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Quantum-optical realization of an Ornstein-Uhlenbeck-type process via simultaneous
action of white noise and feedback
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Based on a Heisenberg equation of motion description of the feedback dynamics in quantum optics, we
discuss the impact of phase noise on the excitation dynamics and provide examples in which noise itself is
not detrimental but supports and enhances typical features of quantum feedback such as self-stabilization of
the electronic population. We furthermore establish a connection between coherent quantum feedback and
an Ornstein-Uhlenbeck-type process in quantum optics in the presence of phase noise. The interfering and
time-shifted amplitudes introduce a finite memory kernel which, convoluted with a white noise process, results
in a resonance fluorescence dynamics of a damped random walk.
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Coherent quantum feedback mechanisms have been proven
to be a versatile strategy to steer and control systems noninva-
sively [1–10], since they are not related to measurement-based
or invasive quantum feedback control [11–14]. The coher-
ent and non-Markovian nature imposes interferences between
present and past quantum states onto the dynamics and
allows for interesting time-ordered two-photon processes
[7,8,10,15–18], enhanced entanglement and nonclassical pho-
ton statistics [19], dimerization [20,21], and a stabilization
of quantum coherence due to interference effects between
incoming and outgoing probability waves between the emit-
ter (system) and the mirror (structured reservoir) [22–26].
A typical paradigm for such processes is the formation of
dark states and subsequently emerging population trapping
[10,27–30]. An important parameter in all of these exam-
ples is the feedback phase ϕ, imprinted by the feedback
on the original system. It is given by ϕ = ω0τ , i.e., the
product of the delay time τ of the feedback and the tran-
sition frequency ω0 of the controlled electronic coherence
P(t ). Here, we discuss the interplay of the feedback phase
and additional external phase noise on the electron popu-
lation trapping and the resonance fluorescence dynamics in
feedback-induced radiative decay processes and extend the
current paradigm of coherent quantum feedback to genuine
irreversible and incoherent processes such as phase noise,
which has remained so far elusive. Technically, the key el-
ement is to use the Heisenberg picture which allows one to
consider incoherent processes in contrast to purely unitary
models such as matrix-product states [7,15,20,21,30,31] or
the full integration of the corresponding Schrödinger equation
[8,19,32] and without tracing out higher-order contributions in
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memory-expensive time-ordered time-evolving block decima-
tion techniques [33]. We demonstrate that white noise-based
energy fluctuations are not necessarily detrimental to the con-
trol success of quantum feedback, as it counteracts destructive
and unwanted interference effects between the incoming and
outgoing photon emission processes and even supports popu-
lation trapping for certain quantum feedback phase relations.
Furthermore, we establish an important connection between
the non-Markovian quantum feedback process and the gen-
eration of an Ornstein-Uhlenbeck-type of noise correlations.
Interestingly, this result can be attributed to a mirror charge-
induced dipole-dipole correlation due to the mirror, as has
been derived by Zwanzig [34], only here retarded in time and
of purely single quantum nature.

I. MODEL

In order to discuss the impact of white phase noise on
the emission dynamics of a two-level system in front of a
mirror, we introduce the following Hamiltonian of the system
(h̄ = 1):

H = (ω0 + Ft )P
†P+

∫
dω

[
r†
ω

(
ωrω

2
+ g∗

ωP

)
+ H.c.

]
, (1)

where P = |g〉〈e| denotes the microscopic coherence operator
from the excited state |e〉 to the ground state |g〉 of the two-
level system with a transition energy of h̄ω0. The radiative
continuum is included via the photon creation and annihilation
operators r (†)

ω for a photon in the mode ω = c|k| (c is the speed
of light in the waveguide) with bosonic commutation rela-
tions: [rω, r†

ω′ ] = δ(ω − ω′). The coupling between the emitter
and the radiative continuum is denoted by gω = g0 sin(ωτ/2)
[1–9,35] and includes the mirror-imposed boundary condition
at a distance L between the mirror and an atom with a strength
of g0. The distance defines the feedback round-trip time with
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τ = 2L/c. Ft describes a stochastic force acting upon the ex-
cited level of the two-level system and models, e.g., a spectral
diffusion process [36–38]. Next, we solve this model in the
Heisenberg picture [39].

The equation of the coherence operator in the Heisenberg
picture reads in the corresponding rotating frame as follows:

P†(t ) = iFt P
†(t ) + i

∫
dωg∗

ωei(ω−ω0 )t r†
ω(t )[P(t ), P†(t )]. (2)

The coherence operator couples to the inversion and to the
quantized light field. As we are interested only in the system’s
dynamics, we can integrate out the reservoir’s degrees of
freedom and obtain the corresponding Heisenberg-Langevin
equation of motion. Within the one-electron assumption for
the two-level system [40], the inversion operator can be writ-
ten as [P(t ), P†(t )] = 1 − 2P†(t )P(t ) and for the dynamics of
the coherence operator it follows

Ṗ†(t ) = − [� − iFt ]P
†(t ) + �e−iϕP†(t − τ )θ (t − τ )

− 2�e−iϕP†(t − τ )P†(t )P(t )θ (t − τ )

+ ig0R†(t )[P(t ), P†(t )], (3)

where R†(t ) = ∫
dωr†

ω(0) sin(ωτ/2) exp[i(ω − ω0)t]
includes the quantum noise contribution to conserve the
commutation for all times with � = g2

0π/2 and ϕ = ω0τ ,
the aforementioned feedback phase. Clearly, the signal P† at
the feedback delay time τ occurs in Eq. (3). In Appendix A
it is shown that the second line and the last (third) line
vanish in the case of a reservoir initially in the vacuum state
and a system described by the Hamiltonian in Eq. (1). The
differential equation of the matrix elements of the microscopic
coherence operator Peg is therefore given for all times t via

Ṗ∗
eg(t ) =(iFt − �)P∗

eg(t ) + �e−iϕP∗
eg(t − τ )θ (t − τ ), (4)

where we have taken the matrix elements of the coher-
ence operator P∗

i j (t ) = 〈i, vac|P†(t )| j, vac〉, with | j, vac〉 =
| j〉S|vac〉R and j being either e or g for the system state and
the reservoir in the vacuum state. In the following, we discuss
results based on this equation of motion of the coherence op-
erator, namely, in Sec. II the conditions for a nontrivial steady
condition (|P∗

eg(t )|2 > 0) in the absence of noise, in Sec. III
the resonance fluorescence dynamics in the presence of phase
noise, in Sec. IV the emergence of Ornstein-Uhlenbeck noise
correlation due to feedback, and in Sec. V the stabilized pop-
ulation trapping due to noise in the case of ϕ mod 2π �= 0.

II. STEADY-STATE ANALYSIS WITHOUT NOISE (Ft ≡ 0)

The dynamics of the coherence operator can be analyt-
ically solved via the Laplace transformation for vanishing
phase noise [1,26,35,41]. The solution is lengthy and given
in Appendix A. For the steady-state analysis, we can assume
t � τ and approximate the equation of motion in Eq. (4) via
a Taylor-expansion:

Ṗ∗
eg(t ) ≈ − �αP∗

eg(t ) − τ�e−iϕP∗
eg(t )δ(t ), (5)

FIG. 1. The dynamics of the population without phase noise for
an initially excited emitter and different phases ϕ = ω0τ from −π to
π and times natural logarithm log(t/τ ). In the long time limit, only
the phase ϕ = 2πn with n integer survives. For all other phases, the
destructive interference leads to a trivial steady state of |P∗

eg(t )|2 = 0,
as discussed in the main text.

with α := (1 − e−iϕ )/(1 + �τe−iϕ ). The solution is derived
via integration and reads as follows:

|P∗
eg(t )|2 = e−2�Re[α]t

∣∣∣∣ P∗
eg(0)

1 + �τe−iϕ

∣∣∣∣
2

. (6)

Obviously, only for vanishing Re[α], i.e., a specific choice of
the product of transition frequency ω0 and τ , we find a finite,
stationary occupation probability in the emitter in the long
time limit: t� � 1. This condition reads explicitly as

Re[α] = [1 − �τ ][1 − cos(ϕ)]

1 + 2�τ cos(ϕ) + �2τ 2
= 0. (7)

To achieve a finite steady-state occupation Re[α] = 0, i.e.,
ϕ mod (2π ) = 0 must be valid. In all other cases, if no
phase noise is present, the steady-state occupation is zero,
as demonstrated in Fig. 1. We include now phase noise in
our investigation and find indications pointing towards finite
occupation probabilities for a much wider range of phase
choices ϕ.

III. RESONANCE FLUORESENCE DYNAMICS WITH
NONVANISHING PHASE NOISE (Ft �= 0)

For nonvanishing noise Ft �= 0, we iteratively solve the
equation of motion via subsequent integration with respect to
time (Appendix B), e.g. for t ∈ [0, 3τ ]:

P∗
eg(t ) = e−�t+iφ(t,0)[θ (t ) + θ (t − τ )�e−iϕ+�τ N (t, τ )

+ θ (t − 2τ )(�e−iϕ+�τ )2M(t, 2τ )], (8)

with φ(b, a) = ∫ b
a Ft ′dt ′ and the memory kernel amplitudes

with definitions

N (t, τ ) :=
∫ t

τ

dt1e−iφ(t1,t1−τ ),

M(t, 2τ ) :=
∫ t

2τ

dt1e−iφ(t1,t1−τ )
∫ t1−τ

τ

dt2e−iφ(t2,t2−τ ),
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which recover in the limit of φ(b, a) → 0 the analytical so-
lution without noise, i.e., N (t, τ ) = (t − τ ) and M(t, 2τ ) =
(t − 2τ )2/2. This step by step solution of Eq. (8), ordered
in time intervals, is necessary as we cannot perform a
straightforward solution via a Laplace transform due to the
time-dependent and implicitly given stochastic function Ft ,
rendering the solution via the Lambert W function inacces-
sible [1,26,35,41].

The noise increment φ(b, a) introduces an incoherent el-
ement and leads after averaging to a mixed state. This
already indicates that phase noise is a process acting on
the expectation value of the observable [36,42,43]. Since

we are interested in the resonance fluorescence dynamics
〈P†(t )P(t ′)〉, we cannot take the average of the matrix element
of the microscopic coherence operator before the expectation
value is calculated because 〈〈|P∗

eg(t )|2〉〉 �= |〈〈P∗
eg(t )〉〉|2. Due to

this stochasticity of Ft in Eq. (8), we cannot replace φ(b, a)
with a c-number, and a brute force numerical evaluation be-
comes conceptually difficult. However, given the analytical
evolution of the matrix element of the Heisenberg operator,
we can circumvent this problem and derive the dynamics
recursively in the different time intervals. We find, for exam-
ple, for the population dynamics, the following expression for
(2 � (t/τ ) � 3):

〈〈|P∗
eg(t )|2〉〉 = e−2�t [1 + 2�e�τ cos ϕ〈〈N (t, τ )〉〉 + �2e2�τ 〈〈N (t, τ )N∗(t, τ )〉〉 + 2�2e2�τ cos(2ϕ)〈〈M(t, 2τ )〉〉

+ 2�3e3�τ cos ϕ〈〈N∗(t, τ )M(t, 2τ )〉〉 + �4e4�τ 〈〈M(t, 2τ )M∗(t, 2τ )〉〉]. (9)

Evaluating the noise integrals involves up to four time-ordered
integrals and their corresponding noise-noise correlations, cf.
Appendix C. This yields lengthy expressions which are given
explicitly in Appendix D. We like to point out that Eq. (9)
nonperturbatively combines the non-Markovian feedback dy-
namics, the radiative decay, and stochastically averaged phase
noise together and is the main result of this study. We hereby
extend on-going efforts in the field of coherent quantum feed-
back and studies of differential-delay equations by including
phase noise resulting in a pure dephasing, i.e., an incoherent
process.

In the following, we discuss the population dynamics on
the basis of Eq. (9) for two cases in the presence of finite
phase noise with the vanishing average 〈〈Ft 〉〉 = 0 and the
δ-correlated correlation function 〈〈Ft Fs〉〉 = γ δ(t − s). First,
in Sec. IV and for 1 � (t/τ ) � 2, we show that the quantum
feedback contribution leads to a Ornstein-Uhlenbeck (O-U)
process for the population dynamics due to the assumed white
noise correlation. Second, in Sec. V and for 0 � (t/τ ) � 3,
we discuss the impact of phase noise and show that it need not
necessarily be detrimental to quantum feedback stabilization
of quantum states, since disadvantageous destructive inter-
ferences, if they occur, are substantially suppressed. These
time intervals have become recently accessible in the field
of superconducting circuits where surface acoustic waves at
two points lead to a significant internal time-delay and give
rise to non-Markovian dynamics of exactly the discussed form
[44,45].

IV. FEEDBACK-INDUCED ORNSTEIN-UHLENBECK
PROCESS

We focus first on the special case of ϕ mod (2π ) = 1 and
1 � (t/τ ) � 2 which implies M(t, 2τ ) ≡ 0. The solution of
the population dynamics then reads as follows:

〈〈|P∗
eg(t )|2〉〉

e−2�(t−τ )
=e−2�τ + �2 2

γ 2
[γ (t − τ ) + e−γ (t−τ ) − 1],

where we perform the stochastic averaging for a Gaussian
random variable in Eq. (9). The detailed evaluation for the
noise correlations is given in Appendix D. Since there are

no length restrictions for the round-trip time τ , we can safely
study the limits 2�τ � 1 and γ τ � 1. We introduce a shifted
time towards the first τ interval, i.e., t ′ = t − τ and t ′ ∈ [0, τ ],
and we find

〈〈|P∗
eg(t ′ + τ )|2〉〉

e−2�t ′ = 2�2

γ 2
(γ t ′ + e−γ t ′ − 1). (10)

Despite the trivial envelope of the exponential decay,
this equation bears a clear resemblance to the O-U pro-
cess with a noise correlation 〈〈Ft Fs〉〉|O-U = � exp[−γ |t −
s|] and a resulting mean-squared displacement of a Brow-
nian particle, using the Einstein-Smoluchowski relation
[46–48] 〈〈[x(t )]2〉〉 = 6kBT/(mγ 2)[γ t + e−γ t − 1], where we
can identify 3kBT/m → �2. Thus, Eq. (10) constitutes a
quantum-optical realization of the O-U process. In other
words, for nonvanishing noise Ft �= 0, the initial, nonconvo-
luted white noise contribution in the emission process takes
the form of an Ornstein-Uhlenbeck-type process. Here, how-
ever, it results from the interfering time-shifted amplitudes of
the system’s past and their phase relation. These interfering
parts depend on their own time and the time difference to
the conjugated amplitude and yield therefore a time-integrated
Ornstein-Uhlenbeck correlation. This has interesting implica-
tions for the interpretation and application of the U-O process
and its role in quantum mechanics and quantum optics in
particular [12,36,42,49–51], if non-Markovianity and irre-
versibility are equally assumed [13,14,42,52–56].

V. SUPPRESSION OF DESTRUCTIVE INTERFERENCES

Furthermore, the Heisenberg equation of motion formula-
tion of coherent quantum feedback in Eq. (9) allows us to
investigate the role of phase noise in typical radiative decay
processes in the presence of delay and its impact on the popu-
lation trapping conditions derived before for vanishing phase
noise. In Sec. II, we have shown, that only for the case of
ϕ mod (2π ) = 0 does stabilization of the emitter population
occur. We show now that we find first indications that this
condition is relaxed in the presence of phase noise due to the
phase fluctuations Ft . Since it is often the goal of quantum
feedback to stabilize electronic populations due to destructive
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FIG. 2. The population dynamics in the interval t/τ ∈ [0, 3] and
for the phase ϕ = ω0τ = 3.3 in the case of the Wigner-Weisskopf
decay without feedback (black line), with feedback but without
phase noise (green line), and with feedback and phase noise (orange
line). Interestingly, phase noise suppresses detrimental oscillations
occurring due to the phase choice and remains well-above the
Wigner-Weisskopf case.

interference between absorption and reemission events [7,26],
this is an important and positive result for the field of coherent
quantum control.

In Fig. 2, the dynamics of the population is depicted for
the case without phase noise and without feedback (Wigner-
Weisskopf case, black line), without phase noise but with
feedback (green line), and with feedback and with noise (or-
ange line) for a phase of ϕ = 3.3. As can be seen, phase noise
helps to suppress the destructively interfering parts of the
solution in Eq. (9) proportional to cos(nϕ) with n integer, cf.
Appendix E. These contributions enforce damped oscillations
of the population, leading eventually to a complete decay of
the electronic excitation into the reservoir with zero excitation
left in the emitter (green line), since ϕ mod (2π ) �= 0. How-
ever, these contributions are strongly affected by the phase
noise (orange line). Here, in the transient regime, noise helps
to slow down the decay of the electronic population and pre-
vents it from decaying rapidly to zero (orange line). In Fig. 2,
the population in the emitter in the case of finite Ft is larger or
for a short time (t/τ ≈ 2.4) equal or slightly less compared
to the case with vanishing phase noise. As a comparison,
we plot the dynamics imposed by just the Wigner-Weisskopf
case (black line). The case with phase noise always stabilizes
a population larger than the Wigner-Weisskopf dynamics,
whereas the case with feedback and no phase noise oscillates
following the decay of the Wigner-Weisskopf solution, indi-
cating an inevitable complete decay for undisturbed feedback.
Interestingly, the solution with feedback shows a nonmono-
tonic behavior to the end of the third τ interval where
population is gained. Of course, these results depend on the
choice of the feedback phase ϕ = ω0τ . This indicates that the
choice of the delay time provides another control parameter
to optimize the phase noise action on the population number:
In Fig. 3, we plot the difference between the population with
and without noise: |P∗

eg(t )|2 − 〈〈|P∗
eg(t )|2〉〉. We clearly see that

FIG. 3. The difference between the population dynamics in
the interval t/τ ∈ [1, 3] with 〈〈|P∗

eg(t )|2〉〉 and without phase noise
|P∗

eg(t )|2 for different phase choices ϕ = ω0τ . Phase noise is advan-
tageous for population trapping if the phase value is in the interval
[π/2, 3π/2].

phase noise reduces the amount of population which can
be trapped in the emitter in the vicinity of the ideal phase
choice of ϕ = 0, as this phase choice renders the destructive
interference terms already maximally unimportant, i.e., for
ω0τ ∈ (0, π/2) and ω0τ ∈ (3π/2, 2π ). However, for phases
in between (π/2, 3π/2), the population is enhanced due to
noise. We conclude that for ϕ �= 2π , phase noise still allows
for important feedback effects relying on the population trap-
ping mechanism.

VI. CONCLUSION

We have studied the impact of white noise on the radiative
decay dynamics of an atom in front of a mirror providing
radiative feedback. Our method in the Heisenberg picture
allows one to consider incoherent processes. As an example,
we have shown that the non-Markovian feedback acts essen-
tially as a low-pass filter for the initially uncorrelated white
noise [57,58] and leads due to its intrinsic time-ordering to
a Ornstein-Uhlenbeck-type process within the time interval
1 � (t/τ ) � 2, where τ can be chosen arbitrarily to be long.
Furthermore, we showed that the impact of phase noise on
the population trapping dynamics is advantageous for a wide
range of phase choices.
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APPENDIX A: DERIVATION OF THE HEISENBERG
EQUATION OF MOTION FOR THE COHERENCE

OPERATOR

The equation of the Heisenberg operator P†(t ) =
U †(t )P†U (t ) with U (t ) = exp [−iHt] using Ṗ†(t ) =
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i[H, P†(t )] reads in the rotating-frame as follows:

Ṗ†(t ) = iFt P
†(t ) + i

∫
dωg∗

ωei(ω−ω0 )t r†
ω(t )[P(t ), P†(t )].

(A1)

The coherence operator couples to the inversion and to the
quantized light field. Starting with an initial condition at t =
0, the goal is to solve for the quantized light field exactly by
integrating out the equation of motion of the photon creation
operator:

r†
ω(t ) = r†

ω(0) + igω

∫ t

0
dt1e−i(ω−ω0 )t1 P†(t1). (A2)

This equation allows us to write down the Heisenberg-
Langevin equation of motion. Within the one-electron as-
sumption for the two-level system, the inversion operator can
be written as [P(t ), P†(t )] = 1 − 2P†(t )P(t ) and for the dy-
namics of the coherence operator it follows

Ṗ†(t ) = − [� − iFt ]P
†(t ) + �e−iω0τ P†(t − τ )θ (t − τ )

− 2�e−iω0τ P†(t − τ )P†(t )P(t )θ (t − τ )

+ ig0R†(t )[P(t ), P†(t )], (A3)

where R†(t ) = ∫
dωr†

ω(0) sin(ωτ/2) exp[i(ω − ω0)t]
includes the quantum noise contribution to conserve the
commutation for all times with � = g2

0π/2. Clearly, the
signal P at the feedback delay time τ occurs in Eq. (A3).

In the following, we show that the second line and the last
(third) line vanish in the case of a reservoir initially in the
vacuum state and a system described by the Hamiltonian in
Eq. (1).

The solution of Eq. (A3) is derived for every τ interval
iteratively [1,26,35]. For the time interval t ∈ [0, τ ], we eval-
uate the matrix element of the coherence operator P∗

i j (t ) =
〈i, vac|P†(t )| j, vac〉 with | j, vac〉 = | j〉S|vac〉R and j being ei-
ther e or g for the system state and the reservoir in the vacuum
state. The dynamics of the polarization reduces to

Ṗ∗
i j (t ) = − [� − iFt ]P

∗
i j (t ), (A4)

P∗
i j (t ) = e−�t+iφ(t,0)P∗

i j (0), (A5)

contributing only for i = e and j = g and φ(b, a) := ∫ b
a Ft ′dt ′.

Note that the matrix element does not represent the ex-
pectation value. However, the expectation value can be
fully expressed by its corresponding matrix elements, e.g.,
〈P†(t )P(t )〉 = |P∗

eg(t )|2. For the second interval, t ∈ [τ, 2τ ],
the dynamics of the matrix element reads as follows:

Ṗ∗
i j (t ) = − �P∗

i j (t ) + �e−iω0τ P∗
i j (t − τ )

− 2�e−iω0τ 〈i, vac|P†(t − τ )P†(t )P(t )| j, vac〉.
(A6)

Due to the occurring time delay, we can use Pi j for i = e and
j = g from Eq. (A5) in Eq. (A6) to evaluate the second line.
For this, we insert now the unity relation 1 = ∑

i=e,g |i〉SS〈i| ⊗
(|vac〉RR〈vac| + ∫

dω|1ω〉RR〈1ω|) to evaluate the correlation
between the “time-nonlocal” microscopic coherence and the
time-local population density, and we take into account that
only 〈i, vac|P†(t − τ )|g, vac〉 can contribute nontrivially:

〈i, vac|P†(t − τ )P†(t )P(t )| j, vac〉
= 〈i, vac|P†(t − τ )|g, vac〉〈g, vac|P†(t )P(t )| j, vac〉,

(A7)

having reduced the problem to the matrix element
〈g, vac|P†(t )P(t )| j, vac〉. If we now again insert a unity
operator between the operators P†(t )P(t ), we reduce this
quantity again into further products of matrix elements. Since
we know that only P∗

eg(t ) contributes initially in the first time
interval, the quantity vanishes identically in the case of the
Hamiltonian dynamics in Eq. (1) due to 〈g, vac|P†(t )|φ〉 = 0
for arbitrary |φ〉, and therefore we can conclude that,
assuming an initially empty reservoir, the matrix elements
of the microscopic coherence operator are governed by the
dynamics for all times t :

Ṗ∗
eg(t ) =(iFt − �)P∗

eg(t ) + �e−iω0τ P∗
eg(t − τ )θ (t − τ ).

In the case of Ft ≡ 0, this equation can be solved in the
Laplace domain [1,8,26,27,41], yielding the following known
dynamics valid for all t :

P∗
eg(t ) =

∞∑
n=0

e−�t

n!
[�e−iω0τ+�τ (t − nτ )]n�(t − nτ ). (A8)

APPENDIX B: EQUATION OF MOTION OF THE COHERENCE

The equation of motion for the microscopic coherence operator in the zeroth τ interval t ∈ [0, τ ] reads as follows:

Ṗ†(t ) = (iFt − �)P†(t ) → P†(t ) = e−�t+iφ(t,0)P†(0),

with φ(t, 0) = ∫ t
0 Fsds. In the first τ interval, t ∈ [τ, 2τ ], the equation contains a feedback contribution:

Ṗ†(t ) = (iFt − �)P†(t ) + �e−iω0τ P†(t − τ )θ (t − τ ).

After formal integration, we yield

Ṗ†(t ) = e−�t+iφ(t,0)

(
P†(0) + �e−iω0τ

∫ t

τ

eiφ(t ′−τ,t ′ )dt ′
)

.
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The solution up to the second τ interval t ∈ [0, 3τ ] then reads as follows:

P†
eg(t ) = e−�t+iφ(t,0)

[
θ (t ) + θ (t − τ )�e−iω0τ+�τ

∫ t

τ

dt1e−iφ(t1,t1−τ )

+ θ (t − 2τ )(�e−iω0τ+�τ )2
∫ t

2τ

dt1e−iφ(t1,t1−τ )
∫ t1−τ

τ

dt2e−iφ(t2,t2−τ )

]
. (B1)

In the limit F (t ) → 0, we yield the known noise-free solution.

APPENDIX C: EXAMPLES OF THE NOISE CORRELATIONS

In the following we assume Gaussian white noise, i.e., 〈〈φ(a, b)φ(c, d )〉〉 = γ (min[a, c] − max[b, d]), assuming a Gaussian
random variable with 〈〈F (t1)〉〉 = 0 and nonempty overlap between intervals [a, b] and [c, d]. Given this noise correlation, we
find

〈〈eiφ(s′+τ,s′ )〉〉 = exp

[
−1

2
〈〈φ2(s′ + τ, s′)〉〉

]
= exp

[
−γ

2
τ

]
,

〈〈e−iφ(s+τ,s)+iφ(s′+τ,s′ )〉〉 = exp

[
−1

2
〈〈(φ(s + τ, s) − φ(s′ + τ, s′)2〉〉

]

= exp

[
−1

2
〈〈φ2(s′ + τ, s′)〉〉

]
exp

[
−1

2
〈〈φ2(s + τ, s)〉〉

]
exp[〈〈φ(s + τ, s)φ(s′ + τ, s′〉〉]

= exp

[
−γ

2
τ

]
exp

[
−γ

2
τ

]
exp{γ [min(s + τ, s′ + τ ) − max(s, s′)]}

= exp{−γ [max(s, s′) − min(s, s′)]}.

APPENDIX D: EQUATION OF MOTION OF THE NOISE-AVERAGED POPULATION

For the population dynamics, we find the following expression for t ∈ [0, 3τ ]:

〈〈|Peg(t )†|2〉〉 = e−2�t [1 + 2�e�τ cos(ω0τ )〈〈N (t, τ )〉〉�(t − τ ) + �2e2�τ 〈〈N (t, τ )N∗(t, τ )〉〉�(t − τ )

+ 2�2e2�τ cos(2ω0τ )〈〈M(t, 2τ )〉〉�(t − 2τ ) + 2�3e3�τ cos(ω0τ )〈〈N∗(t, τ )M(t, 2τ )〉〉�(t − 2τ )

+ �4e4�τ 〈〈M(t, 2τ )M∗(t, 2τ )〉〉�(t − 2τ )],

with the definitions

N (t, τ ) :=
∫ t

τ

dt1e−iφ(t1,t1−τ ), M(t, 2τ ) :=
∫ t

2τ

dt1e−iφ(t1,t1−τ )
∫ t1−τ

τ

dt2e−iφ(t2,t2−τ ).

Evaluating the noise integrals, we have

〈〈N (t, τ )〉〉 = e− γ

2 τ (t − τ )

〈〈M(t, 2τ )〉〉 = 1

γ 2
[e−γ (3τ−t ) − e−γ τ − γ (t − 2τ )e−γ τ ]

〈〈N (t, τ )N∗(t, τ )〉〉 = 2

γ 2
[γ (t − τ ) − 1 + e−γ (t−τ )]

〈〈N (t, τ )M∗(t, 2τ )〉〉 = 1

6
e− γ τ

2 (t − 2τ )2(t + τ ) + e− γ τ

2

4γ 3
[1 − e−2γ (t−2τ ) − 2γ (t − 2τ ) + 2γ 2(t − 2τ )2]

〈〈M(t, 2τ )M∗(t, 2τ )〉〉 = 1

γ 4
[eγ (t−2τ ) − 1 − 3γ (t − 2τ )] + 1

γ 4

[
1

2
(e−2γ (t−2τ ) − 1) − 3(e−γ (t−2τ ) − 1)

]
.
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Approximating every quantity corresponding to its prefactor in γ , i.e., a quantity with a prefactor of γ −4 must be expanded up
to the fourth order, we yield the following for the noise expressions:

〈〈N (t, τ )〉〉|γ→0 = (t − τ ), (D1)

〈〈M(t, 2τ )〉〉|γ→0 = 1
2 (t − 2τ )2, (D2)

〈〈N (t, τ )N∗(t, τ )〉〉|γ→0 = (t − τ )2, (D3)

〈〈N∗(t, τ )M(t, 2τ )〉〉|γ→0 = 1
2 (t − 2τ )2(t − τ ), (D4)

〈〈M(t, 2τ )M∗(t, 2τ )〉〉|γ→0 = 1
4 (t − 2τ )4. (D5)

For the population dynamics with ω0τ = π/2, we find the following expression:

〈〈|Peg(t )†|2〉〉| = e−2�t [1 − 2�2e2�τ 〈〈M(t, 2τ )〉〉 + �2e2�τ 〈〈N (t, τ )N∗(t, τ )〉〉 + �4e4�τ 〈〈M(t, 2τ )M∗(t, 2τ )〉〉],
and plugging in the expression derived before, in the limit of negligible noise, we get

〈〈|Peg(t )†|2〉〉γ→0 = e−2�t
[
1 − �2e2�τ (t − 2τ )2 + �2e2�τ (t − τ )2 + �4e4�τ 1

4 (t − 2τ )4
]

= ∣∣e−�t
(
1 + i�e�τ (t − τ ) − 1

2�2e2�τ (t − 2τ )2
)∣∣2

= ∣∣e−�t
(
1 + �e�τ+iπ/2(t − τ ) + 1

2�2e2�τ+iπ (t − 2τ )2
)∣∣2

= ∣∣e−�t
(
1 + �e�τ+iω0τ (t − τ ) + 1

2�e�τ+iω0τ (t − 2τ )2
)∣∣2

.

Herewith, we have recovered the case without noise.

APPENDIX E: COHERENCE CORRELATION FUNCTION

The goal of this section is to calculate a two-time correlation up to t = 2τ . Without feedback, we have

P†
eg(t )Pge(t ′) = e−�(t+t ′ ). (E1)

With feedback but without dephasing Ft ≡ 0, we have

P†
eg(t )P†

ge(t ′) =e−�(t+t ′ )[θ (t ) + θ (t − τ )�e−iω0τ+�τ (t − τ )][θ (t ′) + θ (t ′ − τ )�eiω0τ+�τ (t ′ − τ )].

However, with dephasing, we have to calculate the noise correlation functions again. We have to take the average:

〈〈P†
eg(t )Pge(t ′)〉〉 = e−�(t+t ′ )[F0(t, t ′) + θ (t − τ )�e−iω0τ+�τ F1(t, t ′) + θ (t ′ − τ )�eiω0τ+�τ F1(t ′, t )

+ θ (t ′ − τ )θ (t − τ )�2e2�τ F2(t, t ′)],

with the following abbreviations:

F0(t, t ′) = θ (t − t ′)e− γ

2 (t−t ′ ) + θ (t ′ − t )e− γ

2 (t ′−t ).

For t � τ , we need the next correlation:

F1(t, t ′) = θ (t − t ′)e−(γ /2)(t−t ′+τ )(t ′ − τ ) + θ (t − t ′)θ (τ − t ′)e−(γ /2)(t−t ′+τ ) 1

γ
[eγ (t−t ′ ) − eγ (τ−t ′ )]

+ θ (t − t ′)θ (t ′ − τ )e−(γ /2)(t−t ′+τ ) 1

γ
[eγ (t−t ′ ) − 1] + θ (t ′ − t )e−(γ /2)(t ′−t+τ )(t − τ ).

And for t � τ and t ′ � τ ,

F2(t, t ′) = θ (t − t ′)e− γ

2 (t−t ′ ) 2

γ 2

[
γ (t ′ − τ ) + (e−γ (t ′−τ ) − 1)

{
1 − γ

2
(t − t ′)

}]

+ θ (t ′ − t )e− γ

2 (t ′−t ) 2

γ 2

[
γ (t − τ ) + (e−γ (t−τ ) − 1)

{
1 − γ

2
(t ′ − t )

}]
.

This results in a two-time correlation up to t � 2τ :

〈〈P†
eg(t )Pge(t ′)〉〉 = θ (t − t ′) e−�(t+t ′ )−γ (t−t ′ )/2

+ θ (t − t ′)θ (t − τ ) e−�(t+t ′−τ )−γ (t−t ′+τ )/2−iω0τ�(t ′ − τ )
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+ θ (t − t ′)θ (t ′ − τ ) e−�(t+t ′−τ )−γ (t−t ′+τ )/2+iω0τ�(t ′ − τ )

+ θ (t − t ′)θ (t − τ )θ (τ − t ′) e−�(t+t ′−τ )−γ (t−t ′+τ )/2−iω0τ
�

γ
[eγ (t−t ′ ) − eγ (τ−t ′ )]

+ θ (t − t ′)θ (t − τ )θ (t ′ − τ ) e−�(t+t ′−τ )−γ (t−t ′+τ )/2−iω0τ
�

γ
[eγ (t−t ′ ) − 1]

+ θ (t − t ′)θ (t − τ )θ (t ′ − τ ) e−�(t+t ′−2τ )−γ (t−t ′ )/2 2�2

γ 2

{
γ (t ′ − τ )+[e−γ (t ′−τ ) − 1]

[
1−γ

2
(t − t ′)

]}
+{t ↔ t ′}.

Herewith the results of the paper can be reproduced.
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