
be calculated in a way similar to that of the Bethe-Salpether
equation.

In steady state, �<(t, t ′) depends only on t − t ′. Thus, in
ω representation the graphical equations shown in Fig. 8 take
the following form:

�<(ω) =
∫

dω′

2π
Tr âG<(ω + ω′)�1(ω)GR(ω′)

−
∫

dω′

2π
Tr �2(ω)G<(ω′ + ω)â†GA(ω′), (B1)

where GR(ω) and GA(ω) are the solutions of Eqs. (A2)
in Fourier representation. The stationary Green’s
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function G<(ω) obtained from these equations takes the
form G<(ω)i j = [ρstGA(ω)]i j − [GR(ω)ρst]i j , (ρst )i j ≡
−i

∫
dω
2π

G<(ω)i j . The vertex functions �1(ω) and �2(ω) read
as follows:

�1(ω)kl = a∗
lk + γ

∫
dω′

2π
(1 + N )

× [âGA(ω + ω′)�1(ω)GR(ω′)â†]kl

+ N[â†GA(ω + ω′)�1(ω)GR(ω′)â]kl , (B2)

�2(ω)kl = akl + γ

∫
dω′

2π
(1 + N )

× [âGA(ω′)�2(ω)GR(ω′ + ω)â†]kl

+ N[â†GA(ω′)�2(ω)GR(ω′ + ω)â]kl . (B3)

From Eqs. (B2) and (B3), one could obtain �1,2(ω) explicitly.
For this, it is convenient to introduce tensor notation for denot-
ing superoperators acting on operators, because the space of
operators acting on a Hilbert space is isomorphic to the tensor
product of a Hilbert space and its conjugate. For example,
the combination âGA(ω′)�2(ω)GR(ω + ω′)â† can be written
using this notation as {âGA(ω′) ⊗ [GR(ω + ω′)â†]T }�2(ω):

This means that the operator âGA(ω′) ⊗ [GR(ω + ω′)â†]T act-
ing on the tensor product of a Hilbert space and its conjugate
is multiplied on �2 which is considered as a vector from the
tensor product.

Using this notation, one gets the following expressions for
�1,2:

�1(ω) =
{
1 ⊗ 1 − γ

∫
dω′

2π
[(1 + N )â† ⊗ âT

+ Nâ ⊗ (â†)T ]GA(ω + ω′) ⊗ GR(ω′)T
}−1

â†,

(B4)

�2(ω) =
{
1 ⊗ 1 − γ

∫
dω′

2π
[(1 + N )â† ⊗ âT

+ Nâ ⊗ (â†)T ]GA(ω′) ⊗ GR(ω + ω′)T
}−1

â. (B5)

Using Eqs. (B1), (B4), and (B5), it is possible to calculate
the polarization operator in a closed form. Moreover, all these
equations contain the integral of the product of retarded and
advanced Green’s functions. For this integral, the following
identity holds:

∫
dω′

2π
GA(ω′) ⊗ GR(ω′ + ω) =

{
−iω − iĤ ⊗ 1 + i1 ⊗ Ĥ + γ

2
[(1 + N )a†a + Na†a] ⊗ 1 + γ

2
1 ⊗ [(1 + N )a†a + Na†a]

}−1
.

(B6)

The above equation can be proven in time representation by differentiating the product GA(−t ) ⊗ GR(t ) by t . To get the final
expression for �<, one should substitute Eq. (B6) into Eqs. (B4) and (B5), and then substitute Eqs. (B4) and (B5) into Eq. (B1).
Thus, the polarization operator �< reads

�< = Tr[â†{−iω1 − L}(âρ̂st )] + Tr[â{iω1 − L}(ρ̂stâ
†)], (B7)

where

L = −iĤ0 ⊗ 1 + i1 ⊗ ĤT
0 + γ (1 + N )

2
[2â ⊗ (â†)T − â†â ⊗ 1 − 1 ⊗ (â†â)T ] + γ N

2
[2â† ⊗ âT − ââ† ⊗ 1 − 1 ⊗ (ââ†)T ].

(B8)

The calculations above can be considerably simplified in
the limit of small γ . In this limit, the density matrix of the
system can be calculated in the diagonal approximation as
well as GR and GA:

ρnn′ = Pnδnn′ ,

GR,A
nn′ = (ω − εn ± γn)−1δnn′ ,

γn = γ

2
[(1 + N )â†â + Nââ†]nn. (B9)

When ω is close to the difference between some energy
levels En − En′ , the diagonal approximation for GR,A can be
used for calculating �1, �2, and �<. Retaining only diagonal
retarded and advanced Green’s functions in Eqs. (B6), one can
obtain∫

dω′

2π
GA

n′n′ (ω′)GR
nn(ω′ + ω) = i

ω − εn + εn′ + i(γn + γn′ )
.

(B10)

This allows one to calculate �1,2 in resonant approximation
from Eqs. (B2) and (B3):

(�1)kl = a∗
lk

(
1 + i�γkl

ω − εk + εl − i(γk + γl )

)−1

,

(�2)kl = akl

(
1 − i�γkl

ω − εk + εl + i(γk + γl )

)−1

,

�γkl = γ [(1 + N )akka∗
ll + Na∗

kkall ]. (B11)

Keeping also only GR
nn and GA

n′n′ in �< given by Eq. (B1),
one derives Eq. (8) where nn′ = γn + γn′ − �γnn′ [see
Eq. (9)].

Thus, the spectrum in the limit of small γ consists of
multiple narrow Lorentz peaks corresponding to transitions
between the system eigenstates. From Eq. (9), the linewidth
narrowing for the transitions between two well-defined
quasienergy states can be seen. It appears from summing the
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series of ladder diagrams in the polarization operator �<, and
the linewidth differs from the sum of the widths γn and γn′ of
the quasienergy states involved in the transition (see Fig. 2).
In addition, the Keldysh diagram technique allows one to treat
the corrections arising from finite bath correlation time τc in
a regular way. In the Keldysh diagram technique approach,

such corrections are represented by subseries of maximally
crossing diagrams similar to cooperons in the theory of weak
localization and are proportional to correlation time in the
leading order. These diagrams are of order γ τc compared to
noncrossing ladder diagrams contributing to the leading-order
approximation.
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