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Postselection-free, hyperentangled photon pairs in a periodically
poled lithium-niobate ridge waveguide
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In this paper, we propose the generation of hyperentangled photon pairs using type-II spontaneous parametric
down-conversion in a biperiod, 5% MgO-doped lithium-niobate ridge waveguide. The photon pairs are entangled
in spatial mode and polarization degrees of freedom. A pulsed laser source at 687 nm, having an antisymmetric
Hermite-Gaussian HG (1,0) spatial mode, is considered as the pump. Down-converted photon pairs, with
the signal being at the telecommunication wavelength of 1550 nm, are characterized through a joint spectral
amplitude analysis of their biphoton state.
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I. INTRODUCTION

In the field of quantum technologies, quantum compu-
tation, quantum metrology, and quantum communication,
entangled photon pairs play an important role [1]. When
these photon pairs are entangled in more than one degree
of freedom (DOF), they are said to be hyperentangled. Such
hyperentangled photon pairs carry more information and are
less sensitive against decoherence. Hence, they have potential
applications in the field of quantum dense coding and quan-
tum key distribution [2,3] and are excellent as long-distance
information carriers [4]. In quantum communication, hyper-
entangled photon pairs can provide improved compatibility
and long-distance communication through waveguides (WGs)
and fibers.

Entangled photon pairs can be generated in a nonlin-
ear optical medium through spontaneous parametric down-
conversion (SPDC) which is the workhorse technique. SPDC
in bulk crystals [5,6] and WGs is widely used to produce
polarization-entangled photon pairs in either visible or tele-
com wavelengths [7–10]. In comparison to bulk crystals,
nonlinear WGs are found to be an efficient way to generate
such correlated photon pairs. Among many nonlinear optical
materials, lithium niobate (LN) has emerged as a widely used
medium, because of its transparency over a wide range of
frequencies (0.35–0.45 µm) and high nonlinear coefficient.
LN is also easily fabricated as waveguides. In comparison
to other traditional WG structures, a ridge WG can confine
light better and achieve higher conversion efficiency over a
large bandwidth of operation with better power handling ca-
pabilities [11]. In particular, compared to rectangular WGs,
they have low cutoff frequency, and low wave impedance
[12–14]. Precise control on states of hyperentangled photons
is very important for quantum communication. In this regard,
the joint spectral amplitude (JSA) plays an important role in
controlling the characteristics of the down-converted photons.
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The study of JSA deals with the structure and joint spectrum
of the photons that aid to analyze the type of quantum cor-
relation shared by the down-converted photon pairs [15]. In
this paper, we have theoretically analyzed a unique case for
postselection-free generation of photon pairs, hyperentangled
in spatial mode and polarization DOFs, through type-II SPDC
with an input, spatially antisymmetric pump beam incident
on a biperiod LN WG. The signal photons are generated in
the telecom wavelength. This study can be further extended to
other types of WGs for generation of hyperentangled photon
pairs in a wide spectral range.

II. STRUCTURAL DESIGN AND THEORETICAL
ANALYSIS OF PDC IN A WAVEGUIDE

The dimensions of the ridge WG are W = 6 μm, D =
2.8 μm, and h = 4.04 μm, as shown in Fig. 1. It is type-II
quasi-phase-matched with two different cascaded poling pe-
riods, �1 = 6.561 μm and �2 = 7.2004 μm, simultaneously
over a common length of L = 1 cm. Here the nonlinear optical
material [in yellow (light gray)] is a 5% MgO-doped LN and
the cladding is made of SiO2 [in blue (dark gray)]. The (red)
dotted portion in Fig. 1(b) shows the WG core region.

We have used the relevant Sellmeier equations [16,17] for
calculating the refractive indices of LN for different polariza-
tions and wavelengths of light. In Fig. 2, we show the variation
of the effective index as a function of wavelength for the
fundamental TE and TM modes.

