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We develop a nonequilibrium field-theoretical approach based on a systematic diagrammatic expansion for
strongly interacting photons in optically dense atomic media. We consider the case where the characteristic
photon-propagation range LP is much larger than the interatomic spacing a and where the density of atomic
excitations is low enough to neglect saturation effects. In the highly polarizable medium, the photons experience
nonlinearities through the interactions they inherit from the atoms. If the atom-atom interaction range LE is also
large compared to a, we show that scattering processes with momentum transfer between photons are suppressed
by a factor a/LE . We are then able to perform a self-consistent resummation of a specific (Hartree-like) diagram
subclass and obtain quantitative results in the highly nonperturbative regime of large single-atom cooperativity.
Here we find important, collective phenomena emerging due to the dissipative nature of the interactions, which
even give rise to novel phase transitions. The robustness of these is investigated by inclusion of the leading
corrections in a/LE . We consider specific applications to photons propagating under EIT conditions along
waveguides near atomic arrays as well as within Rydberg ensembles.
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I. INTRODUCTION

The possibility to implement interactions between pho-
tons in the quantum regime has recently attracted a lot of
interest [1]. One reason is technological, as photon-photon
interactions are essential for quantum information processing
and would allow us to build quantum networks exploiting the
ability of photons to efficiently carry information over long
distances [2]. Interacting photons are also promising for the
creation of synthetic quantum matter, like superfluids [3], or
gapped [4–7] and even topological [8] phases.

From a more fundamental, many-body perspective, an
ensemble of strongly interacting photons shows crucial differ-
ences from any condensed-matter counterpart and is therefore
likely to show novel collective phenomena which have no
analog in conventional materials. The first such difference is
that the photon number is never conserved so repumping is
needed to compensate losses and reach a driven-dissipative
steady state, the latter thus generically being far away from
thermal equilibrium. Moreover, photons do not interact in vac-
uum and need a material to mediate their mutual interactions.
The electromagnetic (EM) modes hybridize with the material,
giving rise to polaritonic excitations. Here we concentrate on
materials made of uncharged but polarizable atoms, where
the polaritons (and therefore the photons) inherit their in-
teractions from the latter. This implies a second important
feature, namely, that the interaction between two photons is
a higher order process, requiring the intermediate excitation
of the atomic dipoles. Interactions between polaritons in such
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systems are also naturally long-ranged (as the relevant elec-
tromagnetic modes typically extend over many atoms) and
retarded (as the characteristic timescales of photons and atoms
can be respectively tuned to be comparable). Finally, interac-
tions inherited from atomic dipoles can be strongly dissipative
due to the spontaneous decay of excited atomic levels. This
feature in particular has been shown to be capable of introduc-
ing novel many-body phenomena, whereby correlations can
be induced by dissipation [9–13].

The implementation of strong interactions between pho-
tons in the quantum regime typically requires significant
single-photon nonlinearities induced by a large interaction
cross-section between a single photon and a single atom [1],
which poses an experimental challenge. It can be over-
come by light-confinement via evanescent waves or optical
resonators, and/or by providing the atoms with strong,
long-ranged interactions preventing multiple atoms to be
excited within a large radius, as done by using Rydberg
levels [11–13].

The theoretical description of such a strongly interact-
ing, driven-dissipative system of photons in the many-body
regime constitutes a challenging task as well. In particular,
the large interaction cross sections prevent a perturbative
treatment, the driven-dissipative nature does not allow us
to exploit fluctuation-dissipation relations and prevents, for
instance, the application of Monte Carlo methods, while
the long-range interactions additionally hinder an efficient
employment of tensor network methods, even in one spa-
tial dimension. A few theoretical approaches have been
developed for the few-body regime [14–18], while effec-
tive field theories have been applied in the many-body
regime [11,19–22].
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Here, we introduce a systematic, diagrammatic approach
for the computation of nonequilibrium correlators for a many-
body system of strongly interacting photons in an optically
dense medium. If the characteristic photon propagation range
LP in the medium is much larger than the spacing a be-
tween the atoms, we show that a controlled diagrammatic
expansion in powers of a/LP can be performed, even if the
collective light-matter coupling gP within the mode volume
of the photon is large. This perturbative expansion in a/LP

is always valid when the single-atom cooperativity Csa
P =

(g2
P/γ κ )(a/LP ) is much smaller than unity, where γ , κ are

the characteristic dissipation rates of excited atomic levels
and photons, respectively. The quantitative validity of our
approach can, however, even be extended to a regime of large
single-atom cooperativities Csa

P � 1, provided that the density
of atomic excitations is low enough to neglect saturation
effects. In such a situation, photons would not experience
any nonlinearity or interactions, unless the atoms experience
additional, mutual interactions which the photons can in-
herit. If interatomic interactions are present and if their range
LE/a � 1 is large, we show that the subclass of diagrams
describing scattering processes with momentum transfer be-
tween photons is suppressed by a factor ∼a/LE with respect to
the remaining Hartree-like diagrams. In this case, we are able
to perform a self-consistent resummation of the Hartree-like
diagram subclass and obtain quantitative results in a strongly
nonperturbative regime, which indeed shows important col-
lective behavior and even phase transitions (see also Ref. [23]
for a discussion focusing on a specific example).

From a quantum-field-theory perspective, this work con-
stitutes an attempt to develop a nonrelativistic version of
quantum electrodynamics where the matter degrees of free-
dom are dipoles instead of charged electrons, with two further
important differences: (i) the photons are driven and (par-
tially) confined in space and (ii) the light-matter coupling is
far away from the perturbative regime. We therefore believe
that our work establishes the critical framework that will
enable the application of diagrammatic techniques to a wide
variety of problems of interest within many-body quantum
optics.

In the following, we illustrate specific applications to
experiments involving interactions mediated through waveg-
uide photons, for example in photonic-crystal waveguides
(PCWs) [24,25], as well as Rydberg interactions [12,26–
30]. For concreteness, we consider atomic-level structures
allowing the photons to propagate under electromagnetically
induced-transparency (EIT) conditions [31,32].

The paper is structured as follows: In Sec. II, we introduce
the a/L-expansion in general terms, which is then formalized
in the language of nonequilibrium field theory and exempli-
fied using a minimal model of two-level atoms in Sec. III.
After briefly revisiting the phenomenon of EIT using our
diagrammatic approach (Sec. IV) and the general structure of
interactions between polaritons (Sec. V A), the implications
of strong interactions are discussed, first on the Hartree level
(Secs. V B and V C) and, finally, including all scattering ef-
fects to order a/LE in Sec. V D. In Sec. VI, we conclude with
a short comparison between the case of waveguide-mediated
interactions and the case of Rydberg interatomic interactions,

demonstrating the wide applicability of the presented ap-
proach.

II. A CONTROLLED EXPANSION FOR STRONG
LIGHT-MATTER INTERACTIONS

The basic idea underlying our diagrammatic approach can
be understood in quite general terms. Let us consider a system
of two completely different types of particles, which we will
for later convenience call photons and atoms. For now, we will
keep these particles as generic as possible and only fix their
mass: Photons are very light (or even massless) and therefore
propagate very fast and over long distances, whereas atoms
are considered as comparatively heavy, localized, and thus
slowly moving. Furthermore, neither atoms nor photons shall
interact among themselves, that is, atoms can only interact
via the exchange of photons and photons only via the non-
linear susceptibility of the atomic medium, which results in
a Yukawa-type coupling. The stark contrast between the two
free theories of atoms and photons allows for a controlled
expansion, even in the case of strong collective light-matter
interactions. This is due to the large effective mode volume
of the photon, suppressing the coupling rate between photons
and individual atoms, thereby providing a useful expansion
parameter.

To make this argument more concrete, let us for simplicity
consider the specific case of a quasi-1D continuum of photon
field modes (as defined by a physical waveguide, or a focused
beam). These modes have a group velocity c and couple at
a rate g to the collection of all atoms within an effective
mode volume L. We furthermore assume that the atoms are
confined to fixed positions in a one-dimensional chain with
characteristic spacing a. Moreover, photons are lost out of
the one-dimensional medium at a rate κ , and an excited atom
can independently decay into channels other than the 1D
continuum of interest at a rate γ . In this case, the photon
effective mode volume is given by the group velocity c times
the characteristic time 1/κ spent by the photon in the medium,
i.e., L = c/κ . Note that from the point of view of the atoms, L
corresponds to the effective interaction range. A pictorial rep-
resentation of this simple model is given in Fig. 1. In the first
process shown in the figure, a photon is exchanged between
an arbitrary pair of atoms. The importance of this process as a
modification to the noninteracting dynamics can be estimated
from collective cooperativity C = g2/(γ κ ), which compares
the rate of the coherent photon exchange with the compet-
ing single-particle dissipative processes. If this dimensionless
quantity becomes of order unity, the naive expansion in pow-
ers of g breaks down. In the second process, the photon is
emitted and absorbed by the same atom. Compared to the
first process, this one is thus less probable for any finite L.
Correspondingly, the figure of merit for this type of self-
interaction is the single atom cooperativity Csa = g2a/(cγ ),
which describes the branching ratio of single-atom emission
into the waveguide versus free space as determined by Fermi’s
golden rule. Compared to C in Csa = g2a/(γ κL), the col-
lective coupling rate g has been replaced by the single atom
coupling g/

√
L/a. We thus see that even at strong collective

coupling, when an expansion in the coupling constant g is
not applicable, an expansion in the inverse interaction range
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FIG. 1. Basic idea underlying our diagrammatic expansion.
Exchanges of excitations between atoms are preferred over self-
interactions of individual atoms. Red arrows indicate the propagation
of the photonic excitation emitted by the central atom into the
exponentially localized wave function illustrated in yellow. Decay
channels are shown as orange and gray arrows.

a/L (which at order a/L is equivalent to an expansion in the
single-atom cooperativity) can still be possible.

Clearly, this very basic argument can be extended to in-
clude all types of processes and interactions, provided the
atoms are well localized and slow compared to their exchange
particles. In every order of the expansion in the coupling
rate, those processes involving the maximal number of atoms
will be most important. In the following, we will elevate this
argument to a formal level, making it amenable to the use
of Feynman diagrams. We will then see that it is actually
possible to switch from an expansion in g to a self-consistent
description in powers of a/L. In other terms, strongly coupled
theories are accessible to a controlled field-theoretic treat-
ment, given that the interactions are sufficiently long-ranged.

Before we press on, however, a word of caution is in order,
as there are several scenarios where the simple arguments
presented here either break down or need to be refined. The
most important of these cases are closed systems. The reason
being that without the presence of dissipation, no meaningful
equivalent of the mode volume L can be defined. In fact,
the ostensible equivalent of a mean-free path is fallacious,
since at its end the photon isn’t lost, but merely scattered and
therefore still available for further interactions. Additionally,
fine tuning at critical points in open systems can also give rise
to vanishing losses, which can result in effectively increased
cooperativites. Finally, special care has to be taken when treat-
ing systems where conservation laws of the noninteracting
system are broken by interactions. Since the noninteracting
degrees of freedom have no loss rates, the expansion has to
be extended to include at least the lowest order at which those
arise.

III. DIAGRAMMATIC APPROACH TO NONEQUILIBRIUM
GREEN’S FUNCTIONS

Building on the newly gained understanding that a physical
system is suitable for a 1/L expansion as long as it exclusively
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Ω
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|e
ωP

Ω
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(b)

κγeg

FIG. 2. Schematic illustration of the system of atoms coupled
to the field of a waveguide, which will be used to demonstrate
the formalism and the expansion in the inverse interaction range.
Probe-photons with characteristic propagation range indicated by the
yellow-shaded area interact with atoms and are dissipated at a rate κ .
Insets show the atomic level structure. (a) Two-level atoms consid-
ered in Sec. III: the g − e transition is driven by an external laser
� and also couples to the probe photons ωP. The excited state |e〉〉
decays spontaneously by emitting a photon outside the waveguide
with a rate γeg and is also subject to dephasing with a rate γedeph

(not shown). (b) Three-level atoms implementing the EIT considered
in Sec. IV: the external laser � couples |e〉 to a third metastable
state |s〉.

couples degrees of freedom that are well localized in posi-
tion space to others that are tightly confined in the conjugate
momentum space, we will now be more concrete and apply
this approach to photons in optical waveguides coupled to an
array of two-level atoms. This will allow us to give a pedagog-
ical introduction to the concepts and techniques required to
treat more complex systems. Furthermore, the configuration
considered here can be directly extended to scenarios where
large cooperativities are experimentally accessible. Such se-
tups include, for instance, atoms trapped within the evanescent
wave of PCWs [24,25] or tapered-nanofiber waveguides
(TNWs) [33–36]. A quantitative description of these setups
will be provided in Sec. V. The concepts introduced in this
section are, however, far more general and can be applied in
similar ways to any system of interacting polaritons. We will
demonstrate this on the example of a gas of Rydberg atoms in
Sec. VI.

A. Minimal model: A chain of two-level atoms

We consider a system of atoms fixed in a periodic one-
dimensional arrangement and coupled to the propagating
photon mode of a waveguide with dispersion ωP

k as shown
in Fig. 2. The ground state of each atom will be denoted by
|g〉 and the excited, unstable state with energy ωe by |e〉. To
compensate the inevitable emission of photons (parametrized
by the decay rate κ), the atomic transition is driven by a laser
with energy ωL and Rabi amplitude �. Since we also allow
for dephasing and decay of the excited atomic state, the full
dynamics of the system is described by

dρ

dt
= − i

h̄
[Ĥ , ρ] + Lγegρ + Lγdeph + Lκρ (1)
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with Hamiltonian

Ĥ = h̄

[∑
z

{
ωeσee(z) + (�e−iωLtσeg + H.c.)

+
∫ π

−π

dk

2π

(
ωP

k b̂P(k)†b̂P(k)

+ g(b̂P(k)eikzuk (z)σeg + H.c.)
)}]

(2)

and Lindblad operators

Lγegρ = −h̄
∑

z

γeg

2
({σee, ρ} − 2σgeρσeg), (3a)

Lγdephρ = −h̄
∑

z

γedeph

2
({σee, ρ} − 2σeeρσee), (3b)

Lκρ = −h̄
∫

k

κ

2
({b̂P(k)†b̂P(k), ρ} − 2b̂P(k)ρb̂P(k)†), (3c)

which account only for independent emission from each atom,
neglecting collective effects [37]. Here uk (z) represents the
periodic part of the photonic Bloch function with quasimo-
mentum k. We make use of the standard convention for the
thermodynamic limit in a crystal with lattice constant a = 1,
namely,

∑
z eikz = 2πδ(k) and introduce the notation

∫
k =

L
∫

dk
2π

. Note that the rotating wave approximation employed
in the derivation of the Hamiltonian Eq. (2) is highly justified
throughout this paper. The extremely small shift of the atomic
resonance frequency resulting from counter-rotating terms
∼1 MHz has been determined by realistic numerical calcula-
tions [38] and can be absorbed into the transition frequency
ωe ∼ 400 THz. Furthermore, all inverse lifetimes resulting
from photon emission and interactions alike will remain small
compared to the transition frequency.

Our diagrammatic approach will be formulated within a
nonequilibrium functional-integral formalism. However, since
for each atom the Hilbert space is finite, more precisely the
occupation of both states sums up to one, the representation
of atomic operators in a form that is convenient for the func-
tional integral formulation has to be given some thought. Here
we will restrict ourselves to the limit of a small density of
excited atoms, where the saturation effects associated with
the finiteness of the local Hilbert space of the medium can
be neglected. As a result, the Schwinger-boson representa-
tion without explicit restriction of the boson number of each
atomic transition will suffice. Moreover, a distinction between
decay and dephasing will no longer be necessary, the leading
effect of both processes being the linewidth γe = γedeph + γeg

acquired by state |e〉 [32]. In particular, we will use the ap-
proximate expression

σμν = â†
μâν, (4)

where {μ, ν} ∈ {g, e} and â and â† are bosonic annihilation
and creation operators, respectively. Clearly, this approxima-
tion allows for an unrestricted occupation of any state of
any atom—a shortcoming which will later be mitigated by
the application of nonlinear Feynman rules. Since treating

spins within a functional integral formulation is considerably
more complicated than bosons [39,40], this transformation is
crucial for the tractability of the calculations that lie ahead.
Within this linear regime, the Hamiltonian part of the system
is given by

Ĥ = h̄

[∑
z

{
ωeâ†

e (z)âe(z) +
∫ π

−π

dk

2π

(
ωP

k b̂P(k)†b̂P(k)

+ g(b̂P(k)eikzuk (z)â†
e (z)âg(z) + H.c.)

)}]
, (5)

while the atomic losses are treated in a simplified manner that
reproduces the correct linewidth:

Lγeρ = −h̄
∑

z

γe

2
({â†

e (z)âe(z), ρ} − 2âe(z)ρâ†
e (z)). (6)

The fact that the linearized description of decay of excited
atoms violates atom number conservation is an unphysical
feature of this approximation. Since a more rigorous modeling
of spontaneous decay, e.g., via the Lindblad operator âeâ†

g, is
diagrammatically equivalent to a two-body interaction, which
significantly complicates a systematic treatment, we compen-
sate these spurious atom losses by fixing the density of atoms
in the ground state. As we will see later, as long as saturation
effects are negligible, this description of the incoherent dy-
namics of the atoms in combination with a specific selection
rule for the Feynman diagrams becomes exact (see Sec. IV A).

B. Keldysh formulation

To recast our nonequilibrium problem into a functional-
integral form, we choose the real-time Keldysh contour (cf.
Ref. [41] and specifically for driven-dissipative systems [42]).
This contour is directly obtained by writing the expectation
value of an operator Ô at a time t by time evolving the system
from the distant past:

〈Ô〉(t ) = Tr(Û−∞,tÔÛt,−∞ρ̂(−∞))

Tr(ρ̂(−∞))
. (7)

Here Tr(·) is the trace, Ût,t ′ is the time evolution operator from
time t ′ to t , and ρ̂(−∞) is the density matrix of the system in
the distant past.

Our goal is to compute the single-particle Green’s
functions or propagators. Due to our system being driven-
dissipative, we cannot assume thermal equilibrium, i.e.,
detailed balance, such that there are in principle two indepen-
dent propagators, the retarded

i
[
GR

a

]
i j

(x, x′) = θ (t − t ′)〈[âi(x), â†
j (x

′)]〉, (8)

and the Keldysh Green’s function

i
[
GK

a

]
i j

(x, x′) = 〈{âi(x), â†
j (x

′)}〉, (9)

with i, j ∈ {g, e} labeling the atomic states and x = (t, z) be-
ing the space-time coordinate. The same construction and, in
fact, all the following steps also apply to the definition of the
photonic equivalents GR

ph(x, x′) and GK
ph(x, x′). We therefore
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focus on the atomic sector and treat the time evolution of these
expectation values by means of the coherent-state functional
integral. In doing so, one inserts resolutions of unity in terms
of coherent states spaced in infinitesimal time steps along
the time evolution [43]. Evaluation of the resulting matrix
elements then replaces the operators â j (x) and â j (x)† by the
field a j (x) and its complex conjugate ā j (x). However, accord-
ing to (7), one has to evolve the system both forward and
backward in time, which requires us to split each field into
a part on the forward branch (denoted with a superscript +)
and one on the backward branch (labeled a −), whereby the
Green’s functions are now given by

i
[
GR

a

]
i j (x, x′) = θ (t − t ′)(〈a−

i (x)ā+
j (x′)〉 − 〈a+

i (x)ā−
j (x′)〉),

(10a)

i
[
GK

a

]
i j (x, x′) = 〈a−

i (x)ā+
j (x′)〉 + 〈a+

i (x)ā−
j (x′)〉. (10b)

Once one performs the so-called Keldysh rotation to quantum
and classical fields

aq
j (x) = 1√

2
(a+

j (x) − a−
j (x)), (11a)

acl
j (x) = 1√

2
(a+

j (x) + a−
j (x)), (11b)

of which the former have identically vanishing correlations:
〈aq

i (x)āq
j (x

′)〉 ≡ 0, the retarded and Keldysh Green’s functions
take the much simpler forms

iGR
i j (x, x′) ≡ i

[
GR

a

]
i j (x, x′) = 〈acl

i (x)āq
j (x

′)
〉
, (12a)

iGK
i j (x, x′) ≡ i

[
GK

a

]
i j (x, x′) = 〈acl

i (x)ācl
j (x′)

〉
. (12b)

Since, additionally, the advanced Green’s function
GA(x, x′) = 〈aq

i (x)ācl
j (x′)〉 satisfies GA

i j (x, x′) = [GR
i j]

∗(x′, x),
where (·)∗ denotes the complex conjugation, no further
independent propagators exist. For the noninteracting atoms
coupled to the coherent laser fields, the inverse retarded
Green’s function reads[

G̃R
a,0

]−1
(ω,ω′)

=
((

ω − ωe + i γe

2

)
δ(ω − ω′) −�δ(ω − ω′ + ωL )

−�δ(ω − ω′ − ωL )
(
ω + i ε

2

)
δ(ω − ω′)

)
,

(13)

where we used the basis

a(q,cl)(ω, z) =
(

ae(ω, z)
ag(ω, z)

)(q,cl)

. (14)

Note that we use a lower index 0 to indicate bare Green’s
functions, i.e., those without self-energy corrections induced
by interactions (see below). As it turns out, the explicit time
dependence of Ĥ caused by the external laser field breaks time
translation invariance in the retarded Green’s function. One
can, however, overcome this obstacle by transforming into a
rotating frame, where the state |e〉 rotates at the frequency of
the laser ωL. Within this frame, the atomic Green’s function
is once again time translation invariant, that is, G−1

a,0(ω,ω′) =

G−1
a,0(ω)δ(ω − ω′) with

[
GR

a,0

]−1
(ω) =

(
ω − e + i γe

2 −�

−� ω + i ε
2

)
, (15)

and the fields shifted accordingly in frequency:

a(q,cl)(ω, z) =
(

ae(ω + ωL, z)
ag(ω, z)

)(q,cl)

. (16)

Here the detuning e = ωe − ωL between the laser fre-
quency and atomic transition has been introduced. To avoid
confusion, throughout the remainder of this paper we will
exclusively work in the rotating frame. The corresponding
Keldysh component of the inverse Green’s function within the
same frame of reference is then given by

DK
a,0(ω) =

(
iγe 0
0 (3 − 2nV )iε

)
. (17)

It should be pointed out that the factor 3 − 2nV in the ground-
state sector accounts for the occupation of this mode with a
homogeneous number density of lattice defects or vacancies
nV ∈ [0, 1]. Thus for nV = 0 the ground state is homoge-
neously occupied with one atom per site, as can be seen from
ng = −1/2 + i

∫
dω
4π

GK
gg,0 = 1 − nV = 1.

Applying the same rotation to the inverse photon Green’s
function, the simple expressions[

GR
ph,0

]−1
(ω, k) = ω − (k) + i

κ

2
, (18a)

DK
ph,0(ω, k) = iκ, (18b)

with the detuning (k) = ω(k) − ωL are obtained.
Making use of the above notation, the noninteracting part

of the action S = S0 + Sint can be fully expressed in terms
of the bare atomic (subscript a) and photonic (subscript ph)
Green’s functions as

S0 = h̄
∫

dω

2π

(∑
z

a∗(ω, z)G−1
a,0(ω)a(ω, z) (19a)

+
∫

dk

2π
b∗

P(ω, k)G−1
ph,0(ω, k)bP(ω, k)

)
. (19b)

Here a = {acl, aq} and bP = {bcl
P , bq

P} are the vectors of clas-
sical and quantum fields with the corresponding inverse
Keldysh matrix Green’s functions given by

G−1
μ,0 =

(
0

[
GA

μ,0

]−1[
GR

μ,0

]−1
DK

μ,0

)
, (20)

with μ ∈ {a, ph}.
Finally, the interaction part of the action reads

Sint =
∫

dω

2π

∫
dk

2π

∑
z

(
1√
2

geikzuk (z)
[
bq

P(k)
(
āq

e (z)aq
g(z)

+ ācl
e (z)acl

g (z)
)+ bcl

P (k)
(
ācl

e (z)aq
g(z)

+ āq
e (z)acl

g (z)
)]+ c.c.

)
. (21)

As the atoms are fixed at positions commensurate with the
Bloch wave, we can use the periodicity of the dimensionless
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Bloch function uk (z) to replace it by uk (0). In general, careful
engineering of the waveguides allows some control over the
momentum dependence of uk (0) [24,38]. Here, we choose the
simplest approximation of a constant, which we then absorb
into the coupling via the replacement g|uk (0)| → g.

As in equilibrium theory, one can apply Wick’s theorem to
find the dressed Green’s functions,

Gαβ
a (x, x′) = 〈aα (x) ∗ āβ (x′)〉S, (22a)

Gαβ

ph (x, x′) = 〈bα
P(x)b̄β

P(x′)
〉
S, (22b)

with ∗ the outer product and α, β = cl, q. Here, as opposed
to the bare propagators, the expectation value is taken with
respect to the full action S. Expanding the exponent eiSint under
the functional integral, one obtains the infinite Dyson series

G = Gμ,0 + Gμ,0 ◦ �μ ◦ Gμ,0

+Gμ,0 ◦ �μ ◦ Gμ,0 ◦ �μ ◦ Gμ,0 + · · · , (23)

where ◦ denotes the convolution in space and time with a si-
multaneous matrix product in the Keldysh index {cl, q} as well
as the field components g, e of the atomic propagator (μ = a).
Summation of this geometric series for the retarded Green’s
function gives the same result as in equilibrium theory:

GR
μ = (GR

μ,0 − �R
μ

)−1
. (24)

For the Keldysh component, on the other hand, one finds

GK
μ = GR

μ ◦ (�K
μ − DK

μ,0

) ◦ GA
μ, (25)

which is conveniently parametrized in terms of the Hermitian
distribution function Fμ, defined via

GK
μ = GR

μ ◦ Fμ − Fμ ◦ GA
μ. (26)

As the self-energies �R,K
μ in general depend on Keldysh and

retarded components, the two Dyson equations are coupled
and have to be solved simultaneously. Similar to equilibrium
theory, self-energies are generically a sum of convolutions of
a number of Green’s functions. However, due to the many
terms in the interaction part of the action, it is easy to over-
or undercount certain combinations. In this respect, Feyn-
man diagrams and the corresponding Feynman rules turn out
to be very helpful. These we will summarize in the next
section.

C. Representation via Feynman diagrams

Feynman diagrams mimic the propagation of excitations
in an intuitive way: Lines connecting two space-time points x
and x′ correspond to Green’s functions, with an arrow pointing
in the direction of propagation. To distinguish between mobile
and immobile particles, we draw atoms with straight and
photons with wavy lines (see Fig. 3). As opposed to equi-
librium theory, each propagator has an additional causality
index (R, A, K ) arising from the Keldysh structure. In Feyn-
man diagrams, it is customary to account for this by drawing
quantum fields as dashed lines (i.e., a retarded propagator
starts as a dashed line that turns into a full line, while the
opposite is the case for an advanced Green’s function). An
interaction vertex is drawn as a dot and connects one photon
propagator with an incoming and outgoing atom propagator.

FIG. 3. Translation table for Feynman diagram. To avoid clut-
tering, the Keldysh structure will never be shown explicitly and
contractions over the corresponding indices at each vertex are instead
implied according to Eq. (21).

Due to causality, coherent interactions require that the number
of quantum fields joined at each vertex must be odd [see also
Eq. (21)].

Apart from this additional structure, the derivation of Feyn-
man rules proceeds completely analogously to equilibrium
theory [41]. We therefore only state the resulting Feynman
rules. Self-energies at order gn are obtained according to the
following recipe:

(1) Using straight lines for atoms and wavy lines for pho-
tons, draw all topologically distinct, fully connected diagrams
with n vertices and the same external legs as the bare inverse
propagator which is going to be corrected by the self-energy
we want to compute.

(2) Allowing for each propagator to take any causality
index (R, A, K ), keep only those diagrams where each vertex
connects to an odd number of dashed lines and where either an
incoming photon excites a ground state or an atom decaying
from the excited state emits a photon.

(3) Following the translation table in Fig. 3, associate each
line with a factor iGR/A/K

μ (ω, k) and each vertex with −ig/
√

2.
(4) Conserve energy at each vertex by equating the sums

of incoming and outgoing frequencies.
(5) Integrate over all internal momenta and frequencies

with
∫

dk
2π

∫
dω
2π

.
(6) Multiply each diagram with i.
Note that, since we explicitly distinguish between the

different atomic states, all symmetry factors are equal to
one. Also, due to causality, the integral in the second-
to-last step will always evaluate to zero for all diagrams
that involve loops with counterpropagating retarded or ad-
vanced Green’s functions as well as those with a retarded
Green’s function copropagating with an advanced Green’s
function.

Despite this simplification, the Keldysh structure neverthe-
less gives rise to a large number of topologically equivalent
diagrams that differ only in the causality indices. However,
as we explain in Appendix A, many of these can be ex-
pressed through one another by the use of Kramers-Kronig
relations. Given the large amount of cancellations, we will in
the following suppress the Keldysh structure in all drawings
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FIG. 4. Lowest order self-energy corrections to the atomic prop-
agator in a simultaneous expansion in � and g. Both terms are
of order g2, however, the Hartree diagram in �eg couples to the
polarization of all atoms within the volume L around the atom under
consideration. The Fock diagram in �ee, on the other hand, describes
a Lamb shift requiring the photon to be emitted and absorbed by the
same atom.

of Feynman diagrams, implicitly assuming the sum over all
allowed causality indices.

As is apparent from Fig. 3, we have two kinds of processes
coupling different atoms: interactions with dynamical photons
and coupling to the external field described as a source term.
These lead, in principle, to two separate expansions in the
corresponding coupling constants g and �. However, since
the laser � itself is not treated as a quantum field, it acts as a
quadratic term in the action. Consequently, the infinite series
of diagrams at all orders in � is readily accounted for in the
matrix Green’s function Eq. (15). However, a clearer physical
picture often emerges if the lowest order is drawn explicitly.
Each interaction with the Rabi laser is associated with a factor
−i� and transfers between the two eigenstates of the isolated
atom. In the rotating frame, this process conserves the energy
of the atom.

Instead of explicitly writing all diagrams in terms of
bare propagators, it is convenient to introduce the concept
of bold lines, which indicate Green’s functions with self-
energy corrections that have to be specified in a separate
equation.

D. Expansion in the inverse propagation range

The formalism is now ready to quantify the statements
made in the Introduction. To do so, we will consider a si-
multaneous expansion in � and g and treat the two lowest
order self-energy corrections to the retarded atomic propa-
gator, which are shown in Fig. 4. There, as will be the case
throughout the remainder of this paper, the Keldysh struc-
ture will not be made explicit. Note that using bare Green’s
functions, one has �R

gg(ω) = 0, which can be traced back to
a more general symmetry of vacuum Green’s functions (see
Appendix A). Both diagrams in Fig. 4 are of second order in
the coupling constant, however, the Hartree diagram �R

eg in
Fig. 4(a) involves two atoms instead of just one, as is the case
for the Fock diagram �R

ee in Fig. 4(b). Based on the arguments
in the Introduction, we expect to find �R

eg ∼ C and �R
gg ∼ Csa.

Using bare propagators, the Feynman diagrams can be directly

evaluated and for the Hartree self-energy one finds

�R
eg(ω) = i

g2�

2
GA

ph(ω = 0, k = 0)

×
∫

dω

2π

[
GK

gg(ω)GA
ee(ω) + GR

gg(ω)GK
ee(ω)

]

= �g2(1 − nV )

(e − iγe/2)((0) − iκ/2)
. (27)

This becomes significant when the intensity of the field
rescattered by other atoms ∼�R

eg becomes comparable to the
external drive given by the bare inverse propagator [GR

eg]−1 =
−�. This is the case if the collective coupling strength g sat-
isfies |g2(1 − nV )/(e + iγe/2)((0) + iκ/2))| � 1. In the
case of small detunings e � γe, (0) � κ and without de-
fects (nV = 0), this indeed simplifies to C � 1. For the Fock
diagram, we have to fix the photon dispersion and choose
(k) = 0 − J cos(k), as it allows us to consider the two
relevant cases of ballistic photons obtained for |0 ± J| �
κ and diffusive behavior in case of |0 ± J| � κ . Employ-
ing the Feynman rules introduced in the last section, one
finds

�R
ee(ω)= i

g2

2

∫
dω′

2π

∫
dk

2π

× (GR
gg(ω− ω′)GK

ph(ω′, k)+GK
ee(ω − ω′)GA

ph(ω′, k)
)

= g2(2 − nV )√
ω − 0 − J + iκ/2

√
ω − 0 + J + iκ/2

, (28)

which for a large bandwidth J becomes

�R
ee(ω) ≈

⎧⎨
⎩

−i g2(2−nV )√
J2−2

0

ballistic photons

(1 − i) g2(2−nV )√
2Jκ

diffusive photons.
(29)

These have to be compared with the bare loss rate γe. Since in
the first case one can identify

√
J2 − 2

0 with the group veloc-

ity of the photons on resonance, one has L = 2
√

J2 − 2
0/κ .

In the second case, the photon localizes on a length scale
L =

√
J/κ . Hence, in both cases, one recovers the initial

claim that the self-interaction becomes relevant only if Csa =
g2/(κγeL) � 1.

While the toy model considered here suffices to explain
the basic formalism and illustrate the expansion in the inverse
propagation range, it is also plagued by large photon losses
caused by excited state emission. In a two-level system, these
can only be avoided via a large detuning, which then severely
limits the maximal attainable interactions. In the following,
we will therefore increase the complexity of the internal level
structure of each atom, while maintaining the same basic
setup.

033720-7



LANG, CHANG, AND PIAZZA PHYSICAL REVIEW A 102, 033720 (2020)

IV. APPLICATION: ELECTROMAGNETICALLY
INDUCED TRANSPARENCY

While near-resonant interactions between photons and
two-level atoms result in strong dissipation, the interaction
can be made largely coherent by introducing an additional
metastable atomic state |s〉, which is coupled to |e〉 by an
auxiliary laser field with frequency ω

(1)
L and Rabi ampli-

tude � [see Fig. 2(b)]. Three-level systems of this type
have been investigated extensively [32,44]. Since photons can
be converted into atomic excitations, the EM modes of the
waveguide hybridize with the two atomic transitions and give
rise to three polariton branches. If the condition ωP

k = ωs +
ω

(1)
L is satisfied, one of these linear combinations of photons

and atoms contains no contribution from the excited state,
instead forming a lossless “dark-state polariton” involving
the waveguide photon, and atomic states |g〉 and |s〉. Con-
sequently, the EM field on the e − s transition has rendered
the probe photons robust against decay and dephasing of state
|e〉. The mechanism for lossless propagation is therefore EIT.
At its heart lies a destructive quantum interference between
the direct excitation pathway from |g〉 to |e〉 and an indirect
process via |s〉 [45].

In the following, we will demonstrate how the expansion in
1/L can be used to reproduce the hallmark results of EIT. In
doing so, we can check the validity of our approximations and
lay the foundation for the subsequent discussion on interacting
polaritons.

We note that the formation of the EIT state may take a
long time [46,47] or require careful engineering of the laser
drive [44]. The dynamics of the lossy transient state poses
interesting questions [48], even more so in the presence of
long-range interactions where they remain accessible to the
formalism presented here. For now, however, we will focus
on the steady state and defer all discussions on the dynamics
to future research.

Following the changes with respect to the system described
in Sec. III A, the Hamiltonian is now given by

ĤEIT = h̄

[∑
z

{
ωeâ†

e (z)âe(z) + ωsâ
†
s (z)âs(z)

+ (�e−iω(1)
L t â†

e (z)âs(z) + H.c.
)

+ 1

L

∫
k

(
ωP

k b̂†
P(k)b̂P(k)

+ gP
(
eikzuP

k (z)b̂P(k)â†
e (z)âg(z) + H.c.

))}]
, (30)

while the decay rates remain the same. Note that, for later
convenience, we have renamed g to gP and uk (z) to uP

k (z). In
the absence of a laser coupling to the ground state, the system
will instead be excited by an incoherent and homogeneous
pumping of the propagating modes with a transverse light
source. Without affecting the EIT physics, one could simply
describe this light source by a Markovian bath:

Lκsρ = −h̄
∫

k

κs

2
({b̂P(k)b̂†

P(k) + H.c., ρ}

− 2b̂†
P(k)ρb̂P(k)−2b̂P(k)ρb̂†

P(k)). (31)

The only disadvantage of this description is a large population
of noninteracting photons propagating through the system
at frequencies far detuned from any atomic resonances. In
fact, a transversal light source will not couple to all modes
equally well but, due to frequency dependencies of the mode
matching, will predominantly couple to a certain frequency
interval. We will model this with a frequency-dependent rate
κs(ω) = κs/((ω − ω0)2 + κ2

0 ) centered near the EIT condition
(ω0 ≈ ωs + ω

(1)
L ). To satisfy the Markov approximation, κ0

will be chosen large compared to the the relevant frequency
scales of EIT polaritons. For a derivation of the specific form
of κs(ω), see Appendix B.

Despite the modifications relative to the model discussed in
Sec. III A, the interaction part of the action Sint is unchanged
and also the general form of the quadratic part of the action
S0 remains the same with the new fields and Green’s func-
tions in the rotating frame given in Appendix C. We will
merely simplify notations from here on by using the shorter
GR/A/K

k (ω) ≡ GR/A/K
kk (ω) for diagonal entries of the atomic

Green’s function.

A. Nonlinear Feynman rules

Before we continue with the specific application, we notice
that, when expanding the Keldysh action order by order in the
coupling rate gP, one applies bosonic Feynman rules to atoms,
which should instead have a restricted Hilbert space with∑

j=g,e,s,d 〈â†
j â j〉 = 1. This implements the physical constraint

that each atom occupies either only one level or, in general,
a properly restricted superposition. One therefore has to be
careful not to overcount diagrams by simultaneously placing
an atom in the same state twice (which would be allowed for
bosons). This means that at every point in time and in every
diagram, two counterpropagating atomic lines belonging to
the same atom have to be found in distinct levels or must
otherwise be identified with one another, i.e., their lines in the
Feynman diagram have to be contracted.

In general, it is very hard to fully enforce these conditions,
as one would need to implement increasingly complicated
restrictions in real time on each and every perturbation to
the bare scalar Green’s functions. Doing so for all diagrams
would eventually restore the exact, finite Fock space of the
atoms. Here, we instead limit ourselves to impose restrictions
allowing us to exactly compute the fully dressed, single-
probe-photon propagator—i.e., all modifications in the regime
of linear optics.

As we will see, the insertion of self-energies in the form of
polarization bubbles—which are diagrams of the type shown
in Fig. 5(a)—into the bare probe photon Green’s function
will hybridize this propagating photon mode with stationary
atoms, forming polaritons in the process. Without saturation
effects, these polaritons will not interact among each other.
When eventually introducing polariton-polariton interactions
in Sec. V, it will be of paramount importance to expand
around the correct limit of noninteracting polaritons, which
will only by ensured by the implementation of the above
restrictions imposed by nonlinear Feynman rules.

In the noninteracting regime, where the polariton self-
energy is given by a polarization bubble with the external laser
fields mixing states |e〉 and |s〉 and the probe photons mixing
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(a)

(b)

FIG. 5. The polarization bubble in (a) gives rise to polaritons by
hybridizing photons with atomic excitations. (b) shows the Dyson
equation for atomic propagator Ge, appearing in the polarization
bubble. The interference between the direct excitation of an atom
to state |e〉 and the indirect path via |s〉 gives rise to EIT.

|g〉 and |e〉, it suffices to demand that any two counterprop-
agating Green’s functions of the same atom have to involve
disjoint sets of states. All diagrams where this is not the case
are simply set to zero.

We now show that these simplified nonlinear selection
rules correctly capture the retarded polariton Green’s function.
The latter reads

GR
P(ω, k) = (GR

P0
(ω, k)−1 − �R

P (ω)
)−1

, (32)

with the self-energy given by

�R
P (ω) = ig2

P

2

∫
dω′

2π

(
GK

e (ω + ω′)GA
g (ω′)

+ GR
e (ω + ω′)GK

g (ω′)
)
. (33)

We now make use of the Kramers-Kronig relations [see (A2)
in the Appendix] and realize that only diagrams with either
Fg(ω) �= 1 or Fe(ω) �= 1 are finite, and thus

�R
P (ω) = ig2

P

2

∫ ∞

−∞

dω′

2π

(
δGK

g (ω′)GR
e (ω + ω′)

+ GA
g (ω′)δGK

e (ω + ω′)
)
, (34)

where δGK (ω) = GK (ω) − 2i Im GR(ω) is related to the spec-
tral number density by n(ω) = iδGK/2. However, as the
atomic medium without probe photons is entirely in the
ground state and no atoms are being created, the only way to
get δGK

e (ω) �= 0 is by coupling to δGK
g (ω). On the other hand,

corrections to the bare ground-state propagator all inevitably
have to involve the excited state |e〉.

To compare the effect of the exact and simplified nonlinear
Feynman rules, consider the perturbative insertion of correc-
tions into the bare retarded Green’s functions,

GR(t, t ′) = GR
0 (t, t ′)

+
∫

dt1

∫
dt2GR

0 (t, t1)�R(t1, t2)GR
0 (t2, t ′)

+ · · · , (35)

which due to causality are nonzero only if t > t1 > t2 > t ′.
Consequently, none of the Green’s functions and self-energies
under the integral need to be evaluated simultaneously and no
cancellations due to the nonlinear Feynman rules are required.
Similarly, the Keldysh component of the interacting Green’s

function is given by

δGK (t, t ′) =
∫

dt1

∫
dt2GR(t, t1)(δ�K (t1, t2)

− δDK
0 (t1, t2))GA(t2, t ′), (36)

where δDK
0 = DK

0 − 2i Im ([GR
0 ]−1) and δ�K (t1, t2) =

�K (t1, t2) − 2i Im �R(t1, t2) have been introduced. Due
to the retarded and advanced Green’s functions, one has
t > t1 and t ′ > t2. Clearly, those insertions with t1 < t ′
have to be discarded, as then, between these times, the
retarded and advanced Green’s function of the same state
counterpropagate. With this restriction in place, δ�K (t1, t2)
has to be evaluated at t ′, which is necessarily simultaneous
with the retarded Green’s function of the other state in the
polarization bubble and the diagram again has to be removed.
In the end, as only the ground-state satisfies δDK

0 �= 0, we are
left with the simple result

�R
P (ω) = ig2

P

2

∫ ∞

−∞

dω′

2π
δGK

g,0(ω′)GR
e (ω + ω′), (37)

where in �R
e no dependence on Gg is allowed. For the Keldysh

component of the polariton self-energy one has, due to the
Kramers-Kronig relations (A3):

δ�K
P (ω) = ig2

P

2

∫ ∞

−∞

dω′

2π

(
2GK0

g + δGK
g,0(ω′)

)
δGK

e (ω + ω′).

(38)

Following a similar argument as above, one can show that
this contribution vanishes once either the full or the simplified
nonlinear selection rule is applied. As these arguments can be
continued order by order in the coupling constants, we find
that for noninteracting polaritons both selection rules coin-
cide. For an alternative proof that, in the limit of low-polariton
densities, EIT is exactly recovered by the simplified nonlinear
Feynman rules see Appendix E.

In summary, the nonlinear Feynman rules outlined
here partially compensate the unphysical tendency of the
bosonized atomic excitations to bunch together with the pho-
tons. As long as the number density of excited atoms is small
compared to that of the ground-state atoms, saturation effects
of the atomic medium can be neglected and no further selec-
tion rules have to be implemented. While this restriction to
the selection of diagrams might seem complicated to enforce
consistently, we will see that it actually simplifies the Feyn-
man diagrams. To avoid confusion, we will label all atomic
states and explicitly show all couplings to external sources in
every graphical representation of a Dyson equation.

B. Self-consistency and conserving approximations

In studying out-of-equilibrium interacting problems within
a diagrammatic approach, the self-consistent formulation of
the Dyson equations—i.e., a nonperturbative treatment where
all Green’s functions appearing in a self-energy are fully
dressed, resulting in nonlinear Dyson equations—can become
crucial for three main reasons. First, the long-time behavior
and, in particular, the steady state may not be accessible per-
turbatively. In fact, for a system to be able to forget about
its initial state, the memory terms appearing in the Dyson
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equation [see, e.g., Eq. (35)] must deviate from the initial
state in an nonperturbative manner. Second, the integrals of
motion of a problem are only correctly included within the
so-called conserving approximations, which themselves can
be derived from an appropriate thermodynamic functional and
always result in self-consistent theories. Third, in the absence
of a small coupling strength, the expansion parameter for
perturbative diagrammatics becomes of order one, as is, for
instance, the case close to phase transitions.

In the case of the driven-dissipative system described here,
it is not a priori impossible to describe the steady-state
perturbatively. This is because the relaxation also happens
without interactions between light and matter. On the other
hand, it is unfortunately impossible to build a proper func-
tional, since it would be incompatible with the approximate
nonlinear Feynman rules introduced above. Having a con-
serving approximation in our case is, however, not crucial.
This is a consequence of the incoherent, transversal drive and
Markovian losses of the full, microscopic theory introduced
later. These neither conserve energy nor quasimomentum.
Therefore, the only conserved quantity is the total number of
atoms, which we approximately enforce, at least on average,
by means of the nonlinear Feynman rules. While dropping
these would allow us to construct a conserving effective ac-
tion, the resulting theory would not conserve the atom number
either, since the approximate formulation of radiative decay in
Eqs. (6) explicitly breaks the corresponding symmetry of the
atomic sector under the U (1) transformation âa → âaeiφ and
â†

a → â†
ae−iφ .

In summary, the first two reasons requiring a self-
consistent approach do not apply to our case. Still, when
considering polariton interactions later in Sec. V, we will
largely make use of self-consistent solutions of the Dyson
equations to include the important nonperturbative effects in
regimes of single-atom cooperativity close to one: Csa ∼ 1.

C. Results: Linear susceptibility and slow light

Following the nonlinear Feynman rules and neglecting
saturation effects, the probe photon propagator is fully de-
termined by the polarization bubble shown in Fig. 5(a). In
this low-excitation density limit, the retarded photon propa-
gator GP can then be directly obtained from Eqs. (32), (37),
and (38), which can be simplified to (see also Appendix D)

�R
P (ω) = g2

P(1 − nV )GR
e (ω),

δ�K
P (ω) = g2

P(2 − nV )δGK
e (ω), (39)

where

GR
e (ω) = GR

e,0(ω) = 1

ω − �2

ω−s+iε/2 + iγe/2
,

GK
e (ω) = GK

e,0(ω) = −2i Im GR
e,0(ω) (40)

are the components of the bare propagators of the excited state
|e〉 obtained by inverting [GR

a,0]−1 in Eq. (C3). One should
note that this solution involves no approximations beyond the
linearization of the spin degree of freedom, which we showed
in Sec. IV A to be fully compensated by simple nonlinear
Feynman rules. As such, it is not surprising that upon identifi-
cation of GR

e with the polarizability of the medium, the present

approach reproduces the exact linear polarizability,

χ (ω) = nμ2
eg

ε0h̄
GR

e (ω − ωe), (41)

where μeg denotes the dipole moment of the g − e transition.
Hence, as pointed out earlier, GR

P no longer describes free
photons, but the eigenmodes of the system, which are photons
hybridized with the medium. The dispersion of these new de-
grees of freedom, the polaritons, has three branches resulting
from the coupling of two atomic transitions and the photonic
dispersive mode, which far away from the atomic resonance
e is essentially that of the free photon. Due to the vanishing
losses of state |s〉, however, the central branch—the so-called
dark-state polariton, which is a combination of a photon and
an atom in state |s〉 without any admixture of the lossy |e〉—is
very long lived. Within the functional-integral description, the
trivial calculation leading to Eq. (40) thus fully captures the
phenomenon of EIT. On a more pedagogical note, the de-
structive interference at the heart of EIT becomes particularly
apparent upon inspection of the diagrammatic expression for
Ge shown in Fig. 5(b).

Since the dark-state polariton is a linear superposition of
a localized atom and propagating photon, its group velocity
can be tuned by adjusting the ratio �/gP. However, without
losses in state |s〉, the linewidth is modified at the same rate,
such that the penetration depth of photons into the waveguide
is not affected. This can be easily verified by comparing the
group velocity of the dark-state polariton with its linewidth.
Linearizing the dispersion of the free photons, which on the
energy scale of the susceptibility of the medium (set by γe) is
typically well justified, the group velocity can be determined
from the pole of the polariton Green’s function GR

P(ω, k) given
by Eqs. (32), (40), and (D1). In the limit of mostly atomlike
dark-state polaritons, where the ratio between atomic and
photonic contributions θ = g2

P(1 − nV )/�2 becomes large, an
expansion around the EIT window results in the condition[

GR
P(ω, k)

]−1 = θ (ω − s) − vP(k − kEIT)

+ iξ (ω − s)2 + iκP/2
!= 0, (42)

where vP is the local group velocity of the bare photon
near the resonance at k = kEIT with the laser acting on the
|s〉 − |e〉 transition. Furthermore, we have introduced the con-
venient abbreviation ξ = γeθ/(2�2). At the center of the EIT
window, the group velocity is given by

vg = dωres

dk
= vP√

θ2 + 2ξκP

∼ �2, (43)

where ωres satisfies the condition (42). On the other hand, at
kEIT the linewidth of the dark-state polariton is given by

ω =

√
−θ2 − ξκP +

√
θ4 + 2ξθ2κP + 2ξ 2κ2

P
√

2ξ
∼ �2 .

(44)

Expanding around large θ , we find

vg ≈ vp
�2

g2
P(1 − nV )

= vp

θ
,

ω ≈ �2κP

2g2
P(1 − nV )

= ωp

θ
, (45)
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FIG. 6. Frequency- and momentum-resolved number density in the vicinity of the EIT condition. The corresponding dispersion of the
dark-state polariton has been added in the form of a blue line. The parameters used are κ0 = 2, κs = 1, ω0 = s = nV = 0, gP = 10, κP = 0.5,
γe = 1, and P(k) = −50 cos k.

and therefore

vg

ω
= 2vP

κP
, (46)

which agrees with the result for the free photon. Consequently,
the effective probe photon propagation range

LP = vP/κP (47)

is unaffected by the formation of dark-state polaritons and
the accompanying reduction of the group velocity. Indepen-
dent of the mixing angle θ , the inverse interaction range
between atoms thus remains a small parameter suitable for
a perturbative expansion unless the single atom cooperativity
Csa

P becomes large, in which case all orders in L−1
P have to

be included. Note that at fixed gP, both the group velocity
and linewidth of the dark-state polariton can be conveniently
tuned by adjusting the Rabi amplitude �. We illustrate this
by showing a logarithmic density plot of the frequency- and
momentum-resolved number density of polaritons nP(ω, k) in
Fig. 6, where the increase in group velocity and decay rate
with growing � are clearly visible.

In the absence of the fluctuation-dissipation theorem, the
distribution function F introduced in Sec. III B becomes an
interesting quantity as it measures the strength of the drive
that a given degree of freedom experiences, independent of
its actual susceptibility. Since the atoms as well as drive and
decay are assumed to be distributed homogeneously in space,
FP is independent of momentum. In Fig. 7(a), we illustrate that
despite the broad drive by κs(ω), the distribution function of
the dark-state polariton has a very sharp peak centered around
the resonance with the laser on the |e〉 − |s〉 transition, where
it reaches the largest value possible FP(s) = 2κs/κP + 1.
This narrow window of highly occupied polaritons is, how-
ever, very sensitive to losses in state |s〉. We illustrate this in
Fig. 7(a) by increasing the linewidth of the metastable state
to γs = 10−3. With slow polaritons being mostly atomic, it is
already clear that very small loss rates γs drastically increase
the opaqueness of the waveguide. This is captured by the sup-
pression of the peak in the distribution function in Fig. 7(a).
Faster and therefore broader EIT polaritons are much less sus-
ceptible and thus the maximal value of FP(ω) − 1 once again
approaches 2κs/κP + 1 for � → ∞, whereas it drops to the

typically much smaller value 2κs/(4g2
P(1 − nV )/γe + κP ) + 1

as � → 0 [see Fig. 7(b)].
In the following, we will induce similar losses through

dissipative interactions between atoms in state |s〉. Doing so
for highly sensitive slow polaritons will create a strong pos-
itive feedback that ultimately gives rise to a first-order phase
transition. As we shall argue in more detail below, this entirely
dissipative feedback effect differs from the more conventional
interaction-induced detuning commonly experienced in Ryd-
berg gases.

V. APPLICATION: STRONGLY INTERACTING PHOTONS
USING ATOMS NEAR WAVEGUIDES

The direct photon-photon interaction arising from indi-
vidual atom saturation is extremely weak [49]. Such an
interaction can be made much stronger by introducing a
mechanism for the atoms to interact with one another over
a distance. Here, this is achieved via an additional set of
exchange-photon modes with dispersion ωE

k . These are or-
thogonally polarized with respect to the P modes introduced
above. In fact, in PCWs, the two transverse light polarizations
do not mix and their band structures can be tuned indepen-
dently. These engineered photon band structures potentially
allow us to control not only the photon dispersion but also
both the strength and the range of interactions [17,25,50], as
well as the coupling with the environment [37]. It is therefore
possible to trap the atoms in a chain that is commensurate
with the periodicity of the PCW, have them hybridize with
the propagating probe photons, and simultaneously make the
resulting polaritons interact via localized exchange photons
of the orthogonal polarization. Alternatively, the atoms could
also be held in place in the evanescent field of a tapered fiber
using tweezers [51,52]. In this case, the exchange photons
could be associated with a higher-order guided mode, oper-
ating near cutoff. A schematic representation of the setup we
consider is shown in Fig. 8.

Specifically, it is possible to use the exchange photons
to couple a second excited state |d〉 to the state |s〉. To
adjust the admixture of |d〉, we introduce a second driving
laser of frequency ω

(2)
L and Rabi amplitude �s. In the actual

calculations shown here, we will for concreteness choose
a quadratic dispersion for the E -photons ωE (k) = ωE

0 −
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(a) (b)

FIG. 7. (a) Distribution function of the perturbed dark-state polariton in the vicinity of the EIT condition at the same parameters as in Fig. 6
with finite linewidth γs = 10−3. Clearly, the occupation of the slower polaritons is more strongly suppressed by these losses. For comparison,
we also added (gray dash-dotted line) the distribution function of the unperturbed EIT polaritons (i.e., γs = ε) for � = 0.25. b) The EIT
window is mostly destroyed for � � 0.2, despite the very weak losses parametrized by γs. On the other hand, polaritons with � � 1 are
largely unaffected.

αE (k − kE )2 around the band edge ωE (kE ) = ωE
0 , which is

assumed to be slightly detuned against the |s〉 − |d〉 transition.
In general, the parabolic approximation to ωE

k is justified
by tuning the laser frequency in the vicinity of a dispersion
minimum or maximum. In particular, tuning to within the
band gap creates a bound state, since the exchange photon
cannot propagate and becomes localized around the atom
that has emitted it [25]. This bound state with a localization
length

LE =
√

αE/κE (48)

facilitates a strong interaction with other atoms within
the region of localization, which takes the form
∼â†

s (z)â†
s (z′)âs(z′)âs(z). On the other hand, since we are

eventually interested in the interaction-induced modifications
to the dispersion of the propagating photons, we will require
no approximations to the dispersion ωP

k . As already stressed
above, the actual form of the photon dispersion does not play
a qualitative role.

