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Control of interference and diffraction of a three-level atom in a double-slit scheme with cavity fields
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A double-cavity with a quantum mechanical and a classical field is placed immediately behind a double-slit
in order to analyze the wave-particle duality. Both fields have common nodes and antinodes through which
a three-level atom passes after crossing the double-slit. The atom-field interaction is maximum when the atom
crosses a common antinode and path information can be recorded on the phase of the quantum field. On the other
hand, if the atom crosses a common node, the interaction is null and no path information is stored. A quadrature
measurement on the quantum field can reveal the path followed by the atom, depending on its initial amplitude
α and the classical amplitude ε. In this report we show that the classical radiation acts like a focusing element
of the interference and diffraction patterns and how it alters the visibility and distinguishabilily. Furthermore, in
our double-slit scheme the two possible paths are correlated with the internal atomic states, which allows us to
study the relationship between concurrence and wave-particle duality considering different cases.
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I. INTRODUCTION

Bohr’s principle of complementarity [1] states that two
complementary properties of a given quantum system cannot
be obtained simultaneously. This implies that in a mea-
surement process of two complementary observables of a
quantum-mechanical object, total knowledge of the first one
means that all possible outcomes of the second one are equally
probable. The wave-particle duality of nature represents the
best example of mutually exclusive properties of quantum
systems, and several experimental and theoretical works have
been developed in order to study this behavior [2–4]. For
instance, in a double-slit Young-type scheme, the particlelike
properties are attributed to the knowledge of the path followed
by the particle, i.e., to the distinguishability (D). On other
hand, the wavelike properties are associated with the fringe
visibility (V ) on the screen.

In a double-slit scheme, path information can be obtained
using an external device which acts like a which-path detector
[5,6]. For instance, if an atom passes through the slits, a quan-
tum field can be placed immediately after them and store path
information [7,8]. This is because the atom-field interaction
affects the initial phase of the quantum field depending on
the atom’s position with respect to the nodes and antinodes
of the wave. Thus, if path information is recorded on the field,
it can be extracted by performing a proper measurement in
order to know the path followed by the atom and obtain the
particlelike properties of the system. However, the stored path
information can also be erased [5,8,9] in order to restore the
wavelike behavior of the system and thus observe the typical
interference pattern on the screen.
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In the wave-particle duality the wavelike and the parti-
clelike properties are determined via the path information
or fringe visibility and have been quantified mathematically
through the inequality

V 2 + D2 � 1, (1)

which has been demonstrated by Englert [10] and also de-
rived in other ways [11,12]. Several works have shown that
depending on the initial setup of a double-slit experiment, the
wave-particle duality can be controlled in order to analyze
the complementarity between distinguishability and visibility
[13–15]. Furthermore, it is possible to establish correlations
between an intrinsic degree of freedom of the particle passing
through the double-slit and the possible paths of the scheme.
This implies that the inequality which controls the comple-
mentarity between particle and wave must be modified so as
to include this correlation as a third parameter. Recently, con-
currence has been considered in a double-slit experiment with
single photons, in order to quantify the established correla-
tions between the paths of the double-slit and the polarization
of the photons [15–18]. The results have demonstrated that
inequality (1) in the presence of the concurrence turns into the
equality

V 2 + D2 + C2 = 1, (2)

where C represents the degree of quantum entanglement be-
tween the polarization of photons and the possible paths of the
scheme. Therefore, as a result of the above equality, the defi-
nitions of distinguishability and visibility may simultaneously
vanish depending on the degree of correlation present in the
scheme.

In this report, instead of photons, we have three level
atoms passing through a double-slit scheme and, immediately
afterward, crossing two cavity fields, one classical (CF) and
the other quantum mechanical (QF) [19]. Henceforth, we
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FIG. 1. Scheme of the possible paths followed by the atom. ABS,
atomic beam splitter; AM, atomic mirror; RF, Ramsey field. The
atom is either reflected or transmitted by the ABS by taking the upper
or lower path, respectively. Finally, the atom crosses the double-slit
and both the quantum (dotted red line) and the classical (solid blue
line) fields.

consider V0, D0, and C0 as the respective visibility, distin-
guishability, and concurrence without the cavity fields. We
show that the quantum field acts as a control on the balance be-
tween distinguishability and visibility, even to the extreme of
reversing their behavior by varying the amount of which-path
information coming from the atomic-dependent phase of the
field after the interaction and homodyne measurement. On the
other hand, the classical field produces a “focusing effect” in
the sense that for a larger field, the interference plane becomes
closer to the slit-cavity setup, so it can be used to control the
path information stored in the quantum field and modify the
pattern observed on the screen.

II. MODEL

In this article we consider a three-level atom crossing a
double-cavity with a quantum and a classical field (Fig. 3).
The fields have wave numbers k = 2π/λQF = 3k′ and k′ =
2π/λCF, respectively. A double-slit is located immediately be-
fore the fields, with the top slit in front of a common antinode
and the bottom slit in front of a common node. The separation
distance between slits is 0.75λQF = 0.25λCF.

Previous to the double-slit, the spatial atomic state is real-
ized by an atomic beam splitter (ABS) [20,21] and an atomic
mirror (AM) [22,23], and the internal atomic state in the top
path is realized by a Ramsey field (RF) [24] (Fig. 1). The
reflection and transmission coefficients of the ABS are c↑ and
c↓, satisfying |c↑|2 + |c↓|2 = 1. If the atom is transmitted, it
flies along the bottom path and crosses the slit at the node
of the standing waves in the position x = 0.75λQF. On the
other hand, if the atom is reflected, it goes through the top
slit using an AM and then an RF. The task of the RF is
to prepare a superposition of the ground state |c〉 and the
intermediate state |b〉. Here the probability coefficients of
exciting state |b〉 and remaining in state |c〉 are sin2 φ and
cos2 φ, respectively. In this case, the atom crosses the top
slit and passes through the common antinode of the fields in
the position x = 0. Therefore, the top path is correlated with

FIG. 2. Initial phase of the quantum field |α〉 for an amplitude
α = √

8, where X and Y correspond to the amplitude and phase
quadrature of the field, respectively.

the internal atomic state |�↑〉 = cos φ|c〉 + sin φ|b〉, while the
bottom path is correlated with state |�↓〉 = |c〉.

A. Initial state

Initially the atom is in the ground state |c〉. After passing
through the ABS and considering the effect of the AM and the
RF, the atomic state can be described as

|ψ (0)〉atom = c↑|P↑〉 ⊗ |�↑〉 + c↓|P↓〉 ⊗ |�↓〉
= c↑|P↑〉 ⊗ [cos φ|c〉 + sin φ|b〉] + c↓|P↓〉 ⊗ |c〉,

(3)

where the states |P↑〉 and |P↓〉 represent the top and bottom
paths in the scheme, respectively.

Immediately to the right of the double-slit, a double-
cavity with both classical and quantum fields is located. The
quantum field before the interaction is a coherent state with
amplitude α = √

8 (Fig. 2),

|ψ (0)〉field = |α〉 = e
−|α|2

2

∑
m=0

αm

√
m!

|m〉 =
∑
m=0

cm|m〉, (4)

and the total initial system is given as

|ψ (0)〉system = |ψ (0)〉atom ⊗ |ψ (0)〉field

= (c↑|P↑〉 ⊗ [cos φ|c〉 + sin φ|b〉]
+ c↓|P↓〉 ⊗ |c〉) ⊗ |α〉. (5)

B. Time evolution of the system

After the interaction the total initial system will evolve to

|ψ (t )〉system = Û |ψ (0)〉system = e− iV̂ t
h̄ |ψ (0)〉system, (6)

where V̂ is the Hamiltonian in the interaction framework
considering a rotating-wave approximation,

V̂ = h̄g1(âei	t |a〉〈c| + â†e−i	t |c〉〈a|)
+ h̄g2(εei	t |a〉〈b| + ε∗e−i	t |b〉〈a|). (7)

Here the quantum field â couples the |a〉-|c〉 transition, while
the classical field ε couples the |a〉-|b〉 transition with coupling
constant g1 = gcos(kx) and g2 = g′ cos(k′x), respectively,
where k′ = k/3. For both fields, the detuning 	 is the same
and it is required to be large in order to avoid photon emission
and, therefore, an effect on the cavity field (Fig. 3). The
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elements of the evolution operator for this system are given
by [19]

Uaa = ei	t/2

(
R − i	

2
S

)
, Uab = −ig2εei	t/2S,

Uac = −ig1ei	t/2Sâ, Uba = −ig2ε
∗e−i	t/2S,

Ubb = 1 + g2
2|ε|2

[
e−i	t/2

(
R + i	

2 S
) − 1

]



,

Ubc = g1g2ε
∗
[
e−i	t/2

(
R + i	

2 S
) − 1

]
â



,

Uca = −ig1â†e−i	t/2S,

Ucb = g1g2εâ†

[
e−i	t/2

(
R + i	

2 S
) − 1

]



,

Ucc = 1 + g2
1â†â

[
e−i	t/2

(
R + i	

2 S
) − 1

]



,

(8)

where


 ≡ g2
2|ε|2 + g2

1ââ†, 
 ≡ g2
2|ε|2 + g2

1â†â, S ≡ sin
√

μt√
μ

,

S ≡ sin
√

μt√
μ

, R ≡ cos
√

μt, R ≡ cos
√

μt,

μ ≡ g2
2|ε|2 + g2

1ââ† + 	2/4, μ ≡ g2
2|ε|2 + g2

1â†â + 	2/4.

(9)

For arbitrary paths, the state of the system after a time of
interaction t can be written as

|ψ (t )〉 = c↑ cos φ|P↑〉 ⊗ Û |c〉 ⊗ |α〉 + c↑ sin φ|P↑〉 ⊗ Û |b〉
⊗ |α〉 + c↓|P↓〉 ⊗ Û |c〉 ⊗ |α〉

= c↑ cos φ|P↑〉 ⊗ [
Ubc|b〉 + Ucc|c〉

] ⊗ |α〉
+ c↑ sin φ|P↑〉 ⊗ [

Ubb|b〉 + Ucb|c〉
] ⊗ |α〉

+ c↓|P↓〉 ⊗ [
Ubc|b〉 + Ucc|c〉

] ⊗ |α〉

= c↑ cos φ|P↑〉 ⊗
[ ∑

βc
m|m − 1〉|b〉 +

∑
αc

m|m〉|c〉
]

+ c↑ sin φ|P↑〉 ⊗
[∑

αb
m|m〉|b〉+

∑
βb

m|m + 1〉|c〉
]

+ c↓|P↓〉 ⊗
[∑

βc
m|m − 1〉|b〉 +

∑
αc

m|m〉|c〉
]
,

(10)

where the coefficients αb,c
m and βb,c

m depend on the internal
state of the atom (see the Appendix).

C. Quadrature measurement

In this model the which-path information depends on the
phase shift of the quantum field as a consequence of the atom’s
position during the interaction time t . As mentioned before,
the maximum atom-field interaction is accomplished when the
atom takes the top path and crosses the common antinode of
both fields. In that case, we must consider the two possible
internal states of the atom, |b〉 and |c〉, and the effect of these

on the quantum field [8]. On the other hand, if the atom passes
through the bottom slit and then crosses the common node, no
interaction occurs, and the initial phase of the field remains the
same [see (A5) in the Appendix]. Therefore, considering the
phase shift caused either by the ground or by the intermediate
atomic state in the top path, a quadrature measurement could
reveal the path followed by the atom.

If the atom crosses the common antinode (c↑ = 1) in state
|b〉 (φ = π/2) or |c〉 (φ = 0), the final state of the total system
after interaction corresponds to a superposition of the internal
states |b〉 and |c〉 given, respectively, by

|ψ (t )〉b
system = |P↑〉 ⊗

[∑
m

αb
m|m〉|b〉 +

∑
m

βb
m|m + 1〉|c〉

]
(11)

and

|ψ (t )〉c
system = |P↑〉 ⊗

[∑
m

αc
m|m〉|c〉 +

∑
m

βc
m|m − 1〉|b〉

]
.

(12)

Therefore, considering the effect of both quantum and clas-
sical fields on the internal atomic state, the evolution of the
total system can be understood as a Raman diffraction process
in which the internal atomic state is changed or a Bragg
diffraction process where the internal state of the atom re-
mains unaffected [25,26]. These processes can be controlled
by the amplitude of the classical field, since for small values
of ε the coefficients βb,c

m decrease and it is more probable
that the atom remains in its initial state, while as ε increases,
the transition from |b〉 to |c〉, or vice versa, becomes more
probable. For simplicity, we first consider only the quantum
field in order to analyze the effects of the atomic state on
it. For the specific values of the parameters ε = 0, α = √

8,
g = g′, and |g|2t/	 = π , Eqs. (11) and (12) can be written as

|ψ (t )〉b
system = |P↑〉 ⊗

[∑
m

e− |α|2
2

αm

√
m!

|m〉|b〉
]

= |P↑〉 ⊗ |α〉 ⊗ |b〉
(13)

and

|ψ (t )〉c
system = |P↑〉 ⊗

[∑
m

eiπ cos2(kx)me− |α|2
2

αm

√
m!

|m〉|c〉
]

= |P↑〉 ⊗ |eiη(x)α〉 ⊗ |c〉,
(14)

respectively, with η(x) = π cos2(kx).
Therefore, when the atom crosses the antinode of the quan-

tum field in the intermediate state |b〉 [Fig. 4(a)], there is no
phase shift [Fig. 4(b)] and no quadrature measurement can
reveal which-path information. This is because the same phase
can be obtained if the atom takes the bottom path (initial
phase unaffected). In contrast, when the atom crosses the
antinode in the ground state |c〉 [Fig. 5(a)], the phase increases
from 0 to π [Fig. 5(b)]. In that case, the internal atomic state
does not reveal path information by itself. However, the path
information is stored in the phase of the quantum field and can
be extracted through an X quadrature measurement.
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FIG. 3. A three-level atom crosses the double-cavity with a
quantum (dotted red line) and a classical (solid blue line) field.
(a) Three-level atom. (b) Double-cavity.

In general, if the quadrature

Xθ = ae−iθ + a†eiθ

2
(15)

is measured with an eigenvalue χθ , the corresponding eigen-
state |χθ 〉 is an infinitely squeezed state given by [8,19]

|χθ 〉 = 1
4
√

2π
exp

[
−1

2
(a†eiθ − χθ )2 + 1

4
χ2

θ

]
|0〉 =

∑
n

bn|n〉,

(16)

where

bn = N√
n!

(
1

2
eiθ

)n/2

Hn(z), (17)

with N being a normalization constant. The function Hn(z)
corresponds to the Hermite polynomials with z = (αe−iθ +
α∗eiθ )/2.

Since we consider |g|2t/	 = π , an Xθ=0 = X quadrature
measurement with values χθ=0 = ±α determines the phase
of the field and then we can know whether the atom passed
through either the node or the antinode (considering φ = 0).
On other hand, if an Xθ=π/2 = Y quadrature measurement is

FIG. 4. If the internal atomic state in the top path is |b〉, there is
no phase shift in the quantum field for α = √

8 and ε = 0. Therefore,
no path information is recorded on the field. However, the internal
atomic states in the top and bottom paths can give information about
which slit the atom passed through. (a) Setup corresponding to the
case φ = π/2, in which the internal atomic state in the upper path
is |b〉. (b) Phase evolution after atom-field interaction for φ = π/2.
The initial phase remains unaffected. The blue plane shows the most
probable result (χθ=0 = +α) if an X quadrature measurement is
performed.

performed, and the most probable result is obtained (χθ=π/2 =
0), no path information is obtained and interference appears
on the screen, since from the most probable result no path
information is inferred (Fig. 6).

D. Particle-wave duality and concurrence

In a typical double-slit scheme we can configure several
cases in order to study the quantum duality between distin-
guishability (particlelike) and visibility (wavelike) [10]. Now,
if a correlation is established between some intrinsic property
of a particle and the possible paths, the wave-particle duality
can be modified depending on the degree of entanglement
in the system. Recently, the relation among distinguishabilily
(D0), visibility (V0), and concurrence (C0) has been experi-
mentally proven [18] and can be written as

D2
0 + V 2

0 + C2
0 = 1, (18)
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FIG. 5. If the internal atomic state in the top path is |c〉, it pro-
duces a phase shift of π in the quantum field, which reveals path
information. We consider α = √

8 and ε = 0. In this case the most
probable result for an X quadrature measurement is χθ=0 = −α.
(a) Setup corresponding to the case φ = 0. In this case the internal
atomic state in the upper path is |c〉 and the interaction with the
field is maximum. (b) Phase evolution after atom-field interaction
for φ = 0. The initial phase changes from 0 to π .

with

D0 = ||c↑|2 − |c↓|2|,
V0 = 2|c↑c↓γ |,
C0 = 2|c↑c↓|

√
1 − |γ |2

(19)

[3,11–13], where c↑ and c↓ are coefficients that define the
probabilities of the atom taking the top or bottom path, while
γ ≡ 〈�↑|�↓〉, where the normalized states |�↑,↓〉 correspond
to the intrinsic degrees of freedom of the particle, in our case
the internal atomic state.

Cases of special interest are shown on the surface of the
sphere in Fig. 7. The point C0 = 1, with coefficients c↑ =
c↓ = 1/

√
2 and γ = 0, represents a special scenario in which,

based on the definitions of D0 and V0, the visibility and dis-
tinguishability are equal to 0. So, what would we expect to
observe on the screen after the double-slit?

FIG. 6. A Y quadrature measurement does not reveal path in-
formation, because the most probable result is obtained regardless
of the quantum field state. (a) If the phase remains unaffected, the
most probable result for a Y quadrature measurement is χθ=π/2 = 0.
(b) If the phase changes from 0 to π , the result of a Y quadrature
measurement remains the same.

FIG. 7. Unit sphere D2
0 + V 2

0 + C2
0 = 1. The extreme cases V0 =

1, D0 = 1, and C0 = 1 and intermediate ones are shown on the
surface by red circles.
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In the next section we analyze different cases consider-
ing our scheme, in which the which-path information can be
stored in the phase shift of the quantum field, but also it can
be controlled through the coefficients c↑ and c↓, and we show
the different patterns that are obtained in each case shown
on the sphere. Finally, we show how the classic field can
change the initial visibility and which-path information as ε

increases from 0 to higher values and how the corresponding
patterns are modified.

III. NUMERICAL RESULTS

In the previous sections we explained how the atom can
modify the quantum field and how the path information can
be extracted by performing a quadrature measurement. The
localization of the atom results in loss of interference and the
total knowledge of the path information. In this section we
assume that once the atom leaves the cavity, it freely evolves
during a time t ′ (in units of 2m/h̄k′2) to state

ρatom(t ′) = Ûρatom(t )Û †

= e− iĤt ′
h̄ Trfield(|ψ (t )〉〈ψ (t )|)e iĤt ′

h̄ ,
(20)

where Ĥ= P̂2

2m is the free particle Hamiltonian and |ψ (t )〉
is given by (10). Thus, we can obtain the atomic distribu-
tion for a specific flight time t ′ and observe how the initial
distinguishability and visibility are tuned according to the am-
plitude of the quantum and classical fields. We consider that
the initial atomic distribution once the atom emerges from the
double-slit corresponds to two Gaussian profiles with standard
deviation σ = 0.05λCF/2π centered on the positions x = 0
and x = 0.25λCF, respectively. For each studied case, the
corresponding pattern on the screen is obtained considering
three different stages. First, we consider a typical double-slit
scheme where we can manipulate only the parameters c↑,
c↓, and γ to define V0, D0, and C0 as the initial visibility,
distinguishability, and concurrence in the absence of both
fields. Subsequently, we add the quantum field and obtain
the corresponding atomic distributions in each case. Finally,
we consider the double-slit with both classical and quantum
fields.

A. Stage 1: Atom passing through the double-slit (no fields)

This is the simpler stage. The distinguishability, visibility,
and concurrence depend only on the choice of the coefficients
of reflection c↑, transmission c↓, and γ . For instance, in the
case V0 = 1 the internal atomic state is |c〉 in both paths, thus
φ = 0 and γ = cos φ = 1, which ensures C0 = 0. Further-
more, the coefficients c↑ and c↓ are taken to be the same, so
D0 = 0. Therefore, this corresponds to a case of total interfer-
ence, which is shown by the green line in Fig. 8(a). The values
c↑ = 1, c↓ = 0, and 0 � γ � 1 correspond to another case,
D0 = 1, which does not show fringes of visibility [Fig. 8(c)].
Perhaps the most interesting case is C0 = 1 [Fig. 8(e)], in
which there is no distinguishability or visibility. In this case,
the pattern observed on the screen is similar to the typical
diffraction pattern in the case D0 = 1. The rest of the distri-
butions represent intermediate cases which can be obtained
considering the appropriate coefficients.

FIG. 8. Stage 1: Atomic probability distribution obtained for
each case shown on the sphere V 2

0 + D2
0 + C2

0 = 1 for t ′ = 3. The
distance x′ is expressed in units of λ = λCF. (a) V0 = 1, (b) V0 = D0,
(c) D0 = 1, (d) D0 = C0, (e) C0 = 1, (f) C0 = V0, and (g) V0 =
D0 = C0.

B. Stage 2: Atom passing through the double-slit with the
quantum field

Here we consider a quantum field with an amplitude α =√
8, located immediately after the double-slit (see Fig. 1). As

stated in Sec. II C, the quantum field can store path informa-
tion in the case where the atom crosses the antinode in the
internal state |c〉. Otherwise (state |b〉 in the upper path or state
|c〉 in the lower path), the phase of the quantum field remains
unaffected. Thus, we have three sources of path information:
(i) the choice of the coefficients c↑ and c↓, (ii) the possible
phase shift of the quantum field, and (iii) the internal atomic
state of the atom after the double-slit.

(i) As in stage 1, if c↑ = 1 and c↓ = 0, we immediately
get path information.

(ii) If we choose c↑ = c↓ and φ = 0 (γ = 1), the internal
atomic state in both paths is |c〉 and the path information is
recorded in the phase of the field and can be extracted by
measuring the X quadrature.

