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Green’s-function formalism for resonant interaction of x rays with nuclei in structured media
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The resonant interaction between x-ray photons and nuclei is one of the most exciting subjects in the burgeon-
ing field of x-ray quantum optics. A resourceful platform used to date is thin-film x-ray cavities with embedded
layers or Mössbauer nuclei such as 57Fe. A quantum optical model based on the classical electromagnetic Green’s
function is developed to investigate theoretically the nuclear response inside the x-ray cavity. The model is
versatile and provides an intuitive picture about the influence of the cavity structure on the resulting spectra.
We test its predictive powers with the help of the semiclassical coherent scattering formalism simulations and
discuss our results on increasing complexity of layer structures.
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I. INTRODUCTION

Compared to optical photons, x rays have a number of
desirable properties such as deeper penetration, better fo-
cus, no limitation by an inconvenient diffraction limit as for
low-frequency photons, and correspondingly superior spatial
resolution, as well as robustness, and the large momentum
transfer they may produce. The commissioning of the first
x-ray free electron lasers (XFELs) [1,2] has brought attention
to all the advantages of x-ray photons and supports the devel-
opment of the emerging field of x-ray quantum optics [3,4].
However, the modest degree of control that we have over x-ray
photons is at present a major drawback.

X-ray quantum optics with nuclei promises to close this
gap by exploiting the resonant interaction of x rays with Möss-
bauer nuclear transitions. For instance, by using the 14.4-keV
nuclear resonance in 57Fe, methods have been proposed and
experimentally implemented to coherently control single x-
ray photons. A number of experimental achievements have
rendered x-ray quantum optics a burgeoning field, among
which are the storage of nuclear excitation via magnetic
switching [5], the observation of the collective Lamb shift [6],
electromagnetically induced transparency with x rays [7], the
first experimental evidence of vacuum-generated coherences
[8], slow x-ray light [9], the manipulation of single-photon
wavepacket pulse shapes [10], interferometric phase detection
at x-ray energies [11], the collective strong coupling of single
x-ray photons [12,13], and the controlled spectral narrowing
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of x-ray pulses [14]. These developments provide potential
applications in the fields of metrology, material science, quan-
tum information, biology, and chemistry. From the theoretical
side, several works have addressed promising control schemes
for stopping and manipulating x-ray quanta [15–21].

Very successful physical systems for x-ray quantum optics
applications are thin-film x-ray cavities; see the illustration
in Fig. 1. A thin-film x-ray cavity typically is comprised of
a stack of stratified materials. A low-density guiding layer
is coated on a substrate with a higher electron density (high
atomic number Z) in a planar geometry. The incident x rays,
typically produced at synchrotron radiation facilities, arrive at
a grazing angle and couple evanescently to the cavity, forming
a standing wave. The nuclear layer is placed in the cavity
and it interacts with this standing wave, allowing better con-
trol over the resonant interaction. Many of the experimental
achievements in x-ray quantum optics are based on x-ray
thin-film cavities [6–9,11–13].

In the past slightly more than 50 years several methods
have been developed to describe theoretically the x-ray quan-
tum dynamics in crystals or thin-film cavities. Shortly after
the discovery of the Mössbauer effect, at the end of the 1960s,
a quantum theory for x-ray and γ -ray optics for crystals
containing resonant nuclei was established by Hannon and
Trammell [22–24] using quantum electrodynamics S-matrix
techniques. Neglecting the possibility of coherent multiphoton
effects (which were at the time not to be anticipated while
working with Mössbauer sources) the theory produced in the
weak-excitation limit a set of coupled equations of the mul-
tiple scattering type formally identical to those derived in the
dynamical x-ray theory in a semiclassical manner [25]. These
expressions were particularized also for grazing incidence
[23] and followed by a row of studies on grazing incidence an-
tireflection films for synchrotron radiation, among which also
pure nuclear reflections were investigated [26]. For normal
and Bragg incidence, further important theoretical develop-
ments and detailed treatments of the dynamical theory in
the semiclassical limit (treating the scattered field classically)
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FIG. 1. Sketch of the x-ray thin-film cavity with a nuclear en-
semble containing 57Fe (green layer). For the top and bottom layers
usually a high-Z material such as Pd or Pt is used. The low-density
guiding layers can be fabricated for instance from C or B4C.

were given by Afanas’ev, Kagan, and coworkers (for a review
see Ref. [27] and references therein) and by Shvyd’ko [28].

More concretely for the case of thin-film cavities, semi-
classical methods such as the Parratt formalism [29] or the
layer formalism [30] implemented in the software package
CONUSS [31,32] have proven to be very successful in modeling
experimental data [6–9,11–13]. This is remarkable consid-
ering that so far the low intensity of synchrotron radiation
sources allows mostly single resonant x-ray photons to couple
to the Mössbauer nuclei in the cavity. Due to the classical
nature of the x-ray field in these methods, it is, however,
impossible to study the quantum properties of the x-ray
photons, for instance, to calculate higher-order correlation
functions. This point might become important in experiments
with XFEL light, where each pulse can contain more than
a single resonant photon. The first XFEL experiment in nu-
clear forward-scattering geometry for thick samples has been
performed with up to 68 resonant photons per pulse [33]. An
even higher photon degeneracy could be reached with seeded
XFELs or at an XFEL oscillator [34]. We note that the quan-
tum description dating back to the original works of Hannon
and Trammell is also restricted to single photons [22,23].
A second drawback concerns the difficulty of predicting the
structure starting from the desired scattering properties. Both
the Parratt formalism and the computer package CONUSS can
successfully predict the scattering spectra starting from the
structure but cannot be easily used for the inverse problem.