In summary, the EIT Hamiltonian from the previous sec-
tion is extended as follows:

Ĥ = ĤEIT + h̄

[∑
z

{
ωd â†

d (z)âd (z) + 1

L

∫
k

(
ωE

k b̂†
E (k)b̂E (k)

+ gE
(
eikzuE

k (z)b̂E (k)â†
d (z)âs(z) + H.c

))}]
. (49)

Furthermore, the losses of state |d〉 are modeled in the already
familiar linearized approximation:

Lγd ρ = −h̄
∑

z

γd

2
({â†

d (z)âd (z), ρ} − 2âd (z)ρâ†
d (z)). (50)

In a functional-integral formulation, the noninteracting part
of the action still takes the same form as before, with the
Green’s functions replaced by the full expressions given in
Appendix C. The interactions between exchange photons and
atoms give rise to an additional term in the interacting part,

γ
κs κP

κE

|g

|s
|e

|d

ωP Ω

Ωs
ωE

FIG. 8. Schematic representation of the setup implementing polariton interactions. Atoms are trapped in a regular chain and coupled to
the photons propagating inside a waveguide. Inset: Internal-level structure of the atoms. External lasers with Rabi amplitudes � and �s drive
transitions between the metastable state |s〉 and decaying, excited states |e〉 and |d〉. The two orthogonal polarizations of the photon modes P
and E within the waveguide are (almost) resonant with the |g〉 − |e〉 and |s〉 − |d〉 transitions, respectively. Without the excited state |d〉, the
system therefore reduces to the well-known three-level scheme used above to discuss EIT. The state |e〉 dissipates excitations at a rate γ and
photons in both P and E photons are dissipated from the waveguide at rates κP and κE , respectively. The P photons are pumped in at a rate κs.
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which now reads

Sint = 1√
2

∫
dω

2π

∫
dk

2π

∑
z

{
gPeikzuP

k (z)
[
bq

P(k)
(
āq

e (z)aq
g(z)

+ ācl
e (z)acl

g (z)
)+ bcl

P (k)
(
ācl

e (z)aq
g(z) + āq

e (z)acl
g (z)

)]
+ gE eikzuE

k (z)
[
bq

E (k)
(
āq

d (z)aq
s (z) + ācl

d (z)acl
s (z)

)
+ bcl

E (k)
(
ācl

d (z)aq
s (z) + āq

d (z)acl
s (z)

)]+ c.c.
}
. (51)

With this being said, the topology of the Feynman diagrams
in matrix notation is not affected by these extensions, only the
associated values of Green’s functions and vertices change.

We do, however, have to verify the validity of the nonlinear
Feynman rules. The dominant effect experienced by probe
photons, i.e., the hybridization with excited atoms, remains
the same and is perfectly captured by the simplified nonlinear
Feynman rules discussed in the previous section. However,
for higher order self-energy corrections to the probe photon
propagator that involve the exchange photon, as well as for
the polarization bubble of the exchange photon itself, the sim-
plified Feynman rules do not work quite as well. The reason
for this is that both states |s〉 and |d〉, necessarily appear-
ing in the polarization bubble of an exchange photon, have
nonvanishing self-energies. There might be then an interval
in real time where these insertions into the bare propagators
are incompatible with each other due to the atomic Hilbert
space restriction. This means that the simplified nonlinear
Feynman rules, which act in a non-time-resolved fashion,
no longer correctly capture the polarizability of the atoms.
However, if the effective coupling rate between states |s〉 and
|d〉 is small compared to γd , the excited atom will likely have
decayed before it can be transferred into another state. To
ensure this, we will exclusively work in a regime of small
�s/γd . Note, however, that this condition will be significantly
modified upon inclusion of strong interpolariton interactions,
wherefore we will also require (�eff

s )
2
/(γ eff

d γ eff
s ) � 1 for the

fully dressed quantities.
To test that the choice of the specific implementation of the

nonlinear Feynman rules—of which many different versions
are available—does not affect the results, we compare the
two extreme options. One is the most strict implementation
of the Feynman rules, where all diagrams that could at least
partially be forbidden are entirely excluded. The other option
corresponds to the opposite choice, where all at least par-
tially allowed diagrams are fully included. In the following,
we will refer to these two options as the strict and lenient
implementation of the Feynman rules. If we observe only
small differences between the results from both options, the
ambiguity in the nonlinear Feynman rules is of no quantitative
significance and either version can be used to provide a lowest
order approximation to the actual (time-dependent) selection
rules.

Before we consider the effect of exchange photons, let
us first see how the properties of the EIT polaritons are af-
fected by coupling the state |s〉 to |d〉 via the laser with Rabi
frequency �s, but still in the absence of E photons. In this
case, the Green’s function GR

P remains exactly computable
in the limit of vanishing polariton density, however, now the

polarizability is given by

GR
e (ω) = 1

ω + iγe/2 − �2

ω−s+iε/2− �2
s

ω−s−d +iγd /2

. (52)

Since the admixture of |d〉 to |s〉 introduces losses γ eff
s ≈

�2
s γd/(2

d + γ 2
d /4) to the metastable atomic state—and

therefore to the dark-state polariton—without increasing its
group velocity, the waveguide is no longer fully transparent.
Given that already weak losses γ eff

s � κP/θ reduce the probe
photon range to Leff

P = vP/(γ eff
s θ ), the delicate transparency

window is easily destroyed by a small coherent coupling on
the s − d transition.

A. Sorting Feynman diagrams

The strong dependence of EIT polaritons at large θ on the
lifetime of the metastable state |s〉 can be exploited to en-
hance the effect of interactions. However, one quickly realizes
that to leading order in 1/L, that is, to say simultaneously
in 1/LE and 1/LP, the polaritons cannot interact. Indeed, to
order (1/L)0 the only interaction is a Hartree self-energy for
the s-propagator of the type shown in Fig. 4(a) with |g〉, |e〉
and the P photon replaced by |s〉, |d〉 and an E photon, re-
spectively. While one can include arbitrarily many Hartree
insertions, as soon as a photon insertion of the type shown in
Fig. 4(b) appears in an atomic line, it will necessarily induce a
suppression by 1/L. Avoiding such a suppression will exclude
the appearance of any atomic g or photonic P propagators
in self-energies for the s-propagator, and therefore prevent us
from populating the |s〉 or the |d〉 level. The latter are not di-
rectly pumped and, consequently, without O(1/L) insertions,
empty. The distribution functions Fs,d (ω) are thus identical to
one, which means that all particle-hole diagrams, i.e., loops
with counterpropagating atomic excitations, and, in particular,
all Hartree diagrams involving |s〉 and |d〉 vanish. This is
nothing else than the statement that there can be no interaction
between atoms in state |s〉 if that level is not populated.

Therefore, in our expansion, interactions between polari-
tons only start to play a role at O(1/L) and the leading
order investigated in the last section is indeed a theory of
noninteracting polaritons. All the diagrams for the P-photon
self-energy up to order 1/L are shown in Fig. 9. Note that,
since in leading order in 1/L only the ground state is occupied,
the exchange photon propagator is bare. Furthermore, the ver-
sion of diagram Fig. 9(c) with the E propagator substituted by
a P propagator has to be excluded according to the Feynman
rules discussed in Sec. IV A. In general, the order of a diagram
is given by (1/L)n, where n is the number of total loops minus
the number of atomic loops.

The fact that interactions take place at higher loop order is
a generic feature of polaritons formed by hybridizing probe
photons with internal atomic excitations: If the atoms are ini-
tialized in the ground state and only probe photons are capable
of exciting this initial configuration, then one will first need to
populate the interacting atomic level before atoms—and thus
polaritons—can interact.
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(a)

(b) (c)

(d)

FIG. 9. All contributions to the polariton self-energy at next-to-
leading order in 1/L. The bold lines for the probe photon indicate that
all powers of the leading order polarization bubble [see Fig. 5(a)]
have to be inserted as well. For clarity, we are not specifying the
atomic states and also not using the loop-reduction simplification
illustrated in Appendix D.

B. Reduced theory for dissipatively interacting polaritons

We will begin our discussion of interactions between po-
laritons with the limit of infinitely ranged exchange photons
(LE → ∞), which implies infinitely ranged atom-atom inter-
actions. In this case, all diagrams can be resumed completely,
resulting in a fully controlled field theory of a nonequilibrium
system with strong light-matter interactions. In particular, no
further assumptions regarding LP are required and we are al-
lowed to enter the regime of large single-atom cooperativities
with respect to the propagating photons. We shall see that in
this regime new many-body phases emerge and that the corre-
sponding phase transitions can be described in a quantitative
manner.

Before presenting the full theory in the LE → ∞ limit, in
the present section we will consider only a particular subclass
of the next-to-leading order interactions which corresponds to
a spectrally resolved mean-field approximation. We will see
that already this simplified approach can have very interesting
effects on the polariton transparency window and induce a
phase transition in the steady state. Importantly, while this
reduced set of diagrams will not typically yield quantitative
results, it helps to illustrate many useful physical concepts
and provides a simple application of the techniques outlined
above. We therefore employ it as an instructive introduction
into the theory of strongly interacting polaritons. By neglect-
ing the information about spectral line shapes, an even simpler
and more physically transparent (though quantitatively uncon-
trolled) set of algebraic mean-field equations can be readily
derived from the spectrally resolved counterpart.

1. Dyson equations

To distinguish between diagrams in 1/L, we return to the
simultaneous expansion in 1/LE and 1/LP, which in next-to-
leading order is shown in Fig. 9. Of these diagrams, Figs. 9(a)
and 9(d) are suppressed by 1/LP, Fig. 9(c) is proportional to
1/LE and Fig. 9(b) depends on a combination of both lengths
that approaches 1/ max (LE , LP ) if both length scales differ
a lot. Consequently, with LE → ∞ only diagrams Figs. 9(a)

and 9(d) need to be considered. In a perturbative expansion,
that is, if the single atom cooperativity Csa

P = g2
P/(κPγeLP ) �

1, no self-consistent treatment beyond the resummation of
all polarization bubbles that give rise to EIT (introduced al-
ready in Fig. 5 and indicated by the bold lines in Fig. 9)
is required. At the same time, these weak interactions only
sightly perturb the bare EIT and no qualitatively new ef-
fects are encountered. These would indeed require coupling
strengths that are comparable with the bare |s〉-to-|d〉 cou-
pling �s. This requirement breaks the strict confines of the
1/LP-expansion (see Sec. V B 4). We therefore have to extend
our analysis to strong single atom cooperativities, where all
diagrams of the same class as Figs. 9(a) and 9(d) have to
be taken into account. Since the corresponding computations
become somewhat involved, we will introduce the idea of the
self-consistent resummation of a class of diagrams and the re-
sulting physical consequences first by using only the diagram
in Fig. 9(a), and emphasize connections to the random phase
approximation in dynamical screening and mean-field theory.
The full theory for LE → ∞ will be presented in Sec. V C.
Clearly, every |s〉 − |d〉 transition can either be directly driven
by the laser acting on a single atom, or by the exchange of
an E photon with another atom that in turn couples to the
laser. The interchangeability of the single- and multiple-atom
processes gives rise to an infinite set of diagrams that is
conveniently captured by a self-consistent treatment.

The resulting approximation is depicted diagrammatically
in Fig. 10. In particular, the direct and indirect absorption and
emission of a laser photon coupled to the |s〉 − |d〉 transi-
tion gives rise to the four last diagrams in Fig. 10(d) which,
involving bold lines themselves, actually correspond to an
infinite number of self-energy diagrams if expressed in terms
of bare propagators. Additionally, having extended the ex-
pansion from Fig. 9 to large Csa

P , the exchange photon is
now dressed according to Fig. 10(c). As we explain in the
following, the corresponding self-consistent Dyson equations
can be simplified such that they require finding only a single
number η as the solution of a nonlinear integral equation.

In close analogy to the formalism of Sec. IV, the probe
photon Green’s functions are dressed by excitations induced
in the medium. The result

GR
P(ω, k) = [GA

P(ω)
]∗ = 1

ω − P(k) − �R
P (ω, k) + iκP/2

,

GK
P (ω, k) = GR

P(ω, k)
(
�K

P (ω, k) − iκP − 2iκs
)
GA

P(ω, k)

(53)

is therefore still fully determined by the polarization bubble,
which using the Kramers-Kronig relations can again be put in
the closed form

�R
P (ω, k) = g2

P(1 − nV )

ω − �2GR
s (ω) + iγe/2

,

�K
P (ω, k) = 2i Im �R

P (ω, k). (54)

However, now the propagator of state |s〉,

GR
s (ω) = [GA

s (ω)
]∗ = 1

ω − s − �R
s (ω) + iε/2

, (55)
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. Diagrammatic representation of the Dyson equations
in the reduced Hartree-like approximation. The latter neglects all
interaction diagrams at next-to-leading order except that in Fig. 9(a).
For clarity, we refrain from using the loop-reduction simplification
introduced in Appendix D.

has a modified coupling to state |d〉,

�R
s (ω) =

(
�eff

s

)2
ω − d − s + iγd/2

, (56)

where �eff
s = �s|1 + η| includes the effects of the direct cou-

pling rate �s as well as those due to the interactions. Here η

is simply a complex number, which stems from the fact that
the exchange photon mediating the interaction between dif-
ferent polaritons carries zero momentum and—in the rotating
frame—zero frequency as well.

In the polarization bubbles of the exchange photon, the
nonlinear Feynman rules forbid a dressing of Gs by |d〉, which

thus requires the definition of a second type of s-propagator,

GR
� s (ω) = [GA

� s (ω)
]∗ = 1

ω − s − �R
� s (ω) + iε/2

, (57)

that couples exclusively to |e〉, which in turn can emit and
reabsorb a probe photon. This is accounted for by defining

�R
� s (ω) = �2

ω − �R
e (ω) + iγe/2

(58)

and

�K
� s (ω) = 2i Im �R

� s (ω) + δ�K
� s (ω),

δ�K
� s (ω) = �2

(
�K

e (ω) − 2i Im �R
e (ω)

)
(
ω − Re �R

e (ω)
)2 + (γe/2 − Im �R

e (ω))2
.

(59)

It is at this point that the self-consistency loop closes, meaning
that the Dyson equations form a closed set of equations: The
self-energy �R

e depends only on the probe photon propagator
from Eq. (53) and the bare ground-state Green’s function via

�R
e (ω) = i

2
g2

P

∫ ∞

−∞

dω′

2π

∫ π

−π

dk

2π
GR

P(ω − ω′, k)GK
g (ω′)

+ GK
P (ω − ω′, k)GR

g (ω′) (60)

and

δ�K
e (ω) = �K

e (ω) − 2i Im �K
e (ω)

= i

2
g2

P

∫ ∞

−∞

dω′

2π

∫ π

−π

dk

2π
δGK

P (ω − ω′, k)δGK
g (ω′).

(61)

As stated at the beginning of this section, the self-
consistent functional equations GR

P,� = GR
P[GR

P,�, GK
P,�] and

GK
P,� = GK

P [GR
P,�, GK

P,�] have been reduced to a single parame-
ter satisfying a fixed point equation η� = η(η�). As mentioned
before, this is in part due to the Hartree nature of the interac-
tions considered here, which implies that the functional form
of �R

s is fixed and analytically known. On the other hand, it is
a consequence of the nonlinear Feynman rules, which enforce
an unoccupied propagator GK

s and therefore �K
s = 2i Im �R

s ,
which reduces the number of coupled equations.

The frequency integral in the first of the two ex-
pressions in Eq. (60) is trivial, as GK

g (ω) ∝ δ(ω). Since
the poles of GR

P can be found analytically, the fre-
quency integral in the second term of �e(ω) can also
be solved exactly via the residue theorem, such that
only the momentum integration has to be evaluated nu-
merically. After application of the residue theorem, one
obtains

�R
e (ω) = −

∑
n

∫
dk

2π
g2

P

κs

2 Im(ωn(k))

1

ω − ωn(k) + iε/2

f (ωn(k)) f ∗(ω∗
n (k))∏

m �=n(ωn(k) − ωm(k))(ωn(k) − ω∗
m(k))

+
∫

dk

2π

1

2
g2

P(4 − 2nV )GR
P(ω + iε/2, k), (62)

�K
e (ω) =2i Im �R

e (ω) − iκs

∫
dk

2π
g2

P(2 − 2nV )GR
P(ω, k)GA

P(ω, k),
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where n ∈ {1, 2, 3, 4}, ωn(k) are the poles of GR
P(ω, k) and

f (ω) = (ω + iγe/2)(ω − s + iε/2)(ω − s

− d + iγd/2) − �2(ω − s

− d + iγd/2) − (�eff
s

)2
(ω + iγe/2). (63)

With all Green’s functions depending solely on the parameter
η, we are left with the task to solve for it self-consistently. The
corresponding equation can again be read off from Fig. 10 and
states

η = �R
E (0)

−E (0) − �R
E (0) + iκE/2

. (64)

So far, there is no ambiguity regarding the nonlinear Feynman
rules. In the polarization bubbles of the exchange photon,
however, these partially forbid dressing the propagator of state
|d〉 via couplings to the metastable state. Employing the strict
interpretation where GR

d remains undressed, the exchange pho-
ton self-energy reads

�R
E (ω) = i

2

∫
dω′

2π
g2

E GR
� s (ω′)GA

� s (ω′)δ�K
� s (ω′)GR

d (ω + ω′),

(65)

with

GR
d (ω) = GR

d0
(ω) = 1

ω − s − d + iγd/2
. (66)

If, on the other hand, the lenient rule is applied, one is to use

GR
d (ω) =

([
GR

d0

]−1
(ω) −

(
�eff

s

)2
ω − s − �2

ω+iγe/2

)−1

, (67)

which includes all possible admixtures of atomic states to |d〉,
as the insertion of the ground state can always be excluded by
the methods introduced in Sec. IV A. Furthermore, �R

� s is to
be complemented by

�R
� s → �R

� s +
(
�eff

s

)2
ω − s − d + iγd/2

, (68)

with the dependence of δ�K
� s on �R

e and δ�K
e remaining unaf-

fected.
Choosing among these two ways of applying Feynman

rules affects the propagation of the exchange photons and
hence the light-mediated atom-atom interactions. The photon
propagator is ultimately given by

GR
E (ω, k) = [GA

E (ω)
]∗ = 1

ω − ωE (k) − �R
E (ω, k) + iκE/2

,

GK
E (ω, k) = GR

E (ω, k)
(
�K

E (ω, k) − iκE
)
GA

E (ω, k), (69)

with

�K
E (ω, k) = �

K0
E (ω, k) = 2i Im �R

E (ω, k). (70)

Interestingly, the phase of η can be adjusted via the detuning
between the band edge of the exchange photon and the laser
�s. Its amplitude depends on the spectral density of atoms
in the metastable state ns(ω) and on the coupling constants,
giving a great deal of control over the type and strength of
backaction to be realized.