(iii) Finally, for c↑ = c↓ and φ = π/2 (γ = 0), the top
and bottom paths are correlated with the atomic states |b〉
and |c〉, respectively. In this case the field does not store path
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FIG. 9. Stage 2: Atomic probability distribution obtained for
each case shown on the sphere V 2

0 + D2
0 + C2

0 = 1 in the presence
of the quantum field for t ′ = 3 with α = √

8 (blue lines) and α = 1
(red lines). x′ is expressed in units of λ = λCF. The choice of the
parameters c↑,↓ and γ satisfies (a) V0 = 1, (b) V0 = D0, (c) D0 = 1,
(d) D0 = C0, (e) C0 = 1, (f) C0=V0, and (g) V0 = D0 = C0.

information. However, path information related to the atomic
states is stored and can be obtained by measuring the internal
atomic state once the atom leaves the cavity.

Therefore, in the presence of the quantum field we will
not observe fringes of interference in any of the cases on
the sphere [see blue lines in Figs. 9(a)–9(g)], because each
case corresponds either to one of the situations, (i), (ii), or
(iii), or to some intermediate state. In fact, (i), (ii), and (iii)
correspond to the cases in which the coefficients c↑,↓ and γ

satisfy D0 = 1, V0 = 1, and C0 = 1, respectively. Neverthe-
less, fringe visibility can be restored if the path information
is erased. In order to achieve this, the first option is reducing
the amplitude of the quantum field, so that the X quadrature
measurement becomes ambiguous and does not reveal path
information. In this way the interference is partially restored
[red lines in Figs. 9(a), 9(b), 9(f), and 9(g)]. In other cases,
like D0 = 1 [Fig. 9(c)], D0 = C0 [Fig. 9(d)], and C0 = 1
[Fig. 9(e)], interference cannot be restored.

A second option is performing a Y quadrature mea-
surement of the field. In this case the path information is
completely erased and interference is restored, since we as-
sume the outcome of our measurement to be the most probable

FIG. 10. Internal atomic state |b〉 in the top path: As the value
of ε increases, the phase of the quantum field begins to differentiate
from the initial phase. Thus, now an X quadrature measurement can
reveal path information.

result that corresponds to χθ=π/2 = 0. The green lines in
Figs. 8(a)–8(g) are the distributions we would expect to see
on the screen if a Y quadrature measurement is performed on
the quantum field. This is the same result that we would obtain
if the quantum field were not present.

C. Stage 3: Atom passing through the double-slit with the
quantum and classical fields

Finally, we consider the double-slit scheme with both
quantum and classic fields. When the classical light is present,
it affects the final phase of the quantum field after the inter-
action, because the terms whose phases depend on ε appear
in the evolution operator. As a consequence, interference and
path information are altered. As in the previous stage, the
phase shift produced by ε also depends on the internal atomic
state |c〉 or |b〉 present in the top path.

1. The top path and internal state |b〉
When ε = 0, we have already seen that the phase of the

quantum field does not change and thus we cannot obtain
which-path information. However, for different values of ε,
the phase of the quantum field moves away from its initial
value and then we are able to get distinguishability (Fig. 10).
Therefore, the higher the value of ε, the more path information
we get, at the expense of visibility.

2. The top path and internal state |c〉
In this case, starting from ε = 0, as we increase the classi-

cal field, the X quadrature measurement becomes ambiguous,
decreasing the which-path information and therefore increas-
ing the visibility (Fig. 11).

To show the effect of the classic field on the atomic distri-
butions, we analyze the same cases shown before, considering
ε = 3 and α = √

8. In Fig. 12 we can see how the visibility
fringes are restored (red lines). Thus, there is less available
path information with respect to stage 2 (blue lines). If we
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FIG. 11. Internal atomic state |c〉 in the top path: In this case, as ε

increases, the phase of the quantum field approaches its initial value.
So now the X quadrature measurement becomes ambiguous and the
path information decreases.

look again at the case V0 = 1 [Fig. 12(a)], we now see partial
interference because now there is a probability of measuring
a phase η = 0 and getting visibility or a phase η = π and
gaining path information. Cases like V0 = D0 [Fig. 12(b)],
C0 = V0 [Fig. 12(f)], and D0 = C0 = V0 [Fig. 12(g)] also show
how the interference can be restored. On the other hand, in the
cases D0 = 1 [Fig. 12(c)], D0 = C0 [Fig. 12(d)], and C0 = 1
[Fig. 12(e)] there is no interference, but these show that the
atomic distributions evolve more rapidly. This means that
the initial Gaussian profiles of the atomic distribution in the
positions x = 0 and x = 0.25λCF in t ′ = 0 interact with each
other earlier compared to the case ε = 0.