A phenomenological quantum model for x-ray cavities
was developed several years ago [35,36] and used to model
experimental data for specific cases. While quite versatile for
single-layer cavities [35], the original model had difficulties
to accurately describe more complicated structures, and an
extension including multiple modes in the cavity was required
to correctly reproduce experimental data for cavities with two
embedded nuclear layers [36]. Both models can handle an
arbitrary number of excitations. While Refs. [35,36] focus on
the regime of single excitations, a situation which corresponds
to the studied case of synchrotron radiation driving nuclear
transitions, the case of stronger excitation up to population in-
version is discussed in Ref. [37]. A recently developed general
ab initio few-mode model for quantum potential scattering
problems promises to be applicable also to x-ray thin-film

cavities [38]. We note that after the submission of this work,
another ab initio approach using Green’s functions for nu-
clear quantum optics in x-ray cavities was brought to our
attention [39].

In this work, we develop a different formalism for the
scattering of x-ray radiation off thin-film cavities, taking into
account the nucleus-nucleus interaction in terms of the classi-
cal electromagnetic Green’s function [40,41]. The approach
that we develop here describes the atom-light interactions
using a quantization scheme based on the classical electro-
magnetic Green’s function. The classical propagator describes
the wave propagation between two atoms (in our case nuclei),
while the quantumness of the system is encoded in the cor-
relations of the local polarization noise operators and in the
atoms (nuclei) as quantum sources [40]. As such the field
is treated quantum mechanically and quantum observables
are accessible, although the field propagation obeys the wave
equation and the spatial profile of the photons is determined
by the classical propagator. In our special geometry, the cavity
structure determines the strength of the internuclear coupling.
The thin-film cavity is treated as a quasi-one-dimensional
(quasi-1D) nanostructure and the cavity fields are effectively
eliminated.

Our formalism is very general and convenient to apply for
complicated multilayer structures. The model is not restricted
to single excitations and therefore is useful for future applica-
tions involving XFEL light. As it accounts for the quantization
of the field, the model can be used to investigate the quantum
properties of x-ray photons, for instance, via higher-order
correlation functions. These features are shared with the pre-
viously existing quantum models developed in Refs. [35,36].
We benchmark the semiclassical observables of our model
by using CONUSS [31,32] to simulate spectra for several-layer
structures with 1, 2, or 30 embedded 57Fe layers, the latter be-
ing the first attempt to quantitatively describe with a quantum
model the complex structure investigated experimentally in
Ref. [12]. The comparison shows perfect agreement between
the two methods and confirms the validity of our formalism.
We use the model also to predict and discuss the shape of the
superradiant decay and the electromagnetically induced x-ray
transparency results from Ref. [7].

We note that within the field of quantum optics with neu-
tral atoms, Green’s-function-based approaches are also being
actively explored. This formalism has recently been used
to predict and quantitatively model several exotic, strongly
correlated quantum optical phenomena, which cannot clearly
be obtained by other means. Examples include the demon-
stration of photon number sorting via strong photon-number-
dependent group velocities [42,43], the “fermionization” of
excitations [44,45], and the emergence of critical many-body
dynamics [45]. Alongside the development of better sources
and optimized devices, we anticipate that the Green’s-function
approach could facilitate the arrival of strongly quantum phe-
nomena in x-ray optics.

This paper is organized as follows. In Sec. II, we intro-
duce the effective Hamiltonian, in which the cavity fields are
eliminated and the nucleus-nucleus interaction is written in
terms of the classical Green’s function [40]. We then write
down the expressions for some observables using the input-
out formalism [40]. Next, we present and analyze numerical
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results for three layer structures with 1, 2, and 30 embedded
57Fe layers, respectively, in Sec. III. The results are compared
to semiclassical simulations and several physical systems in-
vestigated experimentally are discussed in the light of the
new model. Finally, we summarize our findings and point out
possible applications in Sec. IV.

II. THEORETICAL MODEL

In this section we present the model formalism starting
from a more detailed description of the physical system,
the model Hamiltonian and master equation that rules the
dynamics, and the input-output formalism determining the
observables in experiments.

A. Thin-film cavities

Specific layer geometries allow x rays to be guided in thin-
film cavities. The thin-film consists of nanometer-thick layers
of different materials, with an example depicted in Fig. 1. A
material of low electron density (carbon or boron carbide)
is sandwiched between two layers of high electron density
(palladium or platinum, for instance). Depending on the film
thickness, a certain number of guided modes can be excited
at different incidence angles where the reflectivity reaches a
deep minimum. These minima determine the so-called reso-
nant angles for the cavity and their positions depend on the
cavity structure. Usually in experiments one measures the
reflectivity spectra for angles close to such a resonant angle
and defines the deviation angle �ϕ = ϕ − ϕC , where ϕ is the
incidence angle and ϕC is the constant resonant angle [35].

In order to have the x rays drive a nuclear Mössbauer
resonance, a 57Fe layer is embedded in the thin-film cavity
typically within the lossy low-Z material layer. This isotope
has a stable ground state and a first excited state at 14.413 keV,
corresponding to a wavelength of 0.86 Å. These two states
are connected via a magnetic dipole (M1) transition. With the
nuclear resonance natural line width of approx. 4.66 neV, even
when tuned to the nuclear transition energy, both synchrotron
and XFEL pulses will act as broadband sources. In the case of
the synchrotron, just one or, very rarely, two resonant photons
are available in each pulse at best. In the following we develop
a model that considers the interaction between the nuclei and
the total electric field in the presence of a dispersive and
absorptive medium which is spatially inhomogeneous.

B. Model Hamiltonian and internuclear couplings

The general Hamiltonian based on the quantum optics ap-
proaches in Refs. [46–50] in the rotating-wave approximation
contains atomic, field, and interaction terms,

Ĥ = Ĥatom + Ĥfield + Ĥint

= h̄ω0

N∑
i=1

σ̂ i
egσ̂

i
ge + h̄

∫
dr

∫ ∞

0
dω ωf̂†(r, ω) · f̂ (r, ω)

−
(

N∑
i=1

σ̂ i
eg

∫ ∞

0
dω di · Ê(ri, ω) + H.c.,

)
(1)

where h̄ is the reduced Planck constant, ω0 the transition
frequency, σ̂ i

eg = |e〉〈g| and σ̂ i
ge = |g〉〈e| denote the atomic

raising and lowering operators of the ith atom, respectively,
and di is its dipole moment matrix element [40]. Without loss
of generality, we assume here two-level atoms such that all
have the same dipole moment matrix element denoted by d.
The sum over i runs over all N atoms (nuclei) interacting
with the photon field. The latter is described by the bosonic
annihilation and creation operators f̂ (r, ω) and f̂†(r, ω), re-
spectively, which satisfy the canonical commutation relations
[40,48].

The electric field operator Ê(r, ω) fulfills the equation
[48,50,51]

∇ × ∇ × Ê(r, ω) − ω2

c2
ε(r, ω)Ê(r, ω) = iωμ0 ĵnoise(r, ω),

(2)
where ε(r, ω) is the complex permittivity function describing
the medium, c = 1/

√
μ0ε0 is the speed of light in vacuum,

ε0 is the permittivity of free space, μ0 is the vacuum perme-
ability, and ĵnoise(r, ω) = ω

√
(h̄ε0/π )Im[ε(r, ω)]f̂ (r, ω). A

formal solution of Eq. (2) can be derived using the system’s
Green’s function G(r, r′, ω), which satisfies [40,48,51]

∇ × ∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r − r′)I,

(3)
where I is the unity dyadic. The electric-field operator at fre-
quency ω can be written in terms of the Green’s function and
the annihilation (creation) field operators f̂ (f̂†) as [40,48,51]

Ê(r, ω) = iμ0ω
2

√
h̄ε0

π

×
∫

dr′√Im[ε(r, ω)]G(r, r′, ω) · f̂ (r′, ω). (4)

The total field operator is then

Ê(r) =
∫

dωÊ(r, ω) + H.c. (5)

The expressions written so far apply to a broad class of
problems. We now particularize this approach to our problem
of interest. First, we note that nuclear transitions resonant
to x rays are often not of the electric dipole type, and in
particular, the 57Fe Mössbauer transition has magnetic dipole
multipolarity. This translates to the use of the reduced nuclear
transition probability B(M1) [52] instead of the electric dipole
operator for matrix elements of the Hamiltonian (1). The
exact expression for interaction Hamiltonians going beyond
the dipole approximation in nuclear quantum optics can be
found in Refs. [17,53]. For simplicity and in order to keep
the parallel to atomic quantum optics, in the following we
continue to use the electric dipole moment matrix element d in
our expressions. Second, we want to study the evolution of N
identical nuclei which interact via the probe x-ray field in the
thin-film cavity. The single-nucleus coupling strength to the
cavity remains much smaller than the cavity line width. This
allows us to use the Born-Markov approximation and trace
out the photonic degrees of freedom [40,54,55]. The dynam-
ics of the system can be described by means of the master
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equation [56]

˙̂ρ = − i

h̄
[Ĥ , ρ̂] + L[ρ̂], (6)

where ρ̂ is the density matrix of the system and L[ρ̂] is the
Lindblad operator modeling its loss. The resulting effective
Hamiltonian is written now explicitly in terms of the nucleus-
nucleus interaction,

Ĥ = −h̄�

N∑
i=1

σ̂ i
egσ̂

i
ge − h̄

N∑
i, j=1

gi j σ̂ i
egσ̂

j
ge

−
N∑

i=1

[
d · Ê−

p (ri )σ̂
i
ge + d∗ · Ê+

p (ri )σ̂
i
eg

]
, (7)

where Êp is the probe field and the notations E+(−) were
introduced for the positive (negative) frequency components
of the field operator [40]. Furthermore, � = ωp − ω0 is the
detuning between the probe field ωp and the nuclear transition
with energy h̄ω0. For the thin-film geometry which possesses
translational symmetry in the (x, y) plane, the probe field
can be written as Ê±

p = Ê±
1D(z)e±ikρ

pρ, where ρ = (x, y) and
kρ

p = ((kp)x, (kp)y) is the transversal component of the inci-
dent wave vector kp. The loss in the system is described by
the Lindblad operator [40]

L[ρ̂] = −
N∑

i, j=1

γ i j

2

(
σ̂ i

egσ̂
j

geρ̂ + ρ̂σ̂ i
egσ̂

j
ge − 2σ̂ i

geρ̂σ̂ j
eg

)
. (8)

In Eqs. (7) and (8), we have introduced the spin-exchange and
decay rates, defined as

gi j = (
μ0ω

2
p/h̄

)
d∗ · Re[G(ri, r j, ωp)] · d,

(9)
γ i j = (

2μ0ω
2
p/h̄

)
d∗ · Im[G(ri, r j, ωp)] · d.

Note that the nucleus-nucleus couplings are given in terms of
the total Green’s function of the medium. Thus, if the Green’s
function is calculated either numerically or analytically, then
the spin-exchange and decay rates and in turn the effective
Hamiltonian and the Lindblad operators can be obtained. This
will allow us to study the dynamics and properties of the
system and the scattered photons using the master Eq. (6).

C. Green’s function for thin-film cavity geometry

The Green’s function for the thin-film layer geometry has
been derived analytically in Ref. [57]. Exploiting the transla-
tional invariance of the system in the (x, y) plane, the thin-film
x-ray cavity is treated as a quasi-1D structure along the z di-
rection. The complex permittivity function ε(r, ω) = ε(z, ω)
is defined in a stepwise fashion, according to the geometry
illustrated in Fig. 1. The Green’s function can be written
as [57]

G(ri, r j, ωp) = 1

(2π )2

∫
d2kρG1D(zi, z j, ωp, kρ )eikρ (ρi−ρ j ).

(10)
The quantity G1D(zi, z j, ωp, kρ ) is a one-dimensional Green’s
function for the z direction and differs in dimension from
G(ri, r j, ωp) by an area factor. Reference [57] provides the
expression of G1D(zi, z j, ωp, kρ ) for multilayers, which can be

simplified for a small incidence angle ϕ � 1, weak polariza-
tion dependence, and kρ determined by the probe-field wave
vector to read

G1D(zi, z j, ωp, kρ ) 	 i

2kz
[pν (zi )qν (z j )�(zi − z j )

+ pν (z j )qν (zi )�(z j − zi )]. (11)

Here, kz is the z component of the wave number, the quantities
pν and qν represent the fields produced in the cavity by a
grazing incidence x-ray pulse of unit strength incident upon
the cavity from its lower and upper sides, respectively, and
�(z) denotes the Heaviside step function.

The spin-exchange and decay rates defined in Eqs. (9)
further depend on the dipole matrix element d. This quantity
(in the case of 57Fe the magnetic dipole matrix element) can
be connected to the radiative decay rate of a single nucleus
r as shown, for instance, in Ref. [17]. In turn, the radiative
decay rate can be written with the help of the spontaneous
decay rate of the nuclear excited state of a single nucleus 0

taking into account the internal conversion channel and the
internal conversion coefficient α as 0 = (1 + α)r . For the
14.4-keV transition in 57Fe, the internal conversion coefficient
is approximately 8.6.

The total Green’s function for the system includes,
apart from the cavity Green’s function, also an addi-
tional vacuum contribution, Gtot (ri, r j, ωp) = G(ri, r j, ωp) +
Gvac(ri, r j, ωp). We further assume that the nucleus-nucleus
couplings via the cavity channel play a significant role and
Gvac(ri, r j, ωp) only provides the spontaneous decay of a sin-
gle nucleus 0, whose value we take from experiments. In the
following, we proceed to apply our approach for some specific
cases of thin-film cavities.

D. A single nuclear layer

We first consider the case of a single nuclear layer em-
bedded in the x-ray cavity at z = z0, as illustrated in Fig. 1.
The cavity consists of a sandwich of Pd and C layers with
one embedded 57Fe layer. Since the nuclear layer is very thin
compared with the wavelength of the standing wave in the
cavity under the grazing incidence of a few millirads, we
assume that the electric field for all the nuclei in the thin layer
is the same, i.e., G1D(zi, z j, ωp, kρ ) 	 G1D(z0, z0, ωp, kρ ).
In order to get rid of the dependence in the transversal plane,
we define, similarly to Refs. [39,58], the collective nuclear
spin-wave operators for the nuclei in the layer,

Ŝ(kρ ) = 1√
N

N∑
i=1

e−ikρρi σ̂ i
ge . (12)

Under the assumption of translational invariance, the spin-
wave operators diagonalize the Hamiltonian. Following
Ref. [39], we can perform the change of basis and the
integration over kρ appearing in Eq. (10). Due to the trans-
lational symmetry and in the low-saturation regime, the
probe field drives only the subspace with wave vector kρ

p,
the transversal component of the incident wave vector kp.
Restricted to this subspace, the Hamiltonian and Lindblad
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operators are simplified and read

Ĥ = −h̄�Ŝ†(kρ
p

)
Ŝ
(
kρ

p

) + h̄NgŜ†(kρ
p

)
Ŝ
(
kρ

p

)
− h̄

√
N

[
�Ŝ†

(
kρ

p

) + �∗Ŝ
(
kρ

p

)]
(13)

and

L[ρ̂] = −Nγ + 0

2

[
Ŝ†(kρ

p

)
Ŝ
(
kρ

p

)
ρ̂ + ρ̂Ŝ†(kρ

p

)
Ŝ
(
kρ

p

)
− 2Ŝ

(
kρ

p

)
ρ̂Ŝ†

(
kρ

p

)]
, (14)

where � = d∗ · Ê+
1D(z0)/h̄ is the Rabi frequency of

a single nucleus. Using the thin-layer approximation
G1D(zi, z j, ωp, kρ ) 	 G1D(z0, z0, ωp, kρ ), the spin-exchange
and decay rates no longer depend on the nuclear indices i and
j and can be written in simplified form,

g = μ0ω
2
p

h̄A
d∗ · Re

[
G1D

(
z0, z0, ωp, kρ

p

)] · d,

(15)

γ = 2μ0ω
2
p

h̄A
d∗ · Im

[
G1D

(
z0, z0, ωp, kρ

p

)] · d,

where A is the transversal area denoted in Ref. [39] as the
parallel quantization area. The area factor is not determined
analytically but is contained in the fitting procedure described
in Sec. III.

We work in the Heisenberg representation. Using the mas-
ter equation for the density matrix, the expectation value of the
collective coherence (S = 〈Ŝ(kρ

p )〉) governed by the Heisen-
berg equations reads

Ṡ = i

(
� + i

0

2

)
S + i

√
N� + i

(
Ng + i

Nγ

2

)
S . (16)

The coherences will evolve towards a steady state described
by the solution of the equation Ṡ = 0. We obtain

S = −
√

N�

� + Ng + i Nγ+0

2

. (17)

From the equation above we can derive a simple interpretation
for the behavior of the collective resonant scattering of the
nuclei in the embedded 57Fe layer. We observe that in the
denominator the real part is shifted by Ng, while the imaginary
part is increased by Nγ . Thus, the thin nuclear layer acts like
a giant “macronucleus” with a collective frequency shift Ng
(the collective Lamb shift) and a superradiant decay rate Nγ .

E. Multilayers

We now proceed to a more complicated case with n0

nuclear layers embedded in the cavity. We start again from
the general Hamiltonian in Eq. (7). All nuclei in the same
layer have the same z coordinate and we denote by zl and Nl

for l = 1, 2, . . . , n0 the position of and number of nuclei in
each layer, respectively. Using the approximations introduced
in Sec. II D, the spin-exchange and decay rates defined in
Eq. (9) are the same for all nuclei from the same layer but
different for nuclei from different layers. We note here that
this approximation might not always hold in practice, as the
standing wave might not have a much larger wavelength than
the nuclear layer thickness. This case is discussed later in the
practical example presented in Sec. III.

Defining the collective nuclear spin operator Sl for each
layer l according to Eq. (12), we derive the Hamiltonian for
the multilayer system

Ĥ = − h̄�

n0∑
l=1

Ŝ†
l

(
kρ

p

)
Ŝl

(
kρ

p

)

− h̄
n0∑

l,m=1

JlmŜ†
l

(
kρ

p

)
Ŝm

(
kρ

p

)

− h̄
n0∑

l=1

[
�l Ŝ

†
l

(
kρ

p

) + �∗
l Ŝl

(
kρ

p

)]
(18)

and the Lindblad operators

L[ρ̂] = −
n0∑

l,m=1

lm

2

[
Ŝ†

l

(
kρ

p

)
Ŝm

(
kρ

p

)
ρ̂

+ ρ̂Ŝ†
l

(
kρ

p

)
Ŝm

(
kρ

p

) − 2Ŝl
(
kρ

p

)
ρ̂Ŝ†

m

(
kρ

p

)]
− 0

2

n0∑
l=1

[
Ŝ†

l

(
kρ

p

)
Ŝl

(
kρ

p

)
ρ̂ + ρ̂Ŝ†

l

(
kρ

p

)
Ŝl

(
kρ

p

)
− 2Ŝl

(
kρ

p

)
ρ̂Ŝ†

l

(
kρ

p

)]
, (19)

where

Jlm = √
Nl Nm

μ0ω
2
p

h̄A
d∗ · Re

[
G1D

(
zl , zm, ωp, kρ

p

)] · d,

lm = √
Nl Nm

2μ0ω
2
p

h̄A
d∗ · Im

[
G1D

(
zl , zm, ωp, kρ

p

)] · d ,

(20)

�l = √
Nl d∗ · Ê+

1D(zl )/h̄.

Here, the indices l and m indicate the layers. Recalling the in-
terpretation introduced at the end of Sec. II D for a single-layer
cavity, we can regard Jlm (the real part of the interlayer cou-
pling) as a coherent coupling or spin-exchange rate betweeen
macronuclei and lm (the imaginary part of the interlayer
coupling) as an incoherent coupling or decay rate.

The dynamics of the nuclear coherences are driven by the
Heisenberg equations

Ṡl = i

(
� + i

0

2

)
Sl + i�l + i

n0∑
m=1

GlmSm , (21)

where

Glm = Jlm + ilm/2

= √
NlNm

μ0ω
2
p

h̄A
d∗ · G1D

(
zl , zm, ωp, kρ

p

) · d (22)

is determined by the Green’s function.
For the steady-state condition Ṡ = 0 we obtain 
S =

−M−1 
� with

M =
(

� + i
0

2

)
1 + G . (23)

Here 
S = (S1, . . . , Sn0 ) and 
� = (�1, . . . , �n0 ) are n0-
dimensional vectors, and M is an n0 × n0 matrix which
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is determined by �, 0, and the matrix G consisting of
elements Gi j .

F. Input-output formalism

So far, our model provides the expectation value of the
nuclear coherences. However, the observable in experiments
is the energy- or incidence-angle-dependent cavity reflectivity.
The connection is provided by simple expressions that connect
the field at the edge of the cavity to the nuclear coherences.
The output operator for the reflectivity spectrum is defined
as âout = Ê+

out(ztop)eikρ
pρ, where ztop is the position of the inci-

dence boundary. The reflectance is written as

R = 〈âout〉
ain

, (24)

where ain is the input field. The field at any point in space can
be reconstructed in terms of the coherences. For the one-layer
case, the expression for the field operator is given by [40]

Ê+
out(z) = Ê+

1D(z) + μ0ω
2
p

√
N

A
G1D

(
z, z0, ωp, kρ

p

) · d Ŝ
(
kρ

p

)
,

(25)
where Ê+

1D(z) stands for the field scattered by the cavity in
the absence of the resonant nuclei and the second term can
be considered as the field rescattered by the nuclei. For the
multilayer case, the field operator reads [40]

Ê+
out(z) = Ê+

1D(z) + μ0ω
2
p

A

n0∑
l=1

√
NlG1D

× (
z, zl , ωp, kρ

p

) · d Ŝl
(
kρ

p

)
. (26)

Another interesting observable which can easily be calcu-
lated with our formalism is the photon correlation function.
For instance, following Ref. [35] the second-order correlation
function of x-ray photons over a time interval τ is accessed as

g2(τ ) = 〈â†
out(0)â†

out(τ )âout(τ )âout(0)〉
〈â†

out(0)âout(0)〉2
. (27)

We recall here that, although omitted in the notations, all oper-
ators are time dependent in the Heisenberg picture used here.
The second-order correlation function can be used to investi-
gate the x-ray photon statistics, such as photon bunching and
antibunching, which cannot be calculated by the semiclassical
Parratt formalism or the layer formalism.

III. NUMERICAL RESULTS

We now proceed to apply the formalism described above to
several thin-film cavity structures with 1, 2, or 30 embedded
57Fe layers. We validate our approach by carefully comparing
our predictions for the cavity reflectivity with simulations with
CONUSS [32] for different layer structures. Particular features
which are well reproduced by the model are highlighted and
physical interpretations are presented.

Our approach is not ab initio, as we do require one fit
parameter. The latter is the ratio of two factors: the unknown
number of nuclei N and the transversal area factor A entering
the spin-exchange and decay rates in Eqs. (15) and (20). The
reflectivity observable based on the field expressions (25) and

FIG. 2. Reflectivity of a cavity with a single 57SS layer calculated
for the resonant angle of the first guided mode at ϕ = 2.464 mrad
with Green’s-function formalism (solid blue line) and with CONUSS

(dashed green line). See text for further explanation.

(26) depends on the term
√

NG1D(z, z0, ωp, kρ
p ) · d S/A, which

in turn depends on the area density factor N/A. We note that
Ref. [39], which presents an ab initio Green’s-function model
for thin-film x-ray cavities, interprets the area factor A as a
parallel quantization area and determines the planar nuclear
density from the sample nuclear density.

A. Cavities with a single embedded nuclear layer

We consider a layer structure as the one reported in
Ref. [6], namely, (2.2 nm Pt)/(16 nm C)/(0.6 nm 57SS)/
(16 nm C)/(13 nm Pt), where 57SS is stainless steel contain-
ing 57Fe-enriched iron (95%). For such a cavity, our model
predicts a reflectivity with the expression

R = R0 + i
C

� + Ng + i(Nγ + 0)/2
, (28)

where C is a constant depending on the incidence angle ϕ and
N/A, and R0 is the reflectivity from the bare cavity without
considering the interaction with the nuclei. The factor N/A
is the only fit parameter of our model and is a function of the
resonant nuclear layer thickness and the density of 57Fe nuclei
in the layer. The latter in turn depends on the degree of 57Fe
enrichment and the chemical composition. Practically, we can
obtain N/A as a scaling parameter by fitting once a reflectivity
spectrum with the corresponding CONUSS predictions. For the
same nuclear layer thickness and composition, the obtained
value N/A can be used for any cavity structure and for all
incidence angles. Furthermore, for the same composition, N/A
scales linearly with the layer thickness, as expected for a
planar nuclear density.

Our numerical results are compared with predictions by
CONUSS in Fig. 2 for the resonant angle of the first guided
mode at ϕ0 = 2.464 mrad. The figure shows the two main
features predicted by Eqs. (17) and (28): a frequency shift
from the nuclear transition (corresponding to � = 0 in the
plot), and a line broadening compared to spontaneous decay
as known from single nuclei. In the literature these features
are known as the collective Lamb shift [6] and superradiant
decay [59]. Our predictions are in excellent agreement with
the numerical CONUSS simulations (dashed green line). At the
cavity resonant incidence angles, the scattered field due to the
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FIG. 3. Calculated energy- and angle-dependent reflectivity for
the Pt(2 nm)/C(40 nm)/Pt(10 nm) cavity with the 1-nm 57SS layer
placed at z0 = 12 nm. (a) Numerical data from the Green’s-function
model. (b) Numerical results from CONUSS. See text for further
explanation.

bare cavity in the absence of nuclei [Ê+
1D(z) in Eq. (25)] is

suppressed, R0 is 0, and the superradiant decay determines the
width of the Lorentz shape in Fig. 2. This situation changes
for deviating incidence angles, where the nonresonant cavity
reflectivity R0 becomes nonzero and the total reflectivity is no
longer a Lorentz profile.