Using time-dependent perturbation theory, the photon joint
state can be written as [18]

|ψ〉 = BA(p)
l

∫∫
dωsdωi

∑
ρτ ,Mτ

[
Aρτ ,Mτ

fρτ ,Mτ
(ωs, ωi )

× |ωs, ρs, Ms〉|ωi, ρi, Mi〉
]
, (1)

where τ = (p, s, i) corresponds to pump, signal, and idler;
ωs and ωi are the angular frequencies of signal and idler,
respectively. ρτ (≡Hτ ,Vτ ) denotes the horizontal and vertical
polarization indices, while, Mτ (≡l, m, n) denotes the spatial
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FIG. 1. (a) Schematic of the biperiod ridge waveguide having
SiO2 as cladding and 5% MgO-doped LN as core, achieved with
cascaded poling periods �1 = 6.561 μm and �2 = 7.2004 μm. (b)
Cross section of the waveguide. The waveguide dimensions are h =
4.04 μm, W = 6 μm, and D = 2.8 μm, with length as L = 1 cm. (c)
Cascaded poling profile (side view).

mode indices of the pump, signal, and idler, respectively. B
is an overall dimensionless constant [13]. A(p)

l is the overlap
integral of the input beam field distribution Epump

in (r), at a
frequency of ωp, with the normalized field profile of the WG
pump mode uρp, l (r), defined as

A(p)
l =

∫∫
dr u∗

ρp,l (r)Epump
in (r). (2)

Now, in Eq. (1), Aρτ , Mτ
represents the spatial overlap of the

three interacting modes (pump, signal, and idler), defined as

Aρτ ,Mτ
=

∫
A

druρp,l (r) u∗
ρs,m(r) u∗

ρi,n(r). (3)

In Eq. (1), fρτ , Mτ
represents the joint spectral amplitude

(JSA) of the two photons. The down-converted photon pairs

FIG. 2. Variation of the effective index of the waveguide with
free-space wavelength for the fundamental TE mode (continuous
curve), and TM mode (dashed curve).

in the SPDC process are correlated in frequency which can
be described by their JSA. It depends on the properties of
the incident pump beam and the nonlinear material used.
Mathematically, JSA can be represented as the product of
the pump envelope function (PEF) and the phase-matching
function (PMF), as

fρτ ,Mτ
(ωs, ωi ) = α(ωs + ωi ) φρτ ,Mτ

(ωs, ωi ), (4)

where α(ωs + ωi ) is the PEF, defined as

α(ωs + ωi ) = e−(
ωs+ωi−ωp

σp
)
2

. (5)

The PEF is considered to be a Gaussian function. Here σp

is the bandwidth of the pulsed pump source about ωp. The
PMF is defined as

φρτ ,Mτ
(ωs, ωi ) = sinc

[

βρτ ,Mτ

L
2

]
exp

(
i
βρτ ,Mτ

L
2

)
, (6)

where 
βρτ , Mτ
is the phase-matching condition in the WG

having an additional quasi-phase-matching vector βQPM to
compensate the mismatch. The phase-matching conditions
can be written as


βρτ ,Mτ
(ωs, ωi )

= βρp,l (ωs + ωi ) − βρs,m (ωs) − βρi,n (ωi ) − βQPM, (7)

where βρτ ,Mτ
= 2π

λτ
nρτ ,Mτ

, with nρτ ,Mτ
being the effective in-

dices of different modes in the WG, and βQPM = 2π
�

is the
quasi-phase-matching term corresponding to a poling period
of �. Hence, from Eqs. (5) and (6) one can control the
JSA by controlling the incident pump distribution and phase-
matching function. If frequency is used as the identifier, the
state in Eq. (1) can be represented as

|ψ〉 = BA(p)
l

∫∫
dωsdωi

∑
ρτ ,Mτ

[
Aρτ ,Mτ

fρτ ,Mτ
(ωs, ωi )

× |ρs, Ms〉ωs
|ρi, Mi〉ωi

]
. (8)

Similarly, mode number or polarization could also be used
as identifiers for which Eq. (8) has to be represented accord-
ingly.

III. GENERATION OF HYPERENTANGLED PHOTON
PAIRS USING HERMITE GAUSSIAN HG (1,0) PUMP

In this study, we have considered a spatially antisymmetric
Hermite-Gaussian HG (1,0) pump beam, for the generation of
entangled photon pairs, whose input field is defined as

Epump
in (r) = Hμ

(√
2x

a

)
Hν

(√
2y

b

)
exp

[
−

(
x2

a2
+ y2

b2

)]
,

(9)

where Hζ is a Hermite polynomial of order ζ = (μ, ν ). Here
(a, b) is the optimum (x, y) spot size of the pump beam. The
launching position of the HG (1,0) pump beam in the WG is
aligned in such a way that maximum energy gets coupled into
the (1,0) pump mode of the WG, that is, uρp,l . The overlap in-
tegral in Eq. (2) with a maximum value of 0.97 corresponds to
an optimized input beam with Gaussian X width (2a) = 5 μm
and Gaussian Y width (2b) = 2.5 μm. We have computed
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the signal and idler wavelengths and corresponding overlap
integrals (Aρτ ,Mτ

) for different SPDC mode conversions with
the (1,0) pump mode of the WG, using biperiod poling peri-
ods �1 = 6.5612 μm and �2 = 7.2004 μm, corresponding to
two different type-II phase-matching conditions, utilizing the
nonlinear coefficient d24 in LN. This can be achieved through
cascaded poling of the nonlinear medium [10,19], explained
below. Thus, with a pump beam of wavelength λp = 687 nm
and polarization ρp = Hp, for biperiod poling, Eqs. (3) and (7)
can be elaborated as(

Aρτ ,Mτ

)
�1

=
∫

A
dr uHp,l (r) uHs,m(r) uVi,n(r), (10a)

(
Aρτ ,Mτ

)
�2

=
∫

A
dr uHp,l (r) uVs,m(r) uHi,n(r), (10b)

and (

βρτ ,Mτ

)
�1

= βHp,l (ωs + ωi ) − βHs,m (ωs)

− βVi,n (ωi ) − 2π

�1
, (11a)

(

βρτ ,Mτ

)
�2

= βHp,l (ωs + ωi ) − βVs,m (ωs)

− βHi,n (ωi ) − 2π

�2
. (11b)

Cascaded poling for satisfying simultaneous QPM conditions

The spatial variation of the relevant nonlinear coefficient
along the direction of propagation provides the spatial fre-
quencies. It is possible to simultaneously satisfy both QPM
conditions if a periodic function with spatial frequency Kr

is phase or amplitude modulated by another frequency Ks

(<Kr) [10,19]. Then the modulated function would have spa-
tial frequency components at uKr + vKs with u = ±1,±2, . . .

and v = ±1,±2, . . .. The strength of the nonlinear interaction
depends on the amplitude of the Fourier coefficients and,
thus, only the lower-order terms are significant. Consider a
domain reversal nonlinear medium with a period of �r = 2π

Kr

modulated by another domain reversal with a period of �s =
2π
Ks

(>�r). Thus, the dependence of nonlinear coefficient d24

can be written as

d̄ = d24 g1(z) g2(z), (12)

where

g1(z) = +1, 0 < z <
�r

2
,

= −1,
�r

2
< z < �r,

with g1(z + �r ) = g1(z).
Similarly,

g2(z) = +1, 0 < z <
�s

2
,

= −1,
�s

2
< z < �s,

with g2(z + �s) = g2(z):

d̄ = 4d24

π2
(eiK1z − eiK2z + e−iK1z − eiK2z ). (13)

TABLE I. Computed values of the signal and idler wavelengths
along with corresponding Aρτ ,Mτ

values for different mode conver-
sions with poling periods: �1 = 6.561 μm [for processes (i) and
(ii)] and �2 = 7.2004 μm [for processes (iii) and (iv)], with λp =
687 nm.

EHp (lx, ly ) → EHs (mx, my )+EVi (nx, ny ) λs (nm) λi (nm) |Aρτ ,Mτ
|

(i) (1,0) → (0,0) + (1,0) 1550.0 1233.9 0.2082
(ii) (1,0) → (1,0) + (0,0) 1550.3 1233.7 0.2074
EHp (lx, ly ) → EVs (mx, my )+EHi (nx, ny ) λs (nm) λi (nm) |Aρτ ,Mτ

|
(iii) (1,0) → (0,0) + (1,0) 1550.0 1233.9 0.2091
(iv) (1,0) → (1,0) + (0,0) 1550.2 1233.8 0.2071

Assuming a square-wave variation with a 50% duty cycle,
a simple Fourier series expansion of the function of g1(z) and
g2(z) gives the frequencies K1 = Kr + Ks and K2 = Kr − Ks.
By choosing appropriate values of Kr and Ks, we can gen-
erate the required spatial frequencies to satisfy both QPM
processes simultaneously. We have calculated the values of
Kr = 0.915 and Ks = 0.042 considering the chosen values
of �1 = 6.561 μm and �2 = 7.2004 μm, for the two QPM
processes required in our case.

The parameters for these processes relevant to Eqs. (11a)
and (11b) are given in Table I, that shows the relevant and
most probable SPDC processes in the case of HG (1,0) in-
put pump beam incident on the LN WG having the above
two poling periods. Each poling period or phase-matching
corresponds to two nearly equiprobable processes, such as
processes (i) and (ii) that correspond to �1 = 6.561 μm.

In such a case, the phase-matching condition given by
Eq. (11a) is satisfied by both these processes, and in partic-
ular, we can define (
βρτ ,Mτ

)(i)
�1

for process (i) with values of
pump, signal, and idler mode numbers, (l, m, n) ≡ (1, 0, 1),
while (
βρτ ,Mτ

)(ii)
�1

for process (ii) with (l, m, n) ≡ (1, 1, 0).
Similarly, the phase-matching condition in Eq. (11b) is satis-
fied by both processes (iii) and (iv) that correspond to �2 =
7.2004 μm. Again, in particular, we can define (
βρτ ,Mτ

)(iii)
�2

and (
βρτ ,Mτ
)(iv)
�2

with (l, m, n) ≡ (1, 0, 1) and (1, 1, 0), re-
spectively.

In these definitions, superscripts (i)–(iv) correspond to the
respective processes in Table I. In all this, we have denoted
“0” as the symmetric mode (0, 0), and “1” as the antisymmet-
ric mode (1, 0) of the WG. Likewise, we can define A(i)

ρτ ,Mτ
,

A(ii)
ρτ ,Mτ

, A(iii)
ρτ ,Mτ

, and A(iv)
ρτ ,Mτ

as the overlap integrals of the pump,
signal, and idler mode triplets for these four processes specific
to the (l, m, n) values in each case. From Table I, another
interesting feature is noted as follows. With a horizontally
polarized, antisymmetric input HG (1,0) mode as the pump at
λp = 687 nm, the signal photons are generated around 1550
nm while the idler photons are generated around 1233.9 nm.
Hence these wavelengths (or frequencies ωs and ωi) could be
the identifiers as depicted in Eq. (8). As we see, they are emit-
ted in a combination of symmetric (0,0) and antisymmetric
(1,0) modes of the WG with alternating possibilities among
processes (i) and (ii) corresponding to �1 and, similarly, pro-
cesses (iii) and (iv) corresponding to �2. In addition, they are
also generated in a combination of horizontal and vertical po-
larizations with alternating possibilities among processes (i)
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FIG. 3. (a) Mode conversions to different orders of the signal and idler spatial modes in type-II PDC process: (a) (1,0)→ (0,0) + (1,0)
corresponding to process (i) in Table I, with �1 = 6.5612 μm, and (b) (1,0) → (0,0) + (1,0) corresponding to process (iii) in Table I, with
�2 = 7.2004 μm.

and (iii) and, likewise, among (ii) and (iv). Figure 3 shows two
of these PDC processes presented as (i) and (iii) in Table I with
�1 = 6.5612 μm and �2 = 7.2004 μm, respectively. Thus,
interestingly, such photon possesses correlations in multiple
DOFs such as polarization, mode, and frequency and, hence,
can be applied towards the study of hyperentangled photons.
To see this clearly, consider the following. The PDC processes
(i) and (ii) of Table I lead to a mode-entangled state as in
Eq. (14a). Likewise, processes (iii) and (iv) lead to the state
in Eq. (14b) [10]:

|ψ〉 =
∫∫

dωsdωi|Hs,Vi〉 ⊗ (C1|0s, 1i〉 + C2|1s, 0i〉), (14a)

|ψ〉 =
∫∫

dωsdωi|Vs, Hi〉 ⊗ (C3|0s, 1i〉 + C4|1s, 0i〉). (14b)

With R = 4d24EHp,1

√
ωsωi

π2 , we define C1, C2, C3, and C4 as the
probability amplitudes of the above four processes, respec-
tively, as

C1 = R
A(i)

ρτ ,Mτ

nHs,0nVi,1
e

−i(
βρτ ,Mτ )(i)
�1

L
2 sinc

[(

βρτ ,Mτ

)(i)

�1
L

2

]
, (15a)

C2 = R
A(ii)

ρτ ,Mτ

nHs,1nVi,0
e

−i(
βρτ ,Mτ )(ii)
�1

L
2 sinc

[(

βρτ ,Mτ

)(ii)

�1
L

2

]
, (15b)

C3 = R
A(iii)

ρτ ,Mτ

nVs,0nHi,1
e

−i(
βρτ ,Mτ )(iii)
�2

L
2 sinc

[(

βρτ ,Mτ

)(iii)

�2
L

2

]
, (15c)

C4 = R
A(iv)

ρτ ,Mτ

nVs,1nHi,0
e

−i(
βρτ ,Mτ )(iv)
�2

L
2 sinc

[(

βρτ ,Mτ

)(iv)

�2
L

2

]
. (15d)

The calculated signal bandwidths of the above four PDC
processes (of Table I) are shown in Fig. 4. Sequentially,
as shown in the legends, the processes are (i) Hp,1 →
Hs,0 + Vi,1 (red stars) with bandwidth ∼1.04 nm; (ii) Hp,1 →
Hs,1 + Vi,0 (black continuous) with bandwidth ∼1.17 nm;
(iii) Hp,1 → Vs,0 + Hi,1 (blue dotted) with bandwidth 0.79 nm;
(iv) Hp,1 → Vs,1 + Hi,0 (green triangles) with bandwidth
∼0.73 nm. We can predict a modal entanglement of the pho-
tons in an output collection bandwidth of 1549–1551 nm for
the signal and 1233–1234.5 nm for the idler (not shown).

FIG. 4. Calculated signal bandwidths for PDC process Hp →
Hs + Vi using �1 = 6.561 μm (red starred and black line) and PDC
process Hp → Vs + Hi using �2 = 7.2004 μm (blue dotted and
green triangles).
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FIG. 5. Variation of (a) the effective overlap integrals: A(i)
ρτ ,Mτ

/nHs,0nVi,1 and A(iii)
ρτ ,Mτ

/nVs,0nHi,1, and (b) von Neumann entropy, with the height
(h) of the waveguide, for a fixed width, W = 6 μm.

All signal-idler pairs from these four, nearly equiprobable
processes are generated together in the same WG. Note that
the signal photons (around 1550 nm) and the idler photons
(around 1233.9 nm) are modal entangled in the overlap region
of their respective bandwidth curves: between red starred and
black and between blue dotted and green triangle curves. Sim-
ilarly, they are polarization entangled in the overlap between
red starred and blue dotted and between black and green
triangle curves. The photons are in a mixed state beyond these
overlap regions. Within the common overlap bandwidth of all
these four curves, in the central region, the generated photon
pairs are in a hyperentangled state, both in polarization and
spatial mode DOF, as stated in Eq. (16) below. This entangled
state can be written by combining the states in Eqs. (14a) and
(14b), and it is

|ψ〉 =
∫∫

dωsdωi(C1|Hs0s,Vi1i〉 + C2|Hs1s,Vi0i〉)

+ (C3|Vs0s, Hi1i〉 + C4|Vs1s, Hi0i〉). (16)

Around perfect phase matching, C1 ≈ C2 and C3 ≈ C4, and
Eq. (16) can be simplified as

|ψ〉 =
∫∫

dωsdωi(C1|Hs,Vi〉 + C3|Vs, Hi〉)

⊗ (|0s, 1i〉 + |1s, 0i〉). (17)

From Eq. (17), one can say that the joint state is hyper-
entangled in spatial mode as well as polarization. In order to
achieve maximal entanglement in the above state, we can opti-
mize the WG dimensions. Figure 5(a) shows a variation of the
effective overlap integrals defined by Eqs. (10a) and (10b) as a
function of the height of the WG, for a fixed width W and etch-
ing depth D. The corresponding von Neumann entropy for the
state in Eq. (17) is calculated in Eq. (18) and plotted as a func-
tion of the height h of the WG, in Fig. 3(b). It is given as [10]

S = − |C1|2
|C1|2 + |C3|2

log2
|C1|2

|C1|2 + |C3|2

− |C3|2
|C1|2 + |C3|2

log2
|C3|2

|C1|2 + |C3|2
. (18)

As we can infer, for our WG structure, a von Neumann en-
tropy very close to unity, implying maximal entanglement, is
achievable. Overall, Figs. 5(a) and 5(b) show that maximally
entangled photon pairs, in the polarization as well as modal
DOF, are achievable over a wide range of WG heights.

IV. JOINT SPECTRAL AMPLITUDE (JSA) ANALYSIS

In order to further characterize the frequency correlation
properties of the photons, we also studied their joint spectral
amplitude (JSA) that provides information about the different
degrees of freedom of the photon pairs and their quantum
correlations. We studied the JSA using Eq. (4), which is a
product of PEF and PMF, expressed in Eqs. (5) and (6),
respectively. The square modulus of these functions gives the
corresponding intensities. Thus, in Fig. 6(a) we have plotted
the pump envelope intensity (PEI) for the HG (1,0) mode of
the WG whose width is directly proportional to the band-
width of the pump beam, taken as σp = 250 GHz, and it is
inclined at around 31° to the horizontal axis. As we know
[14], PEI signifies the conservation of energy in the SPDC
process. In Fig. 6(b), we have shown the phase-matching
intensities (PMIs) for the four PDC processes (as in Table I),
that arise from the conservation of momentum. The linewidth
of the PMIs is inversely proportional to the length of the WG
(L = 1 cm). The yellow (bright) lines in the PMIs indicate

βρτ ,Mτ

(ωs, ωi ) = 0. The slope of the PMI curves, in Fig. 6(b)
of these processes, is negative in each case, which indicates
that the generated photons in different modes are negatively
correlated in frequency. The slopes of the PMIs are different
for the four processes shown due to a difference in group ve-
locities at different frequencies. The PMIs are slightly curved
which becomes visible if we plot them for longer wavelength
ranges. This is due to dispersion in the WG, which is low in
our case. When the radius of curvature of the PMIs is low it
corresponds to a high dispersion, and vice versa. Note that an
interesting feature in Fig. 6(b) is that the four PMI curves cross
each other. This indicates that in the region of intersection,
the phase-matching conditions are simultaneously satisfied for
the four different PDC processes of Table I, in the same peri-
odically poled lithium-niobate ridge waveguide with biperiod
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FIG. 6. (a) PEI of the pulsed pump with spatial HG (1,0) mode with bandwidth σp = 250 GHz, (b) PMIs of all four PDC processes,
presented as (i)–(iv) of Table I, and (c) overlapped JSIs of these four processes.

poling at �1 = 6.561 μm and �2 = 7.2004 μm. Correspond-
ingly, the overlapping JSIs of these four processes are shown
in Fig 6(c). These JSI ellipses are negatively inclined again,
indicating that the generated photon pairs in each process
have a negative frequency correlation. Further, JSI analysis
predicts that photons are hyperentangled in polarization and
modal DOF approximately in an output collection bandwidth
of 1549–1551 nm for the signal and 1233–1234.5 nm for the
idler.

V. CONCLUSION

In conclusion, we have shown the possibility of generation
of postselection-free, hyperentangled photons in a customized
biperiod LN ridge WG incident with a spatially antisymmetric
HG (1,0) pulsed pump beam. The modal analysis of the SPDC
process was done by the finite element method (FEMSIM)
to predict the optimal input parameters and to calculate the
effective indices of the pump, signal, and idler modes for
the WG, given the core-cladding index differences for the
same. We find that with an antisymmetric HG (1,0) pump,
due to parity conservation, the signal and idler photons can
be generated in a combination of symmetric and antisymmet-
ric spatial modes along with negative frequency correlation.
Such photons possess correlations in multiple DOFs such as
polarization, spatial mode, and frequency. Biperiod poling
ensures that these photons are not only entangled in the spatial
mode but also in the polarization DOF and can be collected

in the output of the WG as hyperentangled photons without
any postselection requirement. Moreover, a calculation of von
Neumann entropy suggests that photons are entangled over a
fairly wide range of the WG height. The JSI analysis further
confirms the generation of these hyperentangled photon pairs.

Apart from entanglement, nondegenerate photons gener-
ated with a HG (1,0) pump beam mode can also be applied
as a source of heralded single photons. Based on the detection
of an idler photon generated in an antisymmetric mode of the
WG corresponding to a particular wavelength, the partner sig-
nal photon can act like a single photon emitted in a symmetric
mode, and in particular, in the fundamental (0,0) mode of the
WG for certain cases. This is a further scope of our work.

An important aspect of the current study, which involves
the JSA analysis, is that it describes the possibility of gen-
eration of hyperentangled photon pairs using a spatially
antisymmetric input pump beam in a biperiod ridge WG sce-
nario that has several advantages over other types of WGs.
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