IV. CONCLUSION

The interaction between the three-level atom and both
fields in a double-cavity, added to a double-slit scheme, allows
us to study the relationship between wave-particle duality and
concurrence in a more general context. In order to satisfy
Eq. (18), and considering a Young double-slit scheme, the vis-
ibility, distinguishability, and concurrence can be controlled
by a correct choice of the parameters involved in the definition
of each of these quantities. However, the addition of both
fields to the scheme implies that the gain of path information
and fringe visibility also depends on the amplitude of the
classical (ε) and quantum (α) fields. This is because the atom-
field interaction can modify the initial phase of the quantum
field depending on the values of these amplitudes. The phase
shift represents path information, which can be extracted if an
adequate quadrature measurement is performed. Therefore, it
is possible to obtain path information even in the case in which
the choice of the parameters c↑, c↓, and γ satisfy V0 = 1
(D0 = C0 = 0).

In this report, we have shown how the contribution of the
classical radiation alters the path information stored in the
quantum field. When the atom passes by the bottom path,
the interaction is null and the initial phase remains unaffected.

FIG. 12. Stage 3: When ε = 3, the effects of the atomic states
|b〉 and |c〉 on the phase of the quantum field are similar [see
Fig. 10(b) and Fig. 11(b)]. Therefore, an X quadrature measurement
cannot reveal complete path information and the atomic distributions
show partial interference in some cases and faster evolution in others
(red lines). Blue lines correspond to the results obtained for ε = 0 in
stage 2. The cases (a) V0 = 1, (b) V0 = D0, (c) D0 = 1, (d) D0 = C0,
(e) C0 = 1, (f) C0 = V0, and (g) V0 = D0 = C0 represent the choice
of the parameters used in stage 1. The flight time is taken as t ′ = 3,
with x′ in units of λ = λCF.

For ε = 0, the maximum (minimum) path information is ob-
tained when the internal atomic state in the upper path is
|c〉 (|b〉), due to the fact that atom-field interaction produces
a π (0) phase shift. Therefore, in this case, an X quadra-
ture measurement can (cannot) distinguish unambiguously the
path followed by the atom. However, if the internal atomic
state in the upper path is |c〉, as ε increases, the resulting
phase shift makes the X quadrature measurement ambiguous,
reducing the path information. On the contrary, if we have
the internal atomic state |b〉 in the upper path, an X quadra-
ture measurement becomes less ambiguous, giving more path
information and less visibility. Therefore, we can consider ε

as a controlling parameter of the wave-particle duality. This
is because the classical amplitude determines the transition
probabilities between the internal states |b〉 and |c〉 during the
atom-field interaction. For higher values of ε these transitions
become more probable and thus the phases of the quantum
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field produced by the internal atomic states are exchanged, as
shown in Fig. 10 for a transition from |b〉 to |c〉 and in Fig. 11
for a transition from |c〉 to |b〉. In this sense, considering the
possible transitions between the internal states of the atom, we
can consider the classical radiation not only as a controlling
parameter of the wave-particle duality but also as a controller
of a single Raman diffraction process generated by both quan-
tum and classical fields. On the other hand, if we consider the
presence of both fields with a low amplitude ε, the transition
probabilities are reduced and the atom has a higher probability
of remaining in its initial internal state. In this case the process
can be described as a single Bragg diffraction process. Finally,
in the absence of the classical contribution, only the quantum
field controls the interaction and there is no Raman or Bragg
process.

In addition to this, and based on the different patterns ob-
served in each case, we also conclude that for ε different from
0, the atomic distributions evolve more rapidly compared to
the ε = 0 case. This means that a certain pattern observed on
the screen in the absence of the classical field can be equally
obtained but in less time if it is turned on. This is because
higher values of ε generate faster oscillations of the terms
present in the evolution operators described in expressions
(A1), (A2), (A3), and (A4). Therefore, the initial Gaussian
profiles of the atomic distribution which emerge from the
double-cavity interact with each other at earlier times. In this
sense, we can say that the classical field acts like a focusing
device of the patterns on the screen.

A curious observation is that the CV plane (Fig. 7) shows
that, starting from C0 = 1, we can recover the interference pat-
tern partially or completely by just varying the internal atomic
degrees of freedom, without resorting to the distinguishability
(D0 = 0).