For numerical purposes, iterating Eqs. (53) through (70)
having previously initialized the system with some �eff

s = �s

is very inefficient, as convergence will fail when approaching
a phase transition [53]. We avoid this problem by instead
fixing �eff

s and determining �s(�eff
s , η), which requires no

iterations at all. This actually means that the value of �s

corresponding to the solution is not known a priori. However,
for the computation of the entire phase diagram, this does not
matter as eventually a result for any value of �s will have been
produced.

2. Qualitative picture from mean-field approximation

Before we proceed to the numerical analysis, it is instruc-
tive to develop an intuitive understanding of the mechanisms
in effect here. To do so, we neglect the ω and k dependence
of the indirect drive of state |s〉 and assume its linewidth to
vanish. In this case, Eq. (64) simplifies to

η ≈ 2g2
E ns

iγd (−E (0) + iκE/2) − 2g2
E ns

. (71)

Employing the previously discussed ratio between atomic and
photonic admixtures θ ≈ g2

P(1 − nV )/�2 and extending the
arguments from Sec. IV C) to finite lifetime of the state |s〉 to
approximate the density of excitations in the latter, one finds

ns ≈ θ

1 + θ

2κs

κP + θγ eff
s

. (72)

This depends on the effective lifetime of that state induced
by coupling to |d〉, which for large losses γd � |s + d | is
given by

γ eff
s ≈ 4�2

s |1 + η|2
γd

. (73)

These simple algebraic equations are able to describe
qualitatively the relatively complex feedback mechanism re-
sulting from the screening of laser-induced losses. This type
of feedback is different from the more direct one obtained
from density-density interactions in Rydberg gases [30,54–
56], where the real interaction-shift of the polariton energy
detunes the latter with respect to the transparency window (see
Sec. VI).

The numerical solution of Eqs. (71) and (72) is shown in
Fig. 11. It exhibits a strongly nonlinear dependence of ns on
�s, which for sufficient drive strength κs even gives rise to
a bistability, i.e., increasing �s the system will evolve along
the yellow surface where it exists, whereas in the opposite
direction, ns always stays on the blue surface. While this
demonstrates that the mean-field approach can qualitatively
capture strong interactions, Eq. (72) inaccurately approxi-
mates the line shape of the interacting EIT polaritons resulting
in an unphysically large fraction ns > 1 of atoms in state |s〉
(see Fig. 14). The inability to provide accurate and quantita-
tive predictions within mean field physically arises because of
the approximation of a constant mixing angle, which is only
valid to lowest order in an expansion around the unperturbed
EIT window. Furthermore, the mean-field theory is not easily
extended to finite interaction ranges. This motivates the field
theoretic method introduced in the next sections.
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FIG. 11. The mean-field approximation to the polariton density
ns shows a bistability for strong driving κs � 1 and otherwise the
same parameters as in Fig. 6 (κ0 = 2, ω0 = s = nV = 0, gP = 10,
κP = 0.5, γe = 1, P(k) = −50 cos k) together with E (k = 0) =
−1, d = 0, γd = 10, κE = 5, and gE = 10.

3. Results: Nonequilibrium phase transition
of the transparency window

We now show how a nonperturbative field theoretic
treatment not only gives rise to a quantitatively accurate de-
scription of a phase transition and bistability, but predicts
other features that are not possible to capture within mean-
field theory. As can be gleaned from mean-field Eqs. (72)
and (73), the restoration of the transparency window arises
from a destructive interference between the laser and the ex-
change photon that drastically reduces the coupling to state
|d〉, which is predicted by our approach and involves the last
four diagrams in Fig. 10(d).

This many-body phenomenon, which can be named
interaction-induced transparency as opposed to the standard
single-particle EIT is analyzed elsewhere [23], also in relation
to its observability for realistic experimental parameters in the
context of PCW and tapered fibers. In the remainder of this
section, we provide a complementary analysis focusing on
the nature of the underlying nonequilibrium phase transition
and discuss the fundamental mechanism from a more formal
perspective as an application of our diagrammatic approach.

The reconstruction of the transparency window can be
attributed to the positive feedback brought about by the depen-
dence of η on the excitation density: η ∝ ns, which stabilizes
both a low density, i.e., opaque phase and a high density, i.e.,
transparent phase, separated by a first-order phase transition.
The mechanism behind this can be understood by studying
Fig. 12, which shows the amplitude and sign of the varia-
tion in the flow of the quantity |1 + η| during the evaluation
of the self-consistency Eq. (64). If the system is initialized
with a certain value of η such that δ|1 + η| is positive, the
system will flow toward the opaque phase and vice versa, if
δ|1 + η| < 0, the system is unstable toward the transparent
phase. Consequently, only those parameter combinations with
δ|1 + η| = 0 and a negative slope in δ|1 + η| as a function
of |1 + η| are stable and therefore marked with a red line in

Fig. 12. In sufficiently strongly driven systems, we witness the
emergence of a bistability: for a given Rabi amplitude �s, two
stable solutions exist. They differ significantly in the effective
coupling �eff

s and in the occupation of dark-state polaritons.
Quite surprisingly, we find a stable transparent solution with
�eff

s � �s, which entails significantly reduced losses com-
pared to the noninteracting case with gE = 0. Remarkably,
the stable ratio �eff

s /�s is smallest for purely dissipative in-
teractions, that is, when �R

E (0) is purely imaginary. In this
case, the phase shift between the E-photon-mediated driving
of the s − d transition and the direct driving via �s is the
most destructive. This results in small losses for the dark-state
polaritons, at least if there are enough to create a sufficiently
large backaction in the form of �R

E (0). A comparison between
Figs. 12(a) and 12(b) demonstrates that for these rather small
values of �s the choice of the nonlinear Feynman rules does
not affect the results appreciably. For the remainder of this
section, we will therefore focus on the strict implementation
of the Feynman rules.

In combination with the possibility of the simultaneous
stability of an opaque and a transparent phase, a first-order
phase transition similar to that between a gaseous and a liquid
phase emerges: Above a critical bare laser strength �sc an in-
creasingly strong hysteresis is observed as the source intensity
κs is increased. This is shown in Fig. 13 (see also Fig. 14 for
a comparison with the mean-field approximation). However,
at exactly the critical laser strength, the first-order phase tran-
sition ends in a critical point, where the phase transition is
continuous and of mean-field type. This is to be expected by a
Hartree-type theory with infinitely ranged interactions and we
verify this by fitting the numerical data for ns(κs,�sc ) with a
power law and extracting the critical exponent δ = 3 ± 0.01,
consistent with the Ising universality class [57], (see Fig. 15).

We note that in the regime of the first-order phase transi-
tion, the difference in polariton density between the opaque
and transparent solution is typically large. This can be seen
from the distribution function (see Fig. 16) as well as from the
frequency- and momentum-resolved photonic number density
of Fig. 17. One thus concludes that, far away from the critical
point in the opaque phase, the system behaves essentially as
a noninteracting theory: The occupation numbers are so small
that interactions via exchange photons play no role and the
bare—but due to �s, lossy—EIT is recovered.

In the transparent phase, on the other hand, an only weakly
perturbed three-level-scheme is restored, which seems to im-
ply that the effective degrees of freedom are again only weakly
interacting. Correspondingly, many simple correlation func-
tions can be described by an effective free theory. However,
except for the limit of vanishing �s, the response of the system
to external perturbations will be very different compared to the
free theory discussed in Sec. IV.

4. Analytic estimates and requirements of the bistable regime

Due to the simplicity of the reduced theory presented in
this section, we can actually give some analytic estimates
for the conditions necessary for a phase transition. Due to
the typically large atomic admixture θ to the dark-state po-
laritons, even for relatively strong driving κs ∼ κP, a slow
group velocity gives rise to only a small photon number
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FIG. 12. Flow diagram of the effective relative coupling strength |1 + η| as a function of the externally adjustable parameter �s, where
otherwise the same parameters as in Fig. 6 (κ0 = 2, κs = 1, ω0 = s = nV = 0, gP = 10, κP = 0.5, γe = 1, P(k) = −50 cos k) are used
together with E (k = 0) = −1, d = 0, γd = 1, κE = 5, and gE = 10 and lenient(strict) Feynman rules in the first(second) row.

density:

nP = i
∫

dω

4π

∫
dk

2π
δGK

P (ω, k) < θns � 1. (74)

Here the first inequality results from the fact that only photons
in a narrow frequency interval actually form dark-state po-
laritons. Most photons instead hybridize into bright polaritons
that involve the decaying excited atomic states, resulting in
even smaller occupations.

Of the two contributions to �R
e in Eq. (62), the second

one thus dominates. Typically, in PCW or tapered fibers, the

photonic bandwidth is several orders of magnitude larger than
the inverse life times of all atomic states. It is therefore well
justified to approximate the photon spectrum as linear. We do
so by writing their retarded Green’s function as a sum of left
and right movers:

GR
P(ω) = 1

ω − 
(0)
P − vPk − �R

P (ω) + iκP

+ 1

ω − 
(0)
P + vPk − �R

P (ω) + iκP

. (75)

FIG. 13. Hysteresis of the polariton density, evidenced in ns for scans at the incoherent drive strength κs for different values of �s. Brighter
colors corresponds to larger values of �s. In panel (a), the system is initialized in the opaque phase with κs = 0, whereas panel (b) uses κs = 2
in the transparent phase as a starting point. Below the critical Rabi amplitude �sc ≈ 0.0851, both scans are identical. However, above �sc the
initial phase is stabilized against fluctuations induced by slow scans and a hysteresis curve becomes observable. The parameters used are the
same as in Fig. 12.
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FIG. 14. A comparison between the spectrally resolved solution
to Eqs. (53) through (70) (full lines) with the mean-field theory of
Eqs. (71) and (72) (dashed lines) highlights the quantitative inade-
quacy of mean-field theory. In black, we show a scan of the drive
strength κs at �s = 0.07, which is below the critical Rabi amplitude
in both cases. In red and blue, a scan through the bistable regime is
performed with the former (latter) increasing (lowering) the drive.
The parameters have been chosen as in Fig. 12.

For LP = κP/vP � 1, the EIT window in momentum space is
much narrower than the inverse lattice constant 1/a and thus
far away from the band edge a linearized spectrum suffices to
reproduce the results obtained from any Bloch wave with the
same group velocity in the EIT window.

Together with the observation that, since the atoms are
fixed in space, �R

P (ω) is momentum independent, this allows
us to find

�R
e ≈ −ig2

P(2 − nV )|uP
k (0)|2/vP,

δ�K
e ≈ −g2

P(1 − nV )
2

vP

iκs

κP/2 − Im �R
P (ω)

, (76)

where the momentum integral has been approximated by an
integral along the entire real axis. This result can be used to

0.981464 0.981465 0.981466 0.981467
0.0226
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FIG. 15. Power-law fit to the density of excited atoms at the
critical coupling strength �sc ≈ 0.0851 for the same parameters as
in Fig. 12. The critical exponent of the order parameter as a function
of the drive strength is determined to be δ = 3 ± 0.01.
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FIG. 16. Double logarithmic plot of the distribution functions
FP(ω) of the transparent phase in red and the opaque phase dash-
dotted and in blue for the same parameters as in Fig. 12. Near the
EIT condition, FP − 1 differs by more than an order of magnitude.

approximate the number density of atoms in the metastable
state by

ns = i
∫ ∞

−∞

dω

4π

∣∣GR
s (ω)

∣∣2δ�K
� s (ω)

= i
∫ ∞

−∞

dω

4π

∣∣GR
� s (ω)

∣∣2∣∣GR
e (ω)

∣∣2δ�K
e (ω)

≈
∫ ∞

−∞

dω

2π
κs(ω)

∣∣∣∣∣∣
1

(ω−s )
�2

(
ω + (2 − nV )i g2

P
vP

+ iγe/2
)− 1

∣∣∣∣∣∣
2

× g2
P

�2

1 − nV

vP
(
κP/2 − Im �R

P (ω)
) . (77)

As can be extracted from Fig. 12, the system becomes bistable
once

0
!
>

d�s

d�eff
s

= d

d�eff
s

�eff
s∣∣1 + η
(
�eff

s

)∣∣ , (78)

which, using the explicit form (64) can be rewritten as

dη

d�eff
s

!
>

∣∣∣∣ −E (0) + iκE/2

�eff
s

(− E (0)− �R
E (0) + iκE/2

) ∣∣∣∣. (79)

In the ideal case of a resonance between the exchange photon
and the corresponding laser (E (0) = 0) as well as strong
coupling gE , such that |�R

E (0)| � κE , this still requires

dns�
eff
s

d�eff
s

< 0. (80)

A condition that can be satisfied only if

Im �R
P (0) − �eff

s

d

d�eff
s

Im �R
P (0) > κP/2, (81)

where we used (77) with the absolute value approximated by
unity as an upper bound. Since the minimum of the frequency
dependent loss rate

− Im �R
P (ω) ≈ σ + ξ (ω − s)2 (82)
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FIG. 17. The frequency and momentum resolved photon number density nP(ω, k) in the transparent phase (left) exhibits an almost perfect
transparency window, whereas the opaque phase (right) with the same parameters shows strongly dissipative polaritons (note the difference
by almost three orders of magnitude in the maximal spectral density). Results are shown for �s = 0.14, where for the parameters of Fig. 12
combined with κs = 2 the system is bistable. The almost flat blue line corresponds to the atomic level |d〉, which hybridizes with the probe
photon to form a fourth, bright polariton branch. For the selected small value of �s this hybridization remains weak and the new polariton
branch consequently is essentially unoccupied.

with

σ = 2
(
�eff

s

)2
g2

P(1 − nV )
∣∣uk

P(0)
∣∣2

γe
(
�eff

s

)2 + γ̃d�2
(83)

and

γ̃d = γ 2
d + 42

d

γd
(84)

for slow polaritons is tightly focused around ω = s, this
is a reasonably good approximation. Using the just stated
expansion of the probe photon self-energy around s, one
finds the left-hand side of Eq. (81) to be maximized for

�eff
s =

√
γd�2

3γe
, (85)

where one finds a strong collective coupling satisfying

g2
P > 2γeκP (86)

or, equivalently, a large collective cooperativity CP > 2 to be a
necessary condition for the emergence of a bistability. While,
due to the rough approximations used here, this is only a lower
bound on the collective cooperativity, it clearly shows that the
type of phase transition discussed here is not amenable to a
purely perturbative approach.

Instead of calculating a lower bound for the collective
cooperativity CP, we can also search for a rough estimate that
includes all relevant scales. To do so, we approximate ns ≈
pCsa

P �2
s /�

2, where p = 2κs(0)/κP is the pump ratio, indicat-
ing how strongly the probe photons near the EIT condition are
driven compared to their losses. Inserting this expression for
ns into | Im �R

E (0)| � κE , which is necessary for a highly non-
perturbative regime, yields the final strong coupling condition

pCECsa
P

�2
s

�2
� 1. (87)

In agreement with the superficial analysis of Sec. V B 1, we
find that a phase transition needs a single atom cooperativ-
ity for the probe photon of order one, but is nevertheless
accessible to an expansion in 1/LE as only the collective
cooperativity CE has to be of comparable size. An actual
bistability additionally requires an efficient backaction of the
losses in the dressed state |s〉 onto the dark-state polariton den-
sity. Therefore, typical systems that exhibit a phase transition
satisfy Eq. (87) by more than one order of magnitude. For
example, for the parameters of the critical point in Fig. 15,
one has pCECsa

P �2
s /�

2 ≈ 58.

C. Quantitative theory in the infinite-range limit

The reduced class of diagrams discussed in the previous
section is helpful to obtain a general idea about the emergence
of a phase transition between the two limits of a perfectly
restored transparency window deep within the transparent
phase, on the one hand, and an empty system in the opaque
phase on the other hand. Our main goal, however, is the quan-
titative description that extends all the way to the critical point
and the bistable region. To achieve this, one has to include
all diagrams that can be created self-consistently from the
two diagrams in Figs. 9(a) and 9(d). The resulting theory is
illustrated in terms of Feynman diagrams in Fig. 18, which
differs from the reduced theory of the previous section by
the addition of the Fock diagram to the Dyson equation of
the exchange photon (see last diagram in the third line of
Fig. 18). Note that at this level of the theory, the exchange
photon obtains a Nambu structure, which requires us to extend
the Kramers-Kronig relations of Appendix A to anomalous
Green’s functions, which we do in Appendix E 1.
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FIG. 18. Complete diagrammatics in the limit LE → ∞. Note that we do not show the anomalous components of the self-energy for the
E photon. Those are, however, obtained from the last diagram in the second line upon an exchange of laser and E photons acting on the same
transition. We included the anomalous components in the calculation (see Appendix E 1).

1. Dyson equations

Having introduced the anomalous nonequilibrium Green’s functions, we can now solve the self-consistent Dyson equations
shown in Fig. 18, where, to simplify the notation, we have introduced the matrix Green’s function Gsd for the states |s〉 and |d〉.
In absence of any diagrams of order 1/LE , this propagator is fully determined by the corresponding submatrix of [GR

a,0]−1 [see
Eq. (C3)], but with the effective Rabi amplitude �eff

s = �s|1 + η|:

GR/K
sd =

(
GR/K

ss GR/K
sd

GR/K
ds GR/K

dd

)
=
(

ω − s + iε/2 −�eff
s

−�eff
s ω − d − s + iγd/2

)−1

. (88)

In fact, as indicated by the last line in Fig. 18, and in analogy to Sec. V B, �s has to be replaced everywhere by �eff
s and GR/K

ss
supersedes the otherwise identical expression GR/K

s used in Sec. V B. Apart from these notational remarks, the only physical
difference between the present theory and the one discussed in Sec. V B is in the propagator of the exchange photon, which
acquires a new self-energy contribution �

R2
E :

GR
E = ([GR0

E

]−1 − �
R1
E − �

R2
E

)−1
. (89)

While the first term �
R1
E (ω) remains exactly the same as Eq. (65), the second, due to the Nambu structure, takes the lengthy form

�
R2
E (ω, k) = i

2
g4

Pg2
E�4�2

s |1 + η|2(1 − nV )2
∫

dω′

2π

d p

2π

∣∣GR
e (ω′)GR

ss(ω
′)
∣∣2δGK

P (ω′, p)

×
[[

GR
ss(ω + ω′)GR

e (ω + ω′)
]2

GR
P(ω + ω′, p + k)

( [
GR

d (ω + ω′)
]2

GA
d (ω′)GR

d (ω + ω′)

GR
d (ω′)GR

d (ω + ω′)
∣∣GR

d (ω′)
∣∣2

)

+ [GA
e (ω′ − ω)GA

ss(ω
′ − ω)

]2
GA

P(ω′ − ω, p − k)

( ∣∣GR
d (ω′)

∣∣2 GA
d (ω′ − ω)GA

d (ω′)

GA
d (ω′ − ω)GR

d (ω′)
[
GA

d (ω′ − ω)
]2

)]
. (90)
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FIG. 19. Effective theory of dark-state polaritons in the limit of infinite interaction range, i.e., LE → ∞. While there is an infinite set of
vertices coupling a single probe photon to an arbitrary number of exchange photons, these are conveniently summed up in the geometric series
embedded in �R

P . To make this apparent, in the first and third lines, we therefore introduce propagators for the dressed probe and exchange
photons, which are nothing else than the polaritons, that form the relevant collective excitations of the system. The second line then defines the
first two vertices in perturbation theory, with higher orders generated in the same fashion. With these new, effective degrees of freedom and
corresponding interactions, the theory shown in Fig. 18 becomes completely equivalent to the geometric series in the last line.