We now investigate in more detail the behavior of the
superradiant decay as a function of the exact placement of
the nuclear layer in the cavity. We consider the cavity struc-
ture Pt(2 nm)/C(40 nm)/Pt(10 nm) with a 1-nm 57Fe layer
placed in the cavity at position z0 measured starting from
the top. We calculate reflectivity spectra for incidence angles
around the corresponding resonant angle of the third guided
mode for z0 = 2.5, 7.5, 12, and 16.5 nm. A comparison be-
tween our result and CONUSS simulations for the example of
z0 = 12 nm is shown in Fig. 3. Also in this case the agree-
ment is excellent. We have checked that the same holds for
the other three cases, with z0 = 2.5, 7.5, and 16.5 nm, not
presented here.

An interesting aspect when varying the position of the
resonant layer inside the cavity is the shape of the superradiant
decay Nγ as a function of the incidence angle. In a single-
mode Jaynes-Cummings model, the collectively enhanced

FIG. 4. The factor Fp as a function of the deviation angle �ϕ for
different positions z0 of the nuclear layer 57Fe. Our theoretical values
(blue circles) are fitted by a Fano profile (red line) as described in
the text. The obtained Fano asymmetry parameter q is given above
each graph.

decay rate C in the cavity as a function of the incidence angle
is given by a Lorentz profile [35],

C = 2|g̃|2κ
κ2 + �2

C

, (29)

where g̃ is the coupling between the nuclei and the cavity, κ

is the cavity decay, and �C = ω0 − ωc is the cavity detuning,
proportional to the deviation from the incidence angle �ϕ.

In our model Nγ can be calculated using the second of
Eqs. (15). In Fig. 4 we present the ratio Fp = Nγ /0 for
the four considered z0 values as a function of the angular
detuning �ϕ around the first minimum of the reflectivity.
Surprisingly, the Lorentz profile appears to describe only the
case of the nuclear layer placed in the antinode of the guided
mode standing wave. For the other positions, the superradiant
decay displays a Fano instead of a Lorentzian shape as a
function of the incidence angle. The dependence of the Fano
profile on z0 can be quantified by fitting the calculated Fp

with the function a |q+b�ϕ|2
1+b2�ϕ2 using a, q, b, and ϕC as fitting

parameters. The results are presented in Fig. 4. When the
nuclear layer is placed at the antinode of the standing wave in
the cavity (z0 = 7.5 nm), the fitting parameter |q| = 150.8 is
very large [see Fig. 4(b)] and the line shape closely resembles
a Lorentz line, being consistent with the Jaynes-Cummings
expression (29). If the nuclear layer is not at the antinode,
Fp is asymmetric and it can be fitted by a Fano line shape
with Fano asymmetry parameters |q| = 3.5, 2.9, and 1.9 as
shown in Figs. 4(a), 4(c) and 4(d), respectively. This proves
the strength of our model, which, in contrast to the single-
mode Jaynes-Cummings model, can handle in its description
all cavity modes.

B. Results for multilayer systems

We now check the accuracy of our formalism for more
complex examples with more than one nuclear layer placed in
the cavity. Few experiments have already been performed for
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FIG. 5. Energy-dependent reflectivity spectrum for the two-layer
structures calculated for the resonant angle of the third guiding mode
with the Green’s-function formalism (solid blue line) and CONUSS

(dashed green line). (a) Numerical data for the node-antinode struc-
ture. A dip occurs around the resonant energy. (b) Numerical results
for the antinode-node structure. A single resonant line is obtained
and the EIT dip disappears. See text for further explanation.

such cavities, for instance, the first demonstration of electro-
magnetically induced transparency (EIT) in the x-ray regime
[7] and of the collective strong coupling of x rays [12,13]. We
first consider the two cavity structures investigated in Ref. [7].
These two cavities contain two embedded 57Fe layers and
differ in the exact placement of the latter. Both cavities consist
of a Pt(3 nm)/C(38 nm)/Pt(10 nm) sandwich structure, each
containing two 57Fe layers, one placed at the node and one at
the antinode of the cavity field. Reference [7] considers 2-nm-
and 3-nm-thick layers. At this thickness, the iron layers or-
der ferromagnetically, with the magnetization confined to the
plane of the films. The magnetic hyperfine interaction lifts the
degeneracy of the nuclear magnetic sublevels, leading to four
allowed magnetic dipole transitions for the given scattering
geometry, where the magnetization is aligned parallel to the
wave vector of the incident photons. As the generated intrinsic
magnetic field is 33 T, the driven transitions do not overlap and
can be considered separately. Here we perform simulations for
2-nm-thick 57Fe layers in order to reproduce Fig. 1 in Ref. [7].