Finally, an interesting case is C0 = 1, in which V0 and D0

vanish. Our scheme shows that neither visibility nor distin-
guishability can be restored once the maximum concurrence
has been established. Therefore, this proves the sturdiness of
this case against any quadrature measurement in any of the
three stages presented in the previous sections.
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APPENDIX: EFFECTS OF THE EVOLUTION OPERATOR
ON THE INITIAL STATE OF THE QUANTUM FIELD |α〉 IN

(10)

The elements Ubb (A1) and Ucb (A2) represent the evolution
of the system when the internal atomic state is |b〉. On the
other hand, the elements Ucc (A3) and Ubc (A4) describe the
evolution when the internal state is |c〉. If the atom crosses
the lower slit (c↓ = 1) and then the common node in x =
0.25λCF = 0.75λQF, no interaction occurs and the quantum
field remains the same [see (A5)]:

Ubb|α〉 =

⎡
⎢⎢⎣1 +

g2
2|ε|2

[
e−i	t/2

(
cos

√
g2

2|ε|2 + g2
1aa† + 	2/4t + i	

2
sin

√
g2

2|ε|2+g2
1aa†+	2/4t√

g2
2|ε|2+g2

1aa†+	2/4

) − 1
]

g2
2|ε|2 + g2

1aa†

⎤
⎥⎥⎦|α〉

=
∑

m

[
1 + cos2(k′x)|ε|2[ei(g2 cos2(k′x)|ε|2+g2 cos2(kx)(1+m))t/	 − 1

]
cos2(k′x)|ε|2 + cos2(kx)(1 + m)

]
e− |α|2

2
αm

√
m!

|m〉 ≡
∑

m

αb
m|m〉, (A1)

Ucb|α〉 =

⎡
⎢⎢⎣g1g2εa†

[
e−i	t/2

(
cos

√
g2

2|ε|2 + g2
1aa† + 	2/4t + i	

2
sin

√
g2

2|ε|2+g2
1aa†+	2/4t√

g2
2|ε|2+g2

1aa†+	2/4

) − 1
]

g2
2|ε|2 + g2

1aa†

⎤
⎥⎥⎦|α〉

=
∑

m

[
cos(kx) cos(k′x)ε

√
m + 1

[
ei[g2 cos2(k′x)|ε|2+g2 cos2(kx)(1+m)]t/	 − 1

]
cos2(k′x)|ε|2 + cos2(kx)(1 + m)

]
e− |α|2

2
αm

√
m!

|m + 1〉 ≡
∑

m

βb
m|m + 1〉, (A2)

Ucc|α〉 =

⎡
⎢⎢⎣1 +

g2
1a†a

[
e−i	t/2

(
cos

√
g2

2|ε|2 + g2
1a†a + 	2/4t + i	

2
sin

√
g2

2|ε|2+g2
1a†a+	2/4t√

g2
2|ε|2+g2

1a†a+	2/4

) − 1
]

g2
2|ε|2 + g2

1a†a

⎤
⎥⎥⎦|α〉

=
∑

m

[
1 + cos2(kx)m

[
ei(g2 cos2(k′x)|ε|2+g2 cos2(kx)m)t/	 − 1

]
cos2(k′x)|ε|2 + cos2(kx)m

]
e− |α|2

2
αm

√
m!

|m〉 ≡
∑

m

αc
m|m〉, (A3)
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Ubc|α〉 =

⎡
⎢⎢⎣g1g2ε

∗

[
e−i	t/2

(
cos

√
g2

2|ε|2 + g2
1aa† + 	2/4t + i	

2
sin

√
g2

2|ε|2+g2
1aa†+	2/4t√

g2
2|ε|2+g2

1aa†+	2/4

) − 1
]

g2
2|ε|2 + g2

1aa†
a

⎤
⎥⎥⎦|α〉

=
∑

m

[
cos(kx) cos(k′x)ε∗√m

[
ei[g2 cos2(k′x)|ε|2+g2 cos2(kx)m]t/	 − 1

]
cos2(k′x)|ε|2 + cos2(kx)m

]
e− |α|2

2
αm

√
m!

|m − 1〉 ≡
∑

m

βc
m|m − 1〉, (A4)

c↓|P↓〉 ⊗
[∑

m

βc
m|m − 1〉|b〉 +

∑
m

αc
m|m〉|c〉

]

=
∫

δ(x − λCF/4)dx

[∑
m

βc
m|m − 1〉|b〉 +

∑
m

αc
m|m〉|c〉

]

=
∑

m

[
cos

(3π

2

)
cos

(π

2

)
ε∗√m

[
ei[g2 cos2 ( π

2 )|ε|2+g2 cos2 ( 3π
2 )m]t/	 − 1

]
cos2

(
π
2

)|ε|2 + cos2
(

3π
2

)
m

]
e− |α|2

2
αm

√
m!

|m − 1〉

+
∑

m

[
1 + cos2

(
3π
2

)
m

[
ei(g2 cos2 ( π

2 )|ε|2+g2 cos2 ( 3π
2 )m)t/	 − 1

]
cos2

(
π
2

)|ε|2 + cos2
(

3π
2

)
m

]
e− |α|2

2
αm

√
m!

|m〉 =
∑

m

e− |α|2
2

αm

√
m!

|m〉 = |α〉. (A5)
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