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Optimizing scattering is the most sought-after goal in wave transport through photonic structures, which
opens up many physical processes with prospective applications. Here, we uncover the appearance of a tunable
frequency gap with negative anisotropic scattering (g) values in the visible wavelength range using photonic
structures with short-range order. A scattering model is devised based on the structural morphology of samples
to explain the wavelength-dependent frequency gap and the g values. We show complete agreement between the
experiment and theory, which is supported by the structure factor calculations. Specifically, we find a g value of
−0.7 ± 0.2 at the frequency gap in accordance with theoretical calculations. The study puts forward an amenable
approach for tailoring the scattering anisotropy values using photonic structure with short-range order and thus
mediates an inclination toward the localization.
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I. INTRODUCTION

Controlling the wave transport associated with electrons,
phonons, and photons at the respective subwavelength scale
offers rich unexpected physical processes with unparalleled
applications [1,2]. The presence of an electronic band gap
in semiconductors provides the control of electron transport
with a remarkable breakthrough in the electronic industry [3].
Similarly, the subwavelength optical systems ranging from
photonic crystals to metamaterials provide a platform to con-
trol the photons for their guiding and manipulation in optical
communication and lasers [4]. Long-range periodic ordering
of atomic or optical potential is required for the band-gap
formation and, therefore, both systems are analogous to each
other.

Recently it was discovered that electron scattering due to
random perturbations in the atomic potential induces pro-
cesses such as finite resistivity and Anderson localization
[5,6]. Similarly, disordered optical potential induced by the
random variation in dielectric constants is proposed for light
localization with prospective applications [7–9]. Light trans-
port through a disordered sample is described using the
diffusion approximation in terms of scattering (ls) and trans-
port (lt ) mean free paths with an effective refractive index
(neff ) and finite thickness (L) such that lt � L [10]. Further,
the scattering can be isotropic or anisotropic depending on
the value of scattering anisotropy factor (g) which is defined
as the average of the cosine of the scattering angle (θ ) and
g ≡ 〈cos(θ )〉 which is related to lt by the relation lt = ls

1−g .
The scattering regime is also classified based on the morphol-
ogy of the sample. If the separation between the scatterers
is larger than the incident wavelength, then an independent
scattering approximation is considered with ls = 1

nσ
where n
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is the number density of scatterers and σ is the scattering cross
section defined as σ = ∫

dσ
d�

(1 − cos θ )d� [11].
The spacing between the scatterers reduces with an in-

crease in the n value and their spatial positions develop a
structural correlation, which leads to local interference [12].
The structural correlation was used in an ion-ion repul-
sion model to estimate the resistivity of liquid metal using
the structure factor S(q) [13]. Thus, the modified scatter-
ing cross section (σ ∗) which includes the S(q) is given by
σ ∗ = ∫

dσ
d�

(1 − cos θ )S(q)d�. It has been asserted that the
structural correlation can lead to large lt values with high
conductivity for disordered liquid metals and transparency of
the cornea [14,15]. Similarly, the spatial correlation among
subwavelength scatterers also leads to the phase correlation in
the scattered light with σ ∗ < σ [16]. However, it was pointed
out through theoretical as well as experimental studies that
a photonic system with short-range order can exhibit an en-
hanced σ ∗ with negative g values [17]. Some studies have also
emphasized the control of lt values in a particular wavelength
range using the spatial correlation among scatterers [18–23].
Such a spatially correlated photonic structure with short-range
order can exhibit frequency gaps with exceptional scatter-
ing properties and has applications in coloration and lasing
[24–31].

In this paper, we discuss the tunable frequency gap
in a three-dimensional (3D) photonic structure with short-
range order having monodisperse submicron scatterers. We
devise a scattering model based on the structural mor-
phology of the sample to discuss the frequency gap. The
wavelength-dependent scattering lengths are estimated along
with structure factor calculations to corroborate the frequency
gap. Further, we found a negative anisotropic scattering
regime in the range of the frequency gap that is in complete
agreement with theory, which is a much sