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Stokes–anti-Stokes light-scattering process: A photon-wave-function approach
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The photon-wave-function formalism provides an alternative description of some quantum optical phenomena
in a more intuitive way. We use this formalism to describe the process of correlated Stokes–anti-Stokes Raman
scattering. In this process, two photons from a laser beam are inelastically scattered by a phonon created by the
first photon (Stokes processes) and annihilated by the second photon (anti-Stokes process), producing a Stokes–
anti-Sokes (SaS) photon pair. We arrive at an expression for the two-photon wave function of the scattered SaS
photon pair, which is in agreement with a number of experimental results.
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I. INTRODUCTION

The concept of a photon wave function (PWF) based on
the Riemann-Silberstein vector, as introduced by Bialinycki-
Birula and Sipe [1–3] and extended by Smith and Raymer [4],
provides an alternative description of some quantum optical
phenomena in a more intuitive way [5–11]. When photons
interact with matter, some caution must be exercised in the
division of energy and momentum between the photon and
the material medium. There is no unique prescription to do
this division [12], and different approaches to describe the
propagation of photons in material media have been presented
by Birula [3], Keller [7], and Saldanha [12,13]. In this context,
the PWF formalism seems to be the most convenient way to
deal with near-field quantum electrodynamics, although in a
fully covariant formulation in terms of the vector potential,
instead of the Riemann-Silberstein vector [7].

In this work, we use the PWF formalism to describe the
process of correlated Stokes and anti-Stokes Raman scatter-
ing, predicted by Klyshko in 1977 [14]. In this process, two
photons from a laser beam are inelastically scattered by a
quantum of vibration (phonon) created by the first photon
(Stokes process) and annihilated by the second photon (anti-
Stokes process), producing a Stokes–anti-Stokes (SaS) photon
pair. The interest in SaS photon pairs has been increasing in
the last 10 years [15–29], carried by recent developments of
quantum optics and quantum information. Their interesting
number- and time-correlation properties have been explored in
solid-state quantum memories [15,16,19,21,26], preparation
of macroscopic systems in entangled quantum states [17],
measurement of phonon coherence times [18], and prepara-
tion of a single quantum of vibration [27].

We start with a brief review of the PWF concept in the
presence of matter, as introduced by Saldanha and Monken
[13]. Next, we use the PWF formalism and the Green function
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method to describe the resonant SaS pair production, and
finally, we present some conclusions and perspectives.

II. THE PHOTON WAVE FUNCTION

The Bialynicki-Birula–Sipe PWF [1,2] is a function of the
position coordinates that completely describes the state of a
photon. However, an important difference between the PWF
and the usual quantum-mechanical wave function of massive
particles is that its modulus squared gives the photon energy
density at a given point and not the probability density of
finding the photon at that point.

We can define the PWF by means of the Riemann-
Silberstein vector

� = �+ + �−,

�± =
√

ε0

2
(E± ± icB±),

(1)

where the subscript + (−) denotes positive (negative) helicity,
E± and B± are real transverse (divergence-free) vector fields,
and �± are eingenstates of the the helicity operator σ̂ , satisfy-
ing σ̂�± = ±�±. It is important to notice that if we expand
E± and B± in terms of plane waves,

E±(r, t ) = i
∑

k

[
Ek±ei(k·r−ωt ) − E∗

k±e−i(k·r−ωt )
]
, (2)

B±(r, t ) = i
∑

k

[
Bk±ei(k·r−ωt ) − B∗

k±e−i(k·r−ωt )
]
, (3)

for each k one must have cBk± = k̂ × Ek±. Since k̂ × Ek± =
±e−iπ/2Ek±, E± and ±cB± are pairs of Hilbert transforms.
Therefore, � is a complex analytic signal (positive-frequency)
[30,31].

� obeys the following equations in free space:

ih̄
∂�

∂t
= h̄cσ̂∇ × �, (4)

∇ · � = 0. (5)
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Saldanha and Monken derived a modified equation for �

in the presence of matter, which is justified by a particular
division of the energy in electromagnetic and material parts
[13]. The result is an additional term in the right side of Eq. (4)
that represents the response of the medium to the presence of
a photon:

ih̄
∂�

∂t
= h̄cσ̂∇ × � − i

J√
2ε0

, (6)

where J = Jf + JM + JP is the current density induced by
the photon, and Jf , JM and JP are due to free charges,
magnetization, and electric polarization, respectively. It is
straightforward to show that Eqs. (5) and (6) are equivalent
to

∇2� − 1

c2

∂2�

∂t2
=

√
μ0

2

(1

c

∂J
∂t

− iσ̂∇×J
)
. (7)

Here we consider a nonmagnetic, transparent, nondisper-
sive, homogeneous, and isotropic medium in the absence of
free charges. In this case, J reduces to JP = ∂P/∂t . The
isotropy assumption is not really necessary and may be re-
laxed to include crystalline media, at the cost of a more
complicated algebra. We divide the response of the medium
P = χeε0E as P = χ̄eε0E + P̃, where χ̄e is a constant and P̃
is due to any deviation of χe from χ̄e, which can be caused by
nonlinearities or fluctuations. With this, we arrive at a wave
equation for �

∇2� − n2

c2

∂2�

∂t2
= f, (8)

where n = √
1 + χ̄e is the refractive index and

f = μ0

√
ε0

2

(
∂2P̃
∂t2

− icσ∇× ∂P̃
∂t

)
. (9)

It is easy to show that f is also a complex analytic signal.

III. SaS PAIR PRODUCTION

To proceed with the calculation of the SaS pair production,
we first have to derive an expression for P̃ and then apply
second quantization to the fields. Before that, some additional
assumptions must be made about the system. First, we con-
sider an active medium of volume VS composed of molecules
having just one vibration mode with resonance frequency ω0.
Second, in order to avoid internal reflections, we consider that
VS is embedded in another linear medium of infinite volume,
with the same refractive index n, whose molecular vibrational
frequencies are far from ω0. This model can be extended to
include complex molecules with more than one resonant mode
and crystal lattices supporting optical phonons.

A. The source term

When a molecule interacts with a photon, its electronic
cloud moves with respect to the nuclei, producing an induced
electric dipole, which is, in first approximation, proportional
to the electric field of the photon, p = ε0αE. However, instead
of being constant, the polarizability α depends on the oscilla-
tion amplitude Q of the nuclei with respect to their equilibrium
position. Therefore, vibration of the nuclei will modify the

molecular polarizability and cause a residual response of the
molecules to the electric field. We may write the polarizabil-
ity α and the first-order residual response of the medium P̃,
respectively, as

α = α0 + dα

dQ

∣∣∣
0
Q + · · · ,

P̃(r, t ) = Nε0α
′Q(r, t )E(r, t ), (10)

where α′ = dα/dQ calculated at the equilibrium configura-
tion (Q = 0) and N is the number of molecules per unit
volume. We will proceed in the scalar approximation, which
is enough for our purposes, but α′ is actually a tensor.

From now on we are going to treat each molecule as a
quantum damped harmonic oscillator of resonance frequency
ω0 and the medium in the continuum approximation as a
molecular field [32]. In order to take damping into account,
we adopt a standard procedure and consider that the molecules
interact with a reservoir of harmonic oscillators with a broad-
band spectrum and a high density of frequency modes ω j .
We assume that the reservoir oscillators do not interact with
one another and the Markov approximation is valid; that is,
the energy lost by the molecule to the reservoir never comes
back and the molecule-reservoir interaction has no memory
[33,34]. Of course, more sophisticated models are available,
such as in Ref. [35]. However, comparing our results with
current experimental results, one can see that the Markov
approximation correctly describes the dynamics of the sys-
tem under analysis. In terms of the creation and annihilation
operators b̂†

q, b̂q (molecular field) and ĉ†
jq, ĉ jq (reservoir) of

vibration quanta in spatial modes exp(iq · r), the Hamiltonian
of this composite system is given by

Ĥ = Ĥmol + Ĥres + Ĥint, (11)

where

Ĥmol = 1

2
h̄ω0

∑
q

(
b̂†

qb̂q + b̂qb̂†
q

)
(12)

is the Hamiltonian of the molecular oscillators,

Ĥres = 1

2
h̄

∑
q

∑
j

[
ω j

(
ĉ†

jqĉ jq + ĉ jqĉ†
jq

)]
(13)

is the Hamiltonian of the set of oscillators composing the
reservoir, and

Ĥint = h̄
∑

q

∑
j

(
ζ ∗

j ĉ†
jqb̂q + ζ j ĉ jqb̂†

q

)
. (14)

is the interaction Hamiltonian in the rotating-wave approxi-
mation. The coefficients ζ j account for the coupling strength
between the molecules and the reservoir.

In the Heisenberg picture, adopting the Weisskopf-Wigner
approximation, the solution for b̂q(t ) is given by [33,34]

b̂q(t ) = b̂S
qe−i(ω̃−iγ /2)t + L̂q(t ), (15)

where b̂S
q = b̂q(0) is independent of t (Schrödinger operator),

ω̃ is the observed resonance frequency in the presence of
damping, slightly deviated from ω0, γ is the decay constant,
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and

L̂q(t ) =
∑

j

ζ j ĉ
S
jq

e−iω j t − e−i(ω̃−iγ /2)t

ω j − ω̃ + iγ /2
(16)

is a Langevin-type operator, with zero mean value on
the reservoir, that ensures the commutation relation
[b̂q(t ), b̂†

q′ (t )] = δq,q′ at any time.
The molecular vibration amplitude operator in terms of the

creation and annihilation operators is given by

Q̂(r, t ) =
√

h̄

2Mω̃

∑
q

[
b̂q(t )eiq·r + b̂†

q(t )e−iq·r], (17)

where M is the total mass of the molecular oscillators.
We follow Ref. [13] and write the electric field inside the

medium as E = (�̄ + �̄
∗)/

√
2ε, where

�̄(r, t ) =
√

ε

2
E(r, t ) + iσ̂

√
μ

2
B(r, t ) (18)

is the “dressed photon” wave function inside the medium.
Expanding �̄(r, t ) in terms of energy eigenfunctions, we can
convert it into a field operator (second quantization) as ˆ̄� =
ˆ̄�+ + ˆ̄�−, where

ˆ̄�h(r, t ) = i
∑

k

√
h̄ω

VQ

âS
khêkhei(k·r−ωt ), (19)

h = ± denotes the helicity, VQ is the quantization volume,
ω = u|k|, u is the speed of light in the medium c/n, and âS

kh
is the annihilation operator of a dressed photon in the corre-
sponding plane-wave mode, satisfying [âS

kh, âS†
k′h′ ] = δk,k′δh,h′ .

Notice that u is a constant, since the medium is considered
dispersionless. Using (18), we can write the electric field
operator Ê = Ê+ + Ê−, where

Êh(r, t ) = i
∑

k

√
h̄ω

2εVQ

âS
khêkhei(k·r−ωt )

+ Hermitian conjugate. (20)

From this point on, we drop the superscript S of the time-
independent operators.

Consistently with our definition of ˆ̄� as a positive-
frequency-only operator, we combine Eqs. (9), (10), and
(15)–(20) and define the positive-frequency source operator

f̂ (r, t ) =C
∑

q

∑
k

√
ω

[ ∑
j

ζ j ĉ jq F̂k+q,ω+ω j

ω j − ω̃ + iγ /2

+ (
b̂q − v̂q

)
F̂k+q,�a

+
∑

j

ζ ∗
j ĉ†

jq F̂k−q,ω−ω j

ω j − ω̃ − iγ /2

+ (
b̂†

q − v̂†
q

)
F̂k−q,�s

]
, (21)

where C = iNα′μ0ε0h̄/(2n
√

2Mω̃VQ), M is the total mass
of the molecular oscillators, �a = ω + ω̃ − iγ /2, �s = ω −

ω̃ − iγ /2,

F̂k,� = �2 ei(k·r−�t )
∑

h

âkh

(
êkh + i

c

�
σ̂k × êkh

)
,

and

v̂q =
∑

j

ζ j ĉ jq

ω j − ω̃ + iγ /2
.

It is easy to show that [v̂q, v̂
†
q′] = δq,q′ [33].

B. Photon scattering

To calculate the SaS pair generation, we make use of
the scattering theory by means of the dyadic Green function
method, as we want to take all the polarization states into
account. Assuming that one laser photon interacts with the
medium,

ˆ̄�(r, t ) = ˆ̄�
(r, t ) + ˆ̄�sc(r, t ), (22)

where ˆ̄�
(r, t ) corresponds to the laser photon. The scattered
photon field operator is given by

ˆ̄�sc(r, t ) =
∫
VS

dr′
t∫

0

dt ′ ¯̄G(r, t ; r′, t ′) · f̂ (r′, t ′), (23)

where [36]

¯̄G(r, t ; r′, t ′) = 1

4πr
δ[t ′ − (tr + r̂·r′/u)]

( ¯̄I − r̂r̂
)

(24)

is the appropriate retarded dyadic Green function in the far
field approximation, r = |r|, r̂ = r/r, r′ � r, and tr = t −
r/u. The dot products of the polarization vectors with the
dyadic ( ¯̄I − r̂r̂) are

êkh · ( ¯̄I − r̂r̂
) = êkh − (êkh · r̂)r̂ = e⊥

kh, (25a)

(r̂ × êkh)·( ¯̄I − r̂r̂
) = r̂ × e⊥

kh, (25b)

where e⊥
kh is the projection of êkh on the plane normal to r̂.

Notice that e⊥
kh is not normalized. The polarization vectors êkh

can always be written in terms of the basis vectors of linear
polarization êp, êt (see Fig. 1)

êkh = αhêp + βhêt , (26)

so that

e⊥
kh = αhêp + βh cos θ êθ = A(θ )ê⊥

kh, (27)

where êp, êθ form a basis on the normal plane, θ is the angle
between r and k and A(θ ) = (|αh|2 + |βh|2 cos2 θ )1/2. A(θ ) is
independent of h, since |α+| = |α−| and |β+| = |β−|. Hence,
ê⊥

kh is a polarization unit vector orthogonal to r.
After integrating (23), supposing that VS is large enough to

approximate
∫

VS
exp[i(k − k′) · r′]dr′ = VSδk,k′ , the scattered
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FIG. 1. Scattering geometry. k̂ indicates the laser photon propa-
gation direction. r̂ indicates the observation direction. êp, êt , and êθ

are linear polarization vectors.

field operator is

ˆ̄�sc(r, t ) = D
∑

k

√
ω

[ ∑
j

ζ j ĉ jk+
j −kF̂

⊥
k,ω+

j

ω j − ω̃ + iγ /2

+ (
b̂ka−k − v̂ka−k

)
F̂

⊥
k,�a

+
∑

j

ζ ∗
j ĉ†

jk−k−
j
F̂

⊥
k,ω−

j

ω j − ω̃ − iγ /2

+ (
b̂†

k−ks
− v̂

†
k−ks

)
F̂

⊥
k,�s

]
, (28)

where D = CVS/(2π ), ω+
j = ω + ω j , ω−

j = ω − ω j , k+
j =

(ω + ω j )r̂/u, k−
j = (ω − ω j )r̂/u, ka = (ω + ω̃)r̂/u, ks =

(ω − ω̃)r̂/u, and

F̂
⊥
k,�(r, t ) = A(θ )

�2

r
e−i�tr

∑
h

âkh ê⊥
kh, (29)

where we have used the identity iσ̂ (r̂ × ê⊥) = ê⊥.
Now, let us consider the initial state as ρ̂ = ρ̂em ⊗ ρ̂m, where

the electromagnetic part is ρ̂em = |ψem〉〈ψem| with |ψem〉 =
|1k
τ , 1k′


τ
′ 〉, that is, a state with two laser photons, one in

the mode k
τ and the other in the mode k′

τ

′, both with the
same frequency ω
, not necessarily helicity eigenstates, and
vacuum in all other electromagnetic modes. ρ̂med = ρ̂mol ⊗ ρ̂res

is the vibrational state of the medium, where ρ̂mol and ρ̂res

correspond to molecules and reservoir, respectively. We are
supposing that the process is parametric, that is, the state of
the medium is not changed by the scattering process. In this
case, the two-photon wave function is [5]

�(2)(r1, r2, t ) = Ŝ〈0|Trρ̂m
ˆ̄�(r1, t ) ˆ̄�(r2, t )|ψem〉, (30)

where |0〉 is the electromagnetic vacuum state and Ŝ is the
symmetrization operator. In thermal equilibrium, the states

related to the medium are

ρ̂mol = (1 − e−η̃ )
∑

q

∑
n

e−η̃ nq |nq〉〈nq|, (31)

where η̃ = h̄ω̃/(kBT ), kB is the Boltzmann constant, nq is the
number of phonons in mode q, and

ρ̂res =
∑

j

(1 − e−η j )
∑

q

∑
n j

e−η j n jq |n jq〉〈n jq|, (32)

where η j = h̄ω j/(kBT ). The electromagnetic part of (30)
leads to

〈0|
∑
h1,h2

âk1h1 ê⊥
k1h1

âk2h2 ê⊥
k2h2

|ψem〉

= δk1,k

δk2,k′



ê⊥

k
τ
ê⊥

k′

τ

′ + δk1,k′


δk2,k


ê⊥
k′


τ
′ ê⊥

k
τ
. (33)

We will assume that the average number of phonons at room
temperature, given by N = (eη̃ − 1)−1, is very low. In di-
amond, for instance, N ∼ 10−3. Then we can approximate
ρ̂mol = |0v〉〈0v|, where |0v〉 is the vibrational vacuum state. We
also assume that the system and the reservoir are in thermal
equilibrium, that is, the reservoir is also in the vacuum state.
In this approximation, the material part of (30) leads to the
conditions

〈0v|ĉ j1q1
ĉ†

j2q2
|0v〉 = δ j1, j2δq1,q2

, (34)

〈0v|b̂q1
b̂†

q2
|0v〉 = δq1,q2

, (35)

〈0v|v̂q1
v̂†

q2
|0v〉 = δq1,q2

. (36)

Therefore, the scattered part of (30) is

�(2)
sc = D2ω
 Ŝ′

[ ∑
j

|ζ j |2F⊥
k
,ω

+
j
F⊥

k′

,ω

−
j

(ω j − ω̃)2 + γ 2/4
δk+

j +k−
j ,k
+k′




+ 2 e−γ t F⊥
k
,ωa

F⊥
k′


,ωs
δka+ks,k
+k′




]
, (37)

where the operator Ŝ′ symmetrizes �sc with respect to r1, r2

and k
τ, k′

τ

′, ω+
j = ω
 + ω j , ω−

j = ω
 − ω j , ωa = ω
 + ω̃,
ωs = ω
 − ω̃,

F⊥
k
,�

(r, t ) = A(θ )
�2

r
e−i�tr ê⊥

k
τ
, (38)

and θ is the angle between r and k
.
The fraction in the first term of (37) has a peak at ω j = ω̃

and width γ /2, and a Kronecker δ that requires r̂1 + r̂2 +
(r̂1 − r̂2)ω j/ω
 = k̂
 + k̂

′

. In general, γ � ω̃ � ω
, so that

we can replace the Kronecker δ by δr̂1+r̂2,k̂
+k̂
′


, ω+

j by ωa and

ω−
j by ωs. The first term can be further simplified if we replace∑

j → ∫
ν(ω) dω, where ν(ω) is the number of frequency

modes of the reservoir between ω and ω + dω. Then∑
j

|ζ j |2F⊥
k
,ω

+
j
F⊥

k′

,ω

−
j

(ω j − ω̃)2 + γ 2/4
→ A(θ1)A(θ2) ê⊥

k
τ
ê⊥

k′

τ

′

× eiω
t12 |ζ (ω̃)|2ν(ω̃)
ω2

aω
2
s

r1r2

∞∫
0

dω eiω(r1−r2 )/u

(ω − ω̃)2 + γ 2/4
, (39)
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where t12 = (r1 + r2)/u. Extending the lower limit of the inte-
gral in (39) to −∞ and taking into account that |ζ (ω̃)|2ν(ω̃) =
γ /(2π ) [33], we can write∑

j

[ · · · ] → e−γ δt/2 F⊥
k
,ωa

(r1, t )F⊥
k′


,ωs
(r2, t ), (40)

where δt = |r1 − r2|/u.
Finally, in the stationary regime (t � 1/γ ), we get the two-

photon scattered wave function

�(2)
sc (r1, r2, t ) = e−γ δt/2 Ŝ′ [�ωa (r1, t )�ωs (r2, t )

]
× δk̂
+k̂

′

,r̂1+r̂2

,
(41)

where �ωa (r1, t ) and �ωs (r2, t ) have the same expressions
of far-field one-photon wave functions emitted by electric
dipoles located at the origin, oscillating at frequencies ωa and
ωs, respectively [37],

�(d)
ω (r, t ) =

√
2ε0

[
μ0

4π
p A(θ )

ω2

r
e−iωtr ê⊥

k
τ

]
, (42)

with dipole moments given by

p = 4πD
√

ω


μ0
√

2ε0
= h̄NVSα

′

2n

√
ε0ω


Mω̃VQ

. (43)

IV. DISCUSSION AND CONCLUSION

Some facts about the result (41) are worth mentioning.
First, it should be stressed that (41) is valid in the far-field
approximation only. In the near-field domain, the situation
is far more complex and requires another approach [7]. Al-
though (41) is written in terms of a product of two PWFs,
the Kronecker δ imposes a strict angular correlation, meaning
that the spatial coincidence detection profile of SaS photons
follows the laser beam profile, as experimentally observed in

Ref. [28]. The polarization vectors of �a and �s are projec-
tions of the laser polarization vectors on the planes normal to
r1 and to r2. Then, if the laser photons have approximately
the same polarization, as in a focused beam, the detection
probability of cross-polarized SaS photons is very small, as
verified in Ref. [29]. Finally, the decay term leads to a SaS
pair detection probability decaying as exp (−γ δt ) when a
delay line is inserted in one of the detection paths. This
decay is determined by the phonon lifetime 1/γ , as veri-
fied in Refs. [18,19,21,26,27,29]. This exponential decay is
a consequence of the Lorentzian spectrum of the SaS photon
pairs shown in Eqs. (37) and (39), validating the assumed
Weisskopf-Wigner approximation.

In conclusion, we provided an explanation for the SaS
photon pair production phenomenon using the formalism of
photon wave function and scattering theory. We derived an
expression for the two-photon wave function of the scat-
tered SaS photon pair, which is in agreement with a number
of experimental results. Although we have considered the
medium as nondispersive and isotropic, frequency dispersion
and anisotropy can be included with an additional effort, using
the appropriate Green functions in space-frequency domain
and Raman susceptibility tensors. In a future publication, we
will extend this formalism to explain the production of cor-
related SaS pairs in a continuum of frequencies, the photonic
analogues of Cooper pairs, described in Ref. [25].
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