The structure for which EIT features appear for each of
the four hyperfine transitions has the first nuclear layer at
the node centered at z0 = 15.2 nm and the second at the
antinode of the standing wave at approximately z0 = 24.2 nm.
At zero detuning, the reflectivity presents a clear dip, which
resembles transparency and is therefore attributed to EIT-like
effects. In the second structure, the positions of the nuclear
layers are inverted such that the first layer is in an antinode
at approximately z0 = 24.2 nm and the second layer in the
following node at z0 = 33.2 nm. For this cavity structure, the
EIT feature, i.e., the reflectivity dip in the scattered spec-
trum, disappears. The calculated reflectivity spectra for both
structures are shown in Fig. 5 for the resonant angles of the
third guiding modes, around 3.57 mrad. The comparison with
CONUSS shows an excellent agreement and provides strong
evidence for the validity of our method.

The physical picture of the two-layer structure emerging
from our model expressions is easy to follow. Each resonant
layer has an individual collective Lamb frequency shift Jii

and superradiance decay rate ii, where i = 1, 2. Moreover,
a complex interlayer coupling J12 + i12/2 comes into play.
The absolute value of this complex coupling is not negligible
at the resonant angles, being of the order of a few 0. For
both cavity structures, the complex eigenstates of the system
can be depicted as one broad and one narrow Lorentzian. The

difference between the two cavity systems is that for the EIT
case, the two eigenstates interfere and a dip appears around
the resonant energy as presented in Fig. 5(a). For the other
cavity structure, the narrow eigenstate almost vanishes, i.e.,
it becomes a dark state which is not probed by the x-ray
pulse. In the absence of interference, we observe only the
broad eigenstate as shown in Fig. 5(b). We note here that this
physical picture is slightly different from the one presented in
Ref. [7], where it is argued that the coupling strength between
the two layers plays the role of an EIT control field. For the
antinode-node structure, Ref. [7] attributes the disappearance
of the transparency dip to the very small value of the coupling.
However, we find that the absolute value of the complex
coupling J12 + i12/2 is of the same order of magnitude for
the two cases, 3.80 for the EIT result in Fig. 5(a) and 3.20

for the system in Fig. 5(b). Our model confirms the similar
conclusion reached in Ref. [36] on the basis of the previously
available quantum model for x-ray thin-film cavities.

FIG. 6. Calculated energy- and angle-dependent reflectivity for
the multilayer structure in Ref. [12]. (a) Numerical data from the
Green’s-function model. (b) Numerical results from CONUSS. See text
for further explanation.
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In the last part of this section, we test our model for
the multilayer structure with 30 nuclear layers considered in
Ref. [12]. All numerical simulations presented in Ref. [12]
are calculated from semiclassical methods (the transfer matrix
method similar to the classical Parratt algorithm and CONUSS),
and to the best of our knowledge, so far no quantum model
has been directly applied to this case because of the structure
complexity with a large number of nuclear layers. The mul-
tilayer sample consists of 30 bilayers of (1.12 nm 57Fe/1.64
nm 56Fe), which are probed with x rays at incidence angles
between 15 and 17 mrad [12].

We find that in this case the wavelength of the standing
wave is only 3 to 4 times larger than the layer thickness, such
that our approximation that all nuclei within one layer feel the
same cavity field is no longer accurate. In order to tackle this
problem, we slice each nuclear layer into four sublayers, each
of thickness 0.28 nm, and approximate for each sublayer that
all nuclei are at the same position in coordinate z. Thus, each
nuclear layer consists of four “macronuclei” instead of one,
which we consider according to the procedure described in
Sec. II E. Our numerical simulations for the reflectivity as a
function of the angular and frequency detuning are compared
with the CONUSS numerical data in Fig. 6. The displayed
agreement is excellent also for this complex case. We note that
the picture would change dramatically if we did not adjust our
procedure to accommodate the large layer thickness. Consid-
ering all nuclei in each layer to experience the same cavity
field (without further separation in sublayers), the reflectivity
changes and the splitting around ϕ = 16 mrad disappears.

IV. CONCLUSION

This paper adapts a Green’s-function formalism known
from superradiant systems in quantum optics of atoms to x-ray
thin-film cavities with embedded nuclear layers. An important
approximation which significantly simplifies the calculations

is based on the small thickness of the nuclear layer(s) as
opposed to the field cavity wavelength. The advantages of the
formalism are its versatility and the fact that it only requires
one fit parameter, which solely depends on the nuclear layer
thickness and composition. Another advantage is its ability
to predict also quantum properties of the scattered field such
as higher-order correlation functions, which is not available
in semiclassical models. Because there is no restriction to
the validity based upon the excitation number, the formalism
in principle provides a route toward modeling multiphoton
quantum effects, as might be achievable with intense XFEL
light. We have benchmarked the model against observables
calculated with semiclassical methods based on the layer
formalism implemented in the computer package CONUSS

[32]. The simulations show excellent agreement for thin-film
cavity structures with 1, 2, or 30 embedded nuclear layers.
The model provides clear intuitive pictures of the underlying
physics and correctly reproduces features that go beyond the
single-mode Jaynes-Cummings model. We believe that this
formalism can be used as a versatile tool for the calculation
of scattering spectra of thin-film cavities of any structure and,
eventually, aid the future design of x-ray photonic devices.
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