Some care has to be taken when it comes to determining
η: �

R2
E is actually indistinguishable from �

R1
E once one of

their external legs is substituted with the laser field �s. Con-
sequently, coupling to the coherent field with �

R2
E would

overcount the diagrams in the last line of Fig. 18. Therefore,
η is given by

η =
∑

j

�
R1
Ej j

GR
Ej1

∣∣∣
k,ω=0

. (91)

Note that, strictly speaking, using the real and positive defi-
nition �eff

s = �s|1 + η| in the anomalous components of the
exchange photon Green’s function is wrong, since it leads to
an incorrect behavior of GE under a global U (1) transfor-
mation. This does not matter, however, since all observables
depend only on the gauge invariant |1 + η|2, which allows
us to simplify our calculations. By fixing the real value
�eff

s , one can then directly determine the corresponding ex-
perimentally relevant parameter �s. From a computational
point of view, this makes for a very cheap calculation, as
the two-dimensional convolution in Eq. (90)–which has to be
calculated only once—only has to be evaluated at k = ω = 0.

Similar to the previous section, the simplified nonlinear
Feynman rules are not uniquely defined and we thus again
have to choose between the strict and lenient way of imple-
menting the rules to estimate the error bounds of the simplified
diagrammatics. We do so in the same fashion as before, i.e.,

for the strict rule we use GA/R
d0

in Eqs. (65) and (90). For the le-

nient version, we employ GA/R
d according to Eq. (67) together

with the replacement (68) for the very same equations.
Before we proceed to discuss the results obtained from the

set of coupled Dyson equations introduced in this section, it
is instructive to view these calculations from a more concep-
tual point of view: Despite the potentially large single atom
cooperativity experienced by the probe photons, their density
is assumed to be small, such that dark-state polaritons in the
absence of exchange photons are noninteracting quasiparti-
cles. This is correctly captured by the nonlinear Feynman
rules, which allow for an exact diagrammatic solution of
the interacting theory in the g − e − s − P sector. If we now
consider the additional coupling to level d and include the
E photons, we can eliminate the atomic degrees of freedom
to obtain an effective theory for the dressed propagating and
exchange photons. Indeed, on the one hand, the atomic level
structure contains the microscopic details necessary for the
formation of polaritons, which within the effective theory is
incorporated in the dressed P photons, and on the other hand
the atoms serve as interaction vertices between one probe pho-
ton and an arbitrary number of exchange photons. While the
latter may be strongly dressed with probe photons themselves,
there are only two processes for this that are allowed by the
atomic vertices, namely, those in the third line of Fig. 18. The
diagrammatic representation of the effective theory is shown
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FIG. 20. Flow diagram of the effective relative coupling strength |1 + η| as a function of the externally adjustable parameter �s, where
apart from γd = 10 the same parameters as in Fig. 12 [κ0 = 2, κs = 1, ω0 = s = nV = 0, gP = 10, κP = 0.5, γe = 1, P(k) = −50 cos k,
E (k = 0) = −1, d = 0, κE = 5, gE = 10] are used together with the lenient and strict interpretations of the nonlinear Feynman rules in the
first row and second row, respectively. Note the emergence of a tristable region, where in addition to the opaque and transparent phases, a new,
strongly interacting semitransparent phase appears.

in Fig. 19. We stress that this is completely equivalent to the
theory presented in Fig. 18. In the first line of Fig. 19, the
free polariton propagator is defined and indicated as a curly
line. In the second line, the interaction vertices between the
polariton and the E photons are illustrated. Out of these, only
the first two are shown, but actually an infinite number of
E lines is allowed in the vertex indicated by the dots in the
last line of Fig. 19, where all possible interaction corrections
to the polariton self-energy are shown. Luckily, all of these
vertices can be conveniently resummed as a geometric series,
as we have demonstrated earlier in the derivation of the self-
consistent equations. Similarly, all possible contributions to
the E -photon self-energy are shown in the third line. However,
as every vertex has to involve exactly one probe photon, the
number of diagrams here is limited to two.

2. Quantitative results and validity

With the inclusion of all effects at leading order in 1/LE ,
η is no longer bounded from below by −1. In fact, it can
achieve arbitrarily small values, which can be understood
by a closer examination of the effects of �

R2
E in terms of

the effective theory in Fig. 19, where it is represented as
the last diagram of the third line. Within this framework, one
immediately realizes that �

R2
E describes in fact a particle-hole

excitation of a probe photon. Since, however, this photon itself
is strongly dressed by the medium inducing EIT, its distri-
bution FP(ω) is sharply peaked. This allows for a resonant
reallocation of photons from highly occupied frequencies and
momenta toward low-occupation regions, by means of the
particle-hole excitations in �

R2
E . Where this is possible, it will

act as a locally inverted environment for the exchange pho-
tons, thereby effectively driving them. Since there is no other

diagram to counter this effect, the exchange photon propaga-
tor can develop a divergence, resulting in η → −∞, which
is unphysical. While in general there is nothing wrong with
the inverted bath experienced by the exchange photons, one
has to pay attention to its effect on the cooperativity CE . The
latter, namely, grows as the divergence in GR

E is approached.
Consequently, diagrams at higher order in 1/LE have to be
included and these will in turn prevent the unphysical insta-
bility in the exchange photon propagator. We will outline the
underlying processes in the next section. Nevertheless, as long
as LE remains large enough, −η can still become large without
forcing us to include subleading orders in LE . This can happen
to such an extent that it actually overcompensates the bare
coupling �s up to the point where a new, strongly interacting
phase emerges. This new phase, which will be referred to as
the intermediate phase, is stable, as evidenced by the flow
diagrams in Fig. 20, which we show again both for the lenient
and the strict implementation of the Feynman rules. As there is
hardly any quantitative differences between the two versions,
in the following we will focus on the strict rules.

Previously, we presented an argument for the emergence
of the bistability, whereby an increase in �eff

s was met with
a sufficiently fast decrease of ns (and of η), so �s itself was
reduced, resulting in a nonunique identification �s(�eff

s ), i.e.,
a bistability. It is exactly the opposite effect that stabilizes
the intermediate phase, whereby for small �s an increase of
�eff

s increases the efficiency of the drive experienced by GR
E ,

such that |η| grows until this effect is exactly balanced by
the effects of increased losses discussed in Sec. V B. If this
happens at η � −1, a stable intermediate phase exists.

As can be observed in Fig. 21, where the losses γd have
been increased tenfold compared to Fig. 12, the stability of
the transparent phase is strongly enhanced in comparison with
the results of Sec. V B. This is a consequence of the slow
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FIG. 21. The quantitative phase diagram in the limit LE → ∞
and with the parameters of Fig. 20, shows three distinct phases.
While the transparent and opaque phase can be adiabatically con-
nected to free theories far away from the multistable regime, the same
cannot be said for the strongly interacting intermediate phase. The
region of coexistence between opaque and transparent phase is indi-
cated in magenta, that between transparent and intermediate phases
in orange, and the remaining bistable area in green. All multistable
regions are labeled by the initial characters of the coexisting phases.

dark-state polaritons, which require that each probe photon
during its lifetime excites on average multiple atoms. As such,
while the field content of the two contributions �

R1
E and �

R2
E ,

as well as the relative detunings between atoms, lasers, and
guided photons, allow no distinction between them, �

R2
E is

favored combinatorically by a factor ∼Csa
P . In essence, on

can think of the last diagram in the third line of Fig. 18 or,
equivalently, Fig. 19 as an antenna increasing the amplitude
of the indirect coupling beyond that of the direct laser driven
transition between |s〉 and |d〉. Consequently, slow polaritons
with infinitely ranged interactions are typically dominated by
these diagrams. If the gain of the antenna ∼Csa

P is large and
increases sufficiently with �eff

s , as suggested by the leading
dependence �

R2
E ∼ (�eff

s )2, it can counteract the reduction in
polariton density, thereby stabilizing the intermediate phase.

As indicated by the color gradients in Fig. 21, the transpar-
ent and opaque phase are adiabatically connected. The same
is true for the transparent and intermediate phase as the latter
emerges from the former at large drive strengths κs. To more
closely investigate the properties of each phase, we provide a
plot of the number density of atoms in the state |s〉 (Fig. 22),
which shows that in every phase the polariton density and
therefore their lifetime decreases as �s is increased. However,
in the case of the intermediate phase, ns and the polariton
lifetime decrease also with increasing κs, which implies that
the interaction strength is increased. This demonstrates that
the intermediate phase is indeed stabilized by the overcom-
pensation of �s via strong interactions and its properties

FIG. 22. The number density of atoms in the metastable state |s〉
can be used to characterize the three distinct phases. For the slow
polaritons obtained for the parameters of Fig. 20 that are also used
here, ns is a good estimate of the dark-state polariton density. The
density of the intermediate phase is highlighted in green and those of
the adiabatically connected transparent and opaque phases in blue.
If these coexist, the transparent solution is shown in yellow. As a
testament to the overcompensation of �s by η, the density of the
strong coupling intermediate phase decreases as drive intensity κs is
increased.

are not directly linked to either the weakly interacting limit
�s/κs → ∞ or the unperturbed polaritons at κs/�s → ∞.
We therefore use the strong backaction condition of a negative
slope in the polariton density dns/dκs as the defining prop-
erty to distinguish between the transparent and intermediate
phase in Fig. 22. The relatively low density and the increased
linewidth of the dark-state polaritons (see Fig. 23) in the inter-
mediate phase actually help with the numerical investigation,
as the discretization of momentum and frequency space can
be performed at a lower resolution and saturation effects can
more readily be discarded.

D. Verification: Corrections at order 1/LE

As was summarized at the end of the last section, the
restriction to a theory that exclusively resumes all diagrams of
the effective theory in Fig. 19 is not always quantitatively jus-
tified. In particular, for current experiments with PCWs [24],
the range of the exchange photons is limited due to imper-
fections in the fabrication that cause rather large losses κE .
Therefore, in this section we will go one step further and
include all diagrams in next-to-leading order. In the absence
of any other method applicable to the required long chains of
atoms far from equilibrium, the purpose of this section will
be twofold: On the one hand, it will serve as a verification
of the validity of the expansion in 1/LE . On the other hand,
it will improve the accuracy of our predictions as it will in
particular allow us to include scattering between polaritons,
that is, processes involving momentum transfer. In terms of
the effective theory in Fig. 19, the only modification is the
inclusion of the two diagrams in Fig. 24. Equivalently, in
terms of the original theory including the atomic degrees of
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FIG. 23. Comparison of the transparency window for the two different stable phases shows a distinct ordering in the brightness of the
dark-state polaritons. Except for κs = 2 and �s = 0.21, the parameters of Fig. 20 were used.

freedom, we obtain the Dyson equations shown diagrammat-
ically in Fig. 25. One can identify these self-energies with
the full set of self-consistently generated diagrams from the
next-to-leading order corrections in 1/LE and 1/LP to the
probe-photon propagator shown in Fig. 9. Since at the present
order of expansion the form of the Dyson equations as well
as the approach to their solution becomes rather involved,
we move the corresponding coupled set of equations to Ap-
pendix F, and only present the results next.

1. Results

When including the effects of a finite interaction range,
care has to be taken not to break any of the assumptions
underlying the quantitative validity of the approximations at
use. In particular, if the interaction becomes too short-ranged,
the losses in state |d〉 caused by emission of exchange pho-
tons and described by the second diagram of the fourth and
fifth lines of Fig. 25—or, equivalently, the (22) component of
Eq. (F2)—become large as a result of the narrow linewidth
of state |s〉 for long lived dark-state polaritons. These effects
are included in GR

d in the lenient interpretation of the non-
linear Feynman rules but not for the strict rules. As these
atomic Green’s functions form the vertex of the effective
theory, the differences will grow upon iteration of the self-
consistency equations. The uncertainty regarding the results of
the exact Feynman rules for four-level atoms thus grows with
decreasing LE . Since the additional scattering effects that arise
from the inclusion of 1/LE effects into the description cannot

FIG. 24. Addition to the effective Theory in Fig. 19 at next-to-
leading order in 1/LE .

themselves create any new instabilities and instead remedy
those that could otherwise exist in GR

E , relatively large values
of Csa

E can be treated without much more than quantitative
corrections to the previously discussed results. The main lim-
itation for an extension to even smaller values of LE or larger
values of Csa

E lies in the discrepancy between the different
interpretations of the Feynman rules, which eventually will
have to be specified in more detail. This time, for a change,
we discuss our results using numerical data obtained from
the lenient Feynman rules, which requires exactly the same
amount of numerical effort as the strict rules. The resulting
phase diagram depicted in Fig. 26 is similar to that in Fig. 21.
However, the quantitative corrections due to the finite inter-
action range reduce the extent of the intermediate phase. This
is to be expected as the corrections in 1/LE counteract the
previously discussed effective drive of the exchange photons.
This comparison shows that all the corrections to the next-to-
leading order are of the same order as the small parameter of
our expansion, that is, our expansion is indeed controlled.

The restriction to large interaction ranges imposed by the
discrepancy between the approximate implementations of the
Feynman rules, together with the fact that scattering between
dark-state polaritons is dominated by forward scattering—the
exchange photons are most efficiently coupled to at k = 0—
renders the effects of scattering on the probe photons actually
negligible in this regime. As a demonstration of the smallness
of the redistribution due to scattering, one can examine the
distribution function FP(ω, k), which, even in the transparent
phase where resonant scattering is strongest, is almost entirely
momentum independent (see Fig. 27). Only upon subtraction
of the momentum-independent background, a slight increase
in FP(ω, k) near the EIT window can be observed.

For the present case of scattering with small momentum
transfers, the most significant effect of the inclusion of 1/LE

corrections is the avoidance of the divergence in GR
E appearing

as an artifact of the LE → ∞ theory: While the exchange
photons can still experience an effective drive due to the redis-
tribution of energy between dark-state polaritons, this effect is
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FIG. 25. Complete set of coupled Dyson equations at next-to-leading order. The loop-reduction procedure of Appendix D is employed
here and, depending on the Feynman rules at use, d propagators are either bare or given as part of Gsd , of which the s propagator in the last
diagram of the third line is just the (11) component.

significantly weakened by the increasing dissipative nature of
the atomic vertex brought about by the aforementioned losses
in |d〉. As the exchange photon experiences fewer and fewer
losses, those of |d〉, namely, increase, thereby weakening the
coupling between probe and exchange photons enough to
stabilize the system.

VI. APPLICATION: PHOTONS IN AN ATOMIC MEDIUM
WITH RYDBERG INTERACTIONS

We now consider a different laser scheme with respect
to Sec. V. Starting again from the three-level scheme of
Fig. 2(b), we do not add a laser exciting to a fourth level but
consider the s level to be a Rydberg state. We will mostly use
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FIG. 26. Phase diagram including corrections due to the finite
interaction range. The color coding is the same as in Fig. 21. The
bistability between transparent and intermediate phase is less pro-
nounced and for large �s the opaque phase is more prevalent. The
parameters are identical to those in Fig. 20, except for αE = 1000
and kE = 0 (setting the interaction range LE ≈ 14 and profile) and
the use of lenient Feynman rules.

the same notation as above to illustrate how interactions be-
tween Rydberg polaritons fit into a 1/L expansion. Instead of
driven exchange photons with significant losses and a tunable
dispersion, unguided photons with low energies mediate the
interactions between Rydberg atoms. In fact, the quadratic
Stark shift that gives rise to the interatomic van der Waals
potential V (x) = −C/|x|6 requires the exchange of two pho-
tons. Their dynamics, however, happens on timescales much
shorter than those experimentally relevant and can therefore

be neglected. With this knowledge, it is well justified to re-
place the two-photon interaction by the effective potential
V (x − x′)ns(x)ns(x′).

Diagrammatically, the resulting theory looks very simi-
lar to the one discussed in the previous sections, the only
modification being the replacement of GR

E coupling between
states |s〉 and |d〉 by V (x) acting directly on |s〉. The nonin-
teracting Rydberg polariton theory is illustrated in the first
line of Fig. 28 with the |s〉 propagator considered as bare.
Interactions are then taken into account by dressing this state
with density-density interactions that take a similar form as
those considered in Sec. V B. The resulting Feynman diagram
in the second line of Fig. 28 has to be treated self-consistently
following the same procedure as in Sec. V B, with the main
difference compared to Fig. 9(a) being the absence of state
|d〉 and the external source �s. It is readily evaluated as

�R
s (x, t ) =

∫
d3xV (x − x′)ns(x′, t ), (92)

with the functional dependencies GR
s [�R

s ], GR
e [GR

s ], and
GR

P[GR
e ] identical to Sec. V B.

Interestingly, the leading diagrammatic contributions for
the setups discussed in the previous sections actually disap-
pear in the context of Rydberg polaritons. Self-interactions of
a Rydberg atom by emission and absorption of a photon in-
duce a Lamb shift that is already included in the bare energy of
the atomic state. A repeated interaction between two Rydberg
atoms on the other hand has to be treated with the nonlinear
Feynman rules. By arguments identical in spirit to those of
Sec. III C it reduces to terms already included in Eq. (92). Last
but not least, a self-interaction of a Rydberg polariton through
the interaction of two distinct atoms, similar to Fig. 9(b),
is excluded by the instantaneous nature of interactions. As
such, the limit of a low Rydberg polariton density results in
a less complicated, but conceptually similar expansion to that
derived for PCWs and TNWs. However, the absence of an
external coupling similar to �s, with which the interaction
can interfere destructively, prevents the emergence of phase
transitions of the type discussed before.
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FIG. 27. For parameters where the expansion remains quantitatively controlled, the distribution function FP(ω, k) shows hardly any visible
momentum dependence and thus only weak signatures of scattering. To make the weak momentum dependence visible, we subtracted the
momentum independent background FP(ω, k = 0). Here the transparent solution is depicted for the same parameters as in Fig. 26 (κ0 = 2,
κs = 1, ω0 = s = nV = 0, gP = 10, κP = 0.5, γe = 1, γd = 10 P(k) = −50 cos k, E (k = 0) = −1, αE = 1000, kE = 0, d = 0, κE = 5,
gE = 10), with κs = 1.8, �s = 0.07.
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FIG. 28. Leading order of the expansion in Feynman diagrams
around the limit of infinitely ranged interactions between Rydberg
polaritons. Note that, due to the use of a fixed potential, only a
single interaction diagram has to be considered. Otherwise the self-
consistent treatment is similar to that in Sec. V B.

Instead, interesting questions include the scattering of Ry-
dberg polaritons and the stability of regular structures (i.e.,
n-particle bound states) or even crystals. Here we only want to
give a brief idea of how these questions can be approached in
terms of a 1/L expansion and therefore discuss the simple case
of a Rydberg polariton scattering off a fixed Rydberg atom at
the origin. In this case, the polariton Green’s function is given
by

GR
P(ω, k, x)

=
(
ω − ωP(k) − g2

P(1 − nV )

ω − �2

ω−s−V (x) + iγe/2
+ iκP/2

)−1

,

(93)

where the inversion in momentum space first requires a
Fourier transform from x to the momentum difference be-
tween incoming and outgoing polariton and is then to be
understood as the inverse with respect to the convolution and
thus a nontrivial operation. Nevertheless, assuming a slow,
and thus well-localized, incoming Rydberg polariton of fixed
frequency ωEIT = s corresponding to the EIT window at
|x| → ∞, we can calculate its losses as a function of r = |x|
and determining the blockade radius. The losses are given by
the imaginary part of the inverse propagator

κeff
P (ω, r) = κP + g2

P(1 − nV )γe(
ω − �2

ω−s−V (x)

)2 + γ 2
e /4

, (94)

FIG. 29. Rydberg blockade experienced by a Rydberg polariton
as a function of the distance from a stationary Rydberg atom at r = 0.
The imaginary part of the inverse propagator indicating the losses
becomes very large at a distance set by the blockade radius Rb. At
the same time, the real part that gives rise to deflection also grows.
Parameters used are κP = 1/5, γe = 1/4, s = 1/3, � = 1/2, nV =
0, and gP = 5.

and illustrated in Fig. 29. The pronounced maximum that
forms at the blockade radius Rb is determined by equating
the frequency shift due to �R

e with the bare losses γe/2. As
a result, one finds

Rb =
(

C(γe + 2s)

2�2

)1/6

, (95)

which agrees with existing work [14]. Finally, an expansion
of κeff

P (s, r) around r → ∞ reproduces the related result
κeff

P (s, r) ∝ r−12.

VII. CONCLUSIONS AND OUTLOOK

We have developed a nonequilibrium diagrammatic ap-
proach to strongly interacting photons in optically dense
atomic media. It provides quantitative results in the regime
of low atom-excitation densities where saturation effects are
negligible, provided the atom-atom interactions—which the
photons inherit—have a large effective range compared to the
atomic interspacing. Such a regime can still feature single-
atom cooperativities of order or larger than one and thus show
strong nonlinearities and emergent many-body phenomena,
like the nonequilibrium phase transitions we describe here.

The formalism applies to a broad class of hybrid
(nano)photonic devices coupled to arrays of interacting atoms
and constitutes a novel theoretical approach to such driven-
dissipative many-body systems. Important future applications
involve, in first place, the description of experiments where
photon wave packets propagate through the medium, the de-
scription of which requires to solve the Dyson’s equations pre-
sented above without relying on space- and time-translation
invariance. A second interesting avenue is the study of pos-
sible crystalline phases of photons appearing in the steady
state [58–60], which can be also efficiently described within
our formalism.
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APPENDIX A: KRAMERS-KRONIG RELATIONS

Due to causality, each vertex involves either one or three
quantum fields. There are thus four copies of each vertex,
differing only in the Keldysh index while otherwise being
identical. As every retarded Green’s function has to connect
a quantum and a classical field, while the Keldysh com-
ponent connects only classical fields, the distinction in the
number of quantum indices in a vertex results in it being
connected to different components of the matrix Green’s func-
tion. In general, this gives rise to a large amount of Feynman
diagrams to be calculated. Luckily, most of these can be
related to one another using Kramers-Kronig relations. In
the following, we will illustrate how these relations can be
exploited.

To do so, it is convenient to use the distribution function
F (ω) defined in Eq. (26), which encodes how strongly the
effective environment tries to populate a certain degree of
freedom. In the absence of particles, one finds F (ω) = 1,
which allows us to express the Keldysh component through
the retarded Green’s function. This is nothing else than the
formal statement that vacuum field theory requires no Keldysh
formalism in the first place, since no violation of detailed
balance is possible. We will denote this special case of an
unoccupied degree of freedom by a subscript 0 attached to
the causality index (K) as in GK0 . For these empty modes,
invoking Kramers-Kronig relations for the retarded Green’s
function

Re GR(ω) = P
∫ ∞

−∞

dω′

π

Im GR(ω′)
ω′ − ω

,

Im GR(ω) = −P
∫ ∞

−∞

dω′

π

Re GR(ω′)
ω′ − ω

(A1)

allows us to find some simplifications. Indeed, any two
Green’s functions G1(ω) and G2(ω) will obey

∫ ∞

−∞

dω′

2π
GK0

1 (ω′)GR
2 (ω − ω′)

=
∫ ∞

−∞

dω′

2π
GR

1 (ω′)GK0
2 (ω − ω′),

∫ ∞

−∞

dω′

2π
GK0

1 (ω′)GR
2 (ω + ω′)

= −
∫ ∞

−∞

dω′

2π
GA

1 (ω′)GK0
2 (ω + ω′), (A2)

which follow immediately from (A1) by splitting the retarded
Green’s function into real and imaginary parts. Additionally,

one has∫ ∞

−∞

dω′

2π
GK0

1 (ω′)GK0
2 (ω − ω′)

= −
∫ ∞

−∞

dω′

2π

(
GA

1 (ω′)GA
2 (ω − ω′) + GR

1 (ω′)GR
2 (ω − ω′)

)
,

∫ ∞

−∞

dω′

2π
GK0

1 (ω′)GK0
2 (ω + ω′)

= −
∫ ∞

−∞

dω′

2π

(
GA

1 (ω′)GR
2 (ω + ω′) + GA

1 (ω′)GR
2 (ω + ω′)

)
,

(A3)

which are easily proven by applying the Fourier transforms to
the convolution and using that

F (H( f )) = −i sgn(t )F ( f ), (A4)

where f is any function and H and F are Hilbert and Fourier
transforms, respectively.

Similar identities, using the same method, can also be
proven for more complicated products and higher order
convolutions of Green’s functions. Since the bare atomic prop-
agators for all but the ground state, as well as that of the
bare exchange photon, involve no driving, these states can
only be occupied by coupling to the ground state. Without
these interactions, they remain unoccupied, their distribution
function is the identity matrix and we can use the Kramers-
Kronig identities to great effect. In particular, one recovers
the intuitive result that interactions cannot generate excita-
tions from the vacuum, which formally takes the simple form
�K

ν [GK0
μ , GR

μ] = 2i Im �R
ν [GK0

μ , GR
μ].

APPENDIX B: DERIVATION OF A COLOURED BATH

A colored bath in the form of a frequency-dependent cou-
pling rate κs(ω) can be constructed by an indirect coupling to
a Markovian bath. First, an additional Gaussian mode with a
coherence time and length much shorter than the relevant time
and length scales for dark-state polaritons is itself driven by a
Markovian bath:

Ĥaux = ω0b̂†
auxb̂aux, (B1a)

Llossρaux = −h̄
κ1

2
({b̂†

auxb̂aux, ρaux} − 2b̂auxρauxb̂†
aux), (B1b)

Ldriveρaux = −h̄
κ2

2
({b̂auxb̂†

aux, ρaux} − 2b̂†
auxρauxb̂aux), (B1c)

where b̂†
aux and b̂aux are bosonic creation and annihilation

operators for the auxiliary mode with density matrix ρaux. In a
next step, this mode then couples bilinearly to the propagating
photons:

Ĥab = gb

∫
k
(b̂†

auxb̂P(k) + b̂†
P(k)b̂aux). (B2)

In the limit of strong driving, where κ1/κ2 approaches
unity from below, this construction that effectively mimics a
frequency-dependent coupling of the system to a highly occu-
pied incoherent bath is described by the following addition to
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the Liouvillian:

Lκsρ(t ) = − h̄

2

∫
k

∫ t

−∞
dt ′(κs(t − t ′)[b̂†

P,I (k, t ),

[b̂P,I (k, t ′), ρI (t ′)]] − κs(t
′ − t )[b̂P,I (k, t ),

[b̂†
P,I (k, t ′), ρ(t ′)]]), (B3)

where the additional index I indicates that operators are to be
evaluated in the interaction picture, where H as well as all
Lindblad operators (except Lκs ) contribute to the time evolu-
tion. Here κs(t ) ∼ exp (−κ0|t |) decays exponentially, which
due to κ0 = 2(κ1 − κ2) can be tuned by the properties of the
Gaussian mode. While this construction is rather cumbersome
if written as Liouvillian, in the functional-integral description,
however, the Gaussian mode can be integrated out immedi-
ately, giving rise to a simple, closed expression for a colored
bath.

Note that to control the occupation of the propagating
modes, it is sufficient to choose κ1 = κ2 such that Stokes
and anti-Stokes processes are equal in amplitude, and then to

adjust the loss rate κP accordingly. This construction implies
that the anti-Stokes processes are at least equally likely as the
Stokes processes, such that the bath cannot be inverted and
consequently lasing or condensation are excluded [61].

APPENDIX C: MATRIX GREEN’S FUNCTIONS

In this Appendix, we give the expression of the bare matrix
Green’s functions used in Sec. V. Those of Sec. IV are then
simply obtained by removal of state |d〉 from the Green’s
functions of the atoms and the exchange photon from the
photon propagators.

For the noninteracting atoms coupled to the coherent laser
fields, the inverse retarded Green’s function in the basis

a(q,cl)(ω, z) =

⎛
⎜⎝

ad (ω, z)
as(ω, z)
ae(ω, z)
ag(ω, z)

⎞
⎟⎠

(q,cl)

(C1)

reads

[
ḠR

a,0

]−1
(ω,ω′)

=

⎛
⎜⎜⎝
(
ω − ωd + i γd

2

)
δ(ω − ω′) −�sδ

(
ω − ω′ − ω

(2)
L

)
0 0

−�sδ
(
ω − ω′ + ω

(2)
L

) (
ω − ωs + i ε

2

)
δ(ω − ω′) −�δ

(
ω − ω′ + ω

(1)
L

)
0

0 −�δ
(
ω − ω′ − ω

(1)
L

) (
ω − ωe + i γe

2

)
δ(ω − ω′) 0

0 0 0
(
ω + i ε

2

)
δ(ω − ω′)

⎞
⎟⎟⎠.

(C2)

However, as it turns out, it is far more convenient to transform into a rotating frame, where the states |e〉, |s〉, and |d〉 rotate
at frequencies ωe, ωe − ω

(1)
L and ωe − ω

(1)
L + ω

(2)
L , respectively. Within this frame, the atomic Green’s function becomes time-

translationally invariant, that is, G−1
a,0(ω,ω′) = G−1

a,0(ω)δ(ω − ω′) with

[
GR

a,0

]−1
(ω) =

⎛
⎜⎜⎝

ω − d − s + i γd

2 −�s 0 0
−�s ω − s + i ε

2 −� 0
0 −� ω + i γe

2 0
0 0 0 ω + i ε

2

⎞
⎟⎟⎠ (C3)

in the frequency-shifted basis:

a(q,cl)(ω, z) =

⎛
⎜⎜⎝

ad
(
ω + ωe − ω

(1)
L + ω

(2)
L , z

)
as
(
ω + ωe − ω

(1)
L , z

)
ae(ω + ωe, z)

ag(ω, z)

⎞
⎟⎟⎠

(q,cl)

. (C4)

Here the detunings s = ωe − ω
(1)
L − ωs and d = ωd −

ωs − ω
(2)
L between laser frequencies and atomic transitions

have been introduced. The corresponding Keldysh component
of the inverse Green’s function within the same frame of
reference is given by

DK
a,0(ω) =

⎛
⎜⎝

iγd 0 0 0
0 iε 0 0
0 0 iγe 0
0 0 0 (3 − 2nV )iε

⎞
⎟⎠.

(C5)

In direct analogy to Sec. III A, nV ∈ [0, 1] is the homogeneous
number density of vacant lattice sites.

An equivalent rotation can also be performed for the re-
tarded and Keldysh components of the inverse photon Green’s
function, which then are given by

[
GR

p,0

]−1
(ω, k) =

(
ω − E (k) + i κE

2 0
0 ω − P(k) + i κP

2

)
(C6)

and

DK
p,0(ω, k) =

(
iκE 0
0 iκP + 2iκs(ω)

)
, (C7)

respectively. Here we expressed both functions in the basis

b(q,cl)(ω, k) =
(

bE
(
ω + ω

(2)
L , k

)
bP(ω + ωe, k)

)(q,cl)

(C8)
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and introduced the detunings P(k) = ωP(k) − ωe and
E (k) = ωE (k) − ω

(2)
L . Note that here we have already per-

formed the Gaussian integration over the auxiliary field baux

used in Appendix B to model a colored bath, after which the
inverse probe photon propagator in general is modified by
the subtraction of g2

bGb(ω). Assuming very strong coupling
to the incoherent source, however, κ1 and κ2 diverge, while
κ0 = 2(κ1 − κ2) and κs = 2g2

bκ1 are kept finite. In this limit,
g2

bGR
b (ω) vanishes, while κs(ω) = −ig2

bGK
b (ω)/2 = κs/((ω −

ω0)2 + κ2
0 ) remains finite.

Introducing the field vectors a = {acl, aq} and b =
{bcl, bq}, the noninteracting part of the action S = S0 + Sint is
conveniently expressed in terms of the bare Green’s functions

(indicated by the lower index 0):

S0 = h̄
∫

dω

2π

(∑
z

a∗(ω, z)G−1
a,0(ω)a(ω, z)

+
∫

dk

2π
b∗ω, k)G−1

p,0(ω, k)b(ω, k)

)
. (C9)

Here, as before in Sec. III A, the corresponding inverse
Keldysh matrix Green’s functions are given by

G−1
μ,0 =

(
0

[
GA

μ,0

]−1[
GR

μ,0

]−1
DK

μ,0

)
. (C10)

Lastly, the light-matter interactions are described by

Sint =
∫

dω

2π

∫
dk

2π

∑
z

(
1√
2

gPeikzuP
k (z)

[
bq

P(k)
(
āq

e (z)aq
g(z) + ācl

e (z)acl
g (z)

)+ bcl
P (k)

(
ācl

e (z)aq
g(z) + āq

e (z)acl
g (z)

)]+ H.c.

+ 1√
2

gE eikzuE
k (z)

[
bq

E (k)
(
āq

d (z)aq
s (z) + ācl

d (z)acl
s (z)

)+ bcl
E (k)

(
ācl

d (z)aq
s (z) + āq

d (z)acl
s (z)

)]+ H.c.

)
. (C11)

The same discussion used in Sec. III B for a single mode also
applies to the Bloch functions uP,E

k (z), for which the uP,E
k (0)

is assumed to be independent of k so it can absorb into the
coupling constant via gP,E |uP,E

k (0)| → gP,E .

APPENDIX D: LOOP REDUCTION

Beyond the Kramers-Kronig relations, a further signifi-
cant simplification can be achieved by noting that the atomic
ground-state has no dynamics of its own. Hence, any loop
involving the bare Keldysh component of the ground-state
propagator can be computed trivially [62]. In and of itself,
this is not a particularly useful observation. In combination
with the Kramers-Kronig relations and the nonlinear Feynman
rules introduced in Sec. IV A, however, several loop integrals
can be computed exactly.

To better understand how all of these properties come
together, let us consider the case of a probe photon propagat-
ing through any polarizable medium. This process to leading
order in 1/L is described by the diagrammatic equation in
Fig. 30. Here the propagator of the excited state cannot be
specified further, since interactions with other excited atoms
can and will dress it. The ground-state propagator, on the other
hand, only couples to other states via the absorption of a probe
photon. Employing the Feynman rules of Sec. IV A to the
polarization loop in Fig. 30, it will thus always be described

FIG. 30. The probe photon propagator to leading order in 1/LP

can be simplified significantly using the loop reduction procedure.

by the bare Green’s function. Consequently, the diagram of
Fig. 30 for the retarded probe photon propagator is solved
by (32) and (37). Since, furthermore, GK

g,0(ω) = −2π i(3 −
2nV )δ(ω), the remaining integral can then be solved imme-
diately, such that one finally obtains

�R
P (ω) = g2

P(1 − nV )GR
e (ω), (D1)

completely independent of the form of the interactions be-
tween excited states. A similar calculation gives the equivalent
result

δ�K
P (ω) = g2

P(2 − nV )δGK
e (ω) (D2)

for the Keldysh component of the self-energy. Hence, the
result for the polarization bubble is the same as for a bilinear
coupling converting a photon into an excited atomic state,
albeit with the modified coupling constant g̃P = gP

√
2 − nV .

This identification changes the topology of diagrams. How-
ever, quite importantly, the ordering in powers of the inverse
interaction range remains unaffected.

Note that despite the extremely long lifetime of the
metastable state |s〉, due to the static laser field coupling to
state |e〉 (and in Sec. V also to |d〉), the corresponding Keldysh
component GK

s (t − t ′) explicitly depends on time and a simi-
lar identity for particle-hole loops involving |s〉 is not quite as
useful.

APPENDIX E: ALTERNATIVE DERIVATION
OF NONLINEAR FEYNMAN RULES

In Sec, IV A, we argued that to capture the properties of
noninteracting polaritons giving rise to EIT, it is not actually
necessary to implement nonlinear Feynman rules in real time.
Instead, it suffices to simply exclude all self-energy insertions
into the ground-state propagator and to forbid any of the
excited states to repeatedly couple to the ground state. By
these means, we then derived the (exact) polarizability of the
atomic medium in Sec. IV. It is instructive to rederive this

033720-31



LANG, CHANG, AND PIAZZA PHYSICAL REVIEW A 102, 033720 (2020)

result directly from the coupled Lindblad equations of the spin
operators σμν introduced in Secs. III A and IV.

The retarded polarizability of each atom in the ground state
takes the form

P(t ) = θ (t )[Tr(σge(t )σegρ) − Tr(σegσge(t )ρ)]. (E1)

The latter of these contributions vanishes identically as ρ =
σgg. The time evolution of σge(t ) is given by

− iσ̇ge(t )

= [H, σge(t )] + iγe
(
σgeσge(t )σeg − 1

2 {σegσge, σge(t )}),
(E2)

which very nicely simplifies if one uses σegσge = σee as well
as the observation that H in the limit of low polariton densities
acts trivially on the ground state, which implies σgeσge(t ) = 0
and Hσge(t ) = 0. One thus ends up with

iσ̇ge(t ) = σge(t )H − i
γe

2
σge(t )σee, (E3)

which has the solution

σge(t ) = σgee−iH̃t , (E4)

where H̃ = H + i γe

2 σee is the non-Hermitian effective Hamil-
tonian governing the time evolution of the three level system
in the presence of losses. Inserting this result back into the
polarizability, we obtain

P(t ) = θ (t )(eiH̃t )22, (E5)

which upon Fourier transformation turns into

P(ω) = i

ω − �2

ω−s
+ iγd/2

, (E6)

which coincides with the result obtained by means of the
simplified nonlinear Feynman rules in Eq. (40). We thus have
seen that, due to the absence of laser coupling between the
atomic ground state and the excited state, nonlinear Feynman
rules are easily implemented. As is mentioned in Sec. V, the
dynamics of the other external state of the four-level-scheme
is not as simple. Thus a similar derivation for the susceptibility
of the medium from the perspective of the exchange photon
fails.

We can now go beyond the limit of low polariton densities
and consider the effect of a finite density of excited atoms. In
this case, there is a finite fraction of atoms for which ρ �= σgg.
In particular, due to EIT, excited atoms will predominantly
occupy the metastable state (ρ = σss). This however implies
that σegρ and ρσeg both vanish. The main effect of a finite
density of polaritons will thus simply result in a reduced
susceptibility of the atoms. This is easily included via a finite
density of defects nV in the chain of atoms. If the number
density of excited atoms remains small, this effect can be
neglected all together, as it will have no effect on the stability
of phases reported here.

1. Anomalous Green’s functions

The appearance of anomalous Green’s functions for the
exchange photons is caused by the presence of a background
coherent contribution to the E -photon field. This has to be
expected from the theory presented in Sec. V B, as an E
photon can be resonantly excited by the external laser field
with strength �s. The net effect is that a coherent component
i.e., a condensate arises in the connected part of the two-point
function of the exchange photon as an addition to the back-
ground coherent laser field. This effect is described by the
last diagram in the third line of Fig. 18, where at each atom
the order in which the E photon and the laser are coupled
to a given transition can be chosen arbitrarily. While this
formally creates anomalous contributions to the self-energy,
it underlines the physical argument that from the perspective
of fixed atoms exchange photons and laser photons are indis-
tinguishable if their frequency is identical.

It is important to understand that this condensation of E
photons will not be inherited by the probe photons. Conse-
quently, no polariton condensate can be generated unless the
probe photons themselves are directly coupled to an inverted
bath (which we excluded from the outset). Similar to what
is done in equilibrium, each component of the nonequilibrium
Green’s function can be augmented by a Nambu structure. For
the retarded part of the Green’s function, one typically defines
the following 2 × 2 matrix:

GR(ω, p) = −i

( 〈
bcl(ω, p)b̄q(ω, p)

〉 〈
bcl(ω, p)bq(−ω,−p)

〉〈
b̄cl(−ω,−p)b̄q(ω, p)

〉 〈
b̄cl(−ω,−p)bq(−ω,−p)

〉)

= −i

⎛
⎜⎝

(ω, p) (ω, p) (−ω,−p) (ω, p)

(ω, p) (−ω,−p) (−ω,−p)(−ω,−p)

⎞
⎟⎠

(E7)

and the same for GK (ω, p) with all quantum fields (index q) replaced by classical fields (index cl).
The diagonal entries then describe ordinary Green’s functions, while the off-diagonal, so-called anomalous components, are

nonzero only in the presence of a condensate.
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FIG. 31. Loop reduction procedure for the Feynman diagram in Fig. 9(b), which formally delocalizes excited atoms. Note that during this
procedure the probe photon coupling strength has to be modified by gP → gP

√
2 − 2nV to properly reflect the atom number density.

For the retarded Green’s function, the Dyson equation
takes the same form as in equilibrium,

GR = GR
0 + GR

0 · �R · GR, (E8)

where GR
0 is purely diagonal. Retarded and advanced Green’s

functions are once again not independent and one finds the
relation GR

σρ (ω, p) = GA
σ̄ ρ̄ (−ω,−p), where σ, ρ ∈ {1, 2} and

σ̄ is the complement of σ . The proof follows from a direct
inspection of the respective Feynman diagrams: Exchanging
the external legs reverses the direction of the momentum and
energy flow and simultaneously reverses causality, thereby
equating the off-diagonal entries of GR and GA. Additionally,
[GA]† = GR follows immediately once the definition (E7) is
evaluated on the Keldysh contour. Therefore, the advanced
Green’s function never has to be calculated and the retarded
Green’s function can be restricted to only two independent
functions:

GR(ω, p) =
(

GR
11(ω, p) GR

12(ω, p)[
GR

12

]∗
(−ω,−p)

[
GR

11

]∗
(−ω,−p)

)
.

(E9)

Furthermore, considering all self-energy diagrams order by
order, one can prove that GR

σ σ̄ (ω, p) = GR
σ̄ σ (ω, p), which is

true for any uniform bosonic system in and out of equilib-
rium [63].

Taking the conjugate transpose of the Keldysh compo-
nent can be done immediately in frequency space and a
comparison of elements reveals the anti-Hermitian structure,
i.e., [GK ]† = −GK . We can thus still use the parametriza-
tion GK = GR · F − F · GA, with a Hermitian matrix F . The
fact that F = σz for an empty system accounts for the re-
versed order of operators between the components of the
first and the second rows of GK . Exchanging incoming and
outgoing particles in GK furthermore allows us to identify
GK

σρ (ω, p) = GK
σ̄ ρ̄ (−ω,−p). By considering again all possi-

ble self-energy diagrams one finds the additional symmetry
GK

σ σ̄ (ω, p) = −[GK
σ̄ σ ]∗(−ω,−p). The Dyson equation for the

Keldysh component directly generalizes to the Nambu struc-
ture: GK = GR · (�K − DK

0 ) · GA, which together with the
other symmetries implies

�K0 (ω, p) = 2

(
i Im �R

11(ω, p) Re �R
12(ω, p)

− Re �R
12(−ω,−p) i Im �R

11(−ω,−p)

)
(E10)

for the empty system and

δ�K (ω, p) = �K (ω, p) − �K0 (ω, p)

=
(

δ�K
11(ω, p) δ�K

12(ω, p)

−[δ�K
12

]∗
(ω, p) δ�K

11(−ω,−p)

)
(E11)

for excitations above the vacuum. With these definitions,
the Kramers-Kronig relations of Appendix A remain valid
without limitation. For simplicity, we only provide the
Kramers-Kronig relations for one-dimensional convolutions
with some normal Green’s function labeled Gn, keeping in
mind that higher dimensional generalizations take exactly the
same form:∫

dω′

2π

(
GK

σρ (ω′)GR
n (ω − ω′) − GR

σρ (ω′)GK
n (ω − ω′)

)
= −2δρ2

∫
dω′

2π
GR

σρ (ω′)GR
n (ω − ω′), (E12)

as well as∫
dω′

2π

(
GK

σρ (ω′)GK
n (ω − ω′) − GR

σρ (ω′)

× GR
n (ω − ω′) − GA

σρ (ω′)GA
n (ω − ω′)

)
= −

∫
dω′

π

(
δρ2GR

σρ (ω′)GR
n (ω − ω′)

+ δσ2GA
σρ (ω′)GA

n (ω − ω′)
)
. (E13)

Note that due to the symmetries of the diagonal entries of the
Green’s functions, these two relations already fully incorpo-
rate the four equations derived in Appendix A.

APPENDIX F: DYSON EQUATIONS AT ORDER 1/LE

As can be seen in Fig. 25, a fully self-consistent theory
involving all effects at next-to-leading order in the inverse
interaction range requires to solve an even larger number of
coupled integral equations than in the formulation at lower
order. This task might seem daunting at first sight, however,
using the Kramers-Kronig relations (see Appendix A) and
the loop reduction procedure (see Appendix D), every single
diagram can once again be broken down into a combination of
independent one-loop effects. Due to the nonlinear Feynman
rules (Sec. IV A), great care has to be taken in determining
which of these single loop effects can be combined. We do
so by introducing two different matrix Green’s functions Gsd
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and G̃sd for the states |s〉 and |d〉. To help distinguish these
propagators in Feynman diagrams, we slash the propagator of
G̃sd twice. When appearing as an insertion inside the probe-
photon propagator, Gsd cannot itself involve a self-energy that
would return the atom to its ground state. There is thus only
one contribution to the self-energy and the matrix propagator
takes the fairly simple form

GR
sd = ([GR

sd

]−1 − �R
sd

)−1
, (F1)

where

FIG. 32. Dependency structure and ordering of updates for the
self-consistent solution of the Dyson equations (F1) through (F17)
with (91) iteratively updating the effective coupling �eff

s .

�R
sd = i

2
g2

E

(
δGK

E22
� G̃R

dd + GR
E22

� δG̃K
dd GR

E21
� δG̃K

ds + (δGK
E21

+ 2GK0
E21

)
� G̃R

ds

δGK
E12

� G̃R
sd + GR

E12
� δG̃K

ds GR
E11

� δG̃K
ss + (δGK

E11
+ 2GK0

E11

)
� G̃R

ss

)
(F2)

uses � to denote the convolution in ω and k. The corresponding Keldysh component reads

δGK
sd = GR

sd · δ�K
sd · GA

sd , (F3)

with

δ�K
sd = i

2
g2

E

((
δGK

E22
+ 2GK0

E22

)
� δG̃K

dd

(
δGK

E21
+ 2
[
GR

E12

]∗)
� δG̃K

ds(
δGK

E12
− 2GR

E12

)
� δG̃K

sd δGK
E11

� δG̃K
ss

)
. (F4)

Note that �
R/K
sd are allowed to depend on the quasimomentum

k, since, due to the photon admixture with momentum trans-
fer, they effectively no longer describe a completely stationary
atom. This effective delocalization of the atoms is not an
actual physical process, but rather a mathematical trick to
accommodate the loop reduction procedure shown in Fig. 31.
In fact, we construct G̃sd via

G̃R
sd =

([
GR

sd

]−1 −
(

�R
s 0

0 0

))−1

(F5)

with

�R
s = �2

ω − g2
P

[
(1 − nV )GR

P + 1
2 GR

g �ω δGK
P

]+ iγe/2
, (F6)

where �ω indicates a particle-hole convolution in frequency
only, i.e.,

f �ω h =
∫ ∞

−∞

dω′

2π
f (ω′)h(ω′ + ω). (F7)

Furthermore, the related

δG̃K
sd = G̃R

sd ·
(

δ�K
sd +

(
δ�K

s 0
0 0

))
· G̃R

sd , (F8)

where

δ�K
s = g2

P

�2
(1 − nV )δGK

P

∣∣�R
s

∣∣2 (F9)

correctly includes all repeated scattering processes of a probe
photon into a probe and an exchange photon. The loop re-
duction procedure therefore allows for a very cost-efficient
inclusion of pairing effects between probe and exchange pho-
tons, that would otherwise require a self-consistent treatment
of the corresponding T matrix.

The Dyson equation for the probe photon propagator takes
almost exactly the same form as it does for the noninteracting

EIT:

GR
P = (ω − P(k) − g2

P(1 − nV )GR
e + iκP/2

)−1
,

δGK
P = (�2g2

P(2 − nV )δGK
ss

∣∣GR
e

∣∣2 − 2iκs(ω)
)∣∣GR

P

∣∣2, (F10)

with the only difference being hidden in the more elaborate
form of Gss.

To close the set of coupled equations, one has to find the
full exchange photon propagator, which again has two self-
energy contributions as in Eq. (89). The first one,

�
R1
E (ω) = i

2
g2

E

([
δGK

� s �ω GR
d

]
(ω) 0

0
(
δGK

� s �ω GR
d

)
(−ω)

)
,

(F11)

is already known from Sec. V B and in the present notation
involves the propagator δGK

� s given by

δGK
� s (ω) = g2

P

�2
(1 − nV )κs(ω)

∣∣∣∣∣ �R
� s (ω)

ω − s − �R
� s (ω) + iε/2

∣∣∣∣∣
2

×
∫

dk

2π
δGK

P (ω, k). (F12)

For the strict interpretation of the nonlinear Feynman rules,
we use

�R
� s (ω)

= �2

ω + iγe/2 − g2
P

∫
dk
2π

[
(1 − nV )GR

P + κs(ω)GR
g �ω δGK

P

]
(F13)

and GR
d = GR

d0
. One therefore recovers exactly the same ex-

pression for �R
E1

as in the formulation at leading order. In
the case of the lenient Feynman rules, the denominator in the
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absolute value in Eq. (F12) is to be replaced by

ω − s − �R
� s (ω) + iε/2 +

(
�eff

s

)2
ω − d − s + iγd/2

+
∫ π

−π

dk

2π
�R

ss(ω, k), (F14)

where �R
ss is the 11 component of �R

sd . At the same time, GR
d is given by G̃R

dd . This leaves �
R2
E , which takes the same form as in

Sec. V C 1:

�
R2
E (ω, k) = i

2
g4

Pg2
E�4

(
�eff

s

)2
(1 − nV )2

∫
dω′

2π

d p

2π

∣∣GR
e (ω′)GR

s (ω′)
∣∣2δGK

P (ω′, p)

×
[[

GR
s (ω + ω′)GR

e (ω + ω′)
]2

GR
P(ω + ω′, p + k)

( [
GR

d (ω + ω′)
]2

GA
d (ω′)GR

d (ω + ω′)

GR
d (ω′)GR

d (ω + ω′)
∣∣GR

d (ω′)
∣∣2

)

+ [GA
e (ω′ − ω)GA

s (ω′ − ω)
]2

GA
P(ω′ − ω, p − k)

( ∣∣GR
d (ω′)

∣∣2 GA
d (ω′ − ω)GA

d (ω′)

GA
d (ω′ − ω)GR

d (ω′)
[
GA

d (ω′ − ω)
]2

)]
. (F15)

Evaluating the same diagrams for the Keldysh component, one obtains the last two pieces of the puzzle:

δ�
K1
E = 0, (F16)

as before, and

δ�
K2
E (ω, k) = i

2
g4

Pg2
E�4

(
�eff

s

)2
(1 − nV )2

∫
dω′

2π

d p

2π

∣∣GR
e (ω′)GR

e (ω′ + ω)GR
s (ω′)GR

s (ω′ + ω)
∣∣2δGK

P (ω′, p)δGK
P (ω′ + ω, p + k)

×
( ∣∣GR

d (ω′ + ω)
∣∣ GA

d (ω′)GA
d (ω + ω′)

GR
d (ω′)GR

d (ω + ω′)
∣∣GR

d (ω′)
∣∣2

)
− 2

(
2i
[
Im �̃R

E (ω, k)
]

11

[
�̃R

E (ω, k)+�̃R
E (−ω,−k)

]
12

−[�̃R
E (ω, k)+�̃R

E (−ω,−k)
]∗

12 2i
[
Im �̃R

E (−ω,−k)
]

11

)
,

(F17)

with the same choices for GR
d in �

R/K2
E as in �

R1
E . Furthermore,

we use �̃R
E as a shorthand notation for the second term in the

sum of �
R2
E .

As always, throughout this entire theory the bare laser
coupling �s between states |s〉 and |d〉 has been replaced by
�eff

s = �s|1 + η|, where η given by (91) describes the mod-
ified conversion rate between |s〉 and |d〉 due to the presence
of other polaritons, as in Sec. V B. Contrary to the previous
renditions of the self-consistent structure, with the inclusion
of 1/LE effects, scattering of probe photons into exchange
photons becomes a possibility. Therefore, self-consistence is
no longer simply a question of finding the right parameter
η, but actually involves the full frequency and momentum
dependent Green’s functions GR/K

E . As such, the numerical
implementation has to find the solution in an iterative manner.
Since there is no direct dependence on �s, one can, however,
fix �eff

s , initialize all Green’s functions as bare ones and iterate
Eqs. (F1)–(F17) together with (91) until η no longer changes,

see Fig. 32. This once again means that the final value of �s

corresponding to the solution is not known a priori and has
to be searched for iteratively, unless the entire phase diagram
is calculated. The main advantage of this method lies again in
the enhanced convergence that is unaffected by the presence
of any phase transition.

As already discussed in Sec. V C 1, with the use of the
absolute value in the definition of �eff

s in the anomalous
Green’s functions, GE no longer transforms correctly under
a global U (1) gauge transformation. Previously, this was not
a problem for the evaluation of gauge-invariant observables.
Despite the iterative procedure, the backaction at any stage
of the iteration for any observable depends only on |1 + η|2
as required by gauge invariance. The described self-consistent
calculation thus finds the correct value of |1 + η| and therefore
of all normal Green’s functions. To also obtain the anomalous
components, the correct phase of η simply has to be restored
in the final result.
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and A. Imamoǧlu, Fermionized Photons in an Array of Driven
Dissipative Nonlinear Cavities, Phys. Rev. Lett. 103, 033601
(2009).

[10] M. Kiffner and M. J. Hartmann, Dissipation-induced correla-
tions in one-dimensional bosonic systems, New J. Phys. 13,
053027 (2011).

[11] E. Zeuthen, M. J. Gullans, M. F. Maghrebi, and A. V. Gorshkov,
Correlated Photon Dynamics in Dissipative Rydberg Media,
Phys. Rev. Lett. 119, 043602 (2017).

[12] O. Firstenberg, C. S. Adams, and S. Hofferberth, Nonlinear
quantum optics mediated by Rydberg interactions, J. Phys. B:
At., Mol. Opt. Phys. 49, 152003 (2016).

[13] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V.
Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, Quantum non-
linear optics with single photons enabled by strongly interacting
atoms, Nature 488, 57 (2012).

[14] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and
M. D. Lukin, Photon-Photon Interactions Via Rydberg Block-
ade, Phys. Rev. Lett. 107, 133602 (2011).

[15] P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans,
M. D. Lukin, A. V. Gorshkov, and H. P. Büchler, Scattering
resonances and bound states for strongly interacting Rydberg
polaritons, Phys. Rev. A 90, 053804 (2014).

[16] T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac,
and D. E. Chang, Quantum dynamics of propagating photons
with strong interactions: a generalized input–output formalism,
New J. Phys. 17, 113001 (2015).

[17] T. Shi, D. E. Chang, and J. I. Cirac, Multiphoton-scattering the-
ory and generalized master equations, Phys. Rev. A 92, 053834
(2015).

[18] M. Moos, M. Höning, R. Unanyan, and M. Fleischhauer,
Many-body physics of Rydberg dark-state polaritons in
the strongly interacting regime, Phys. Rev. A 92, 053846
(2015).

[19] M. J. Gullans, J. D. Thompson, Y. Wang, Q.-Y. Liang, V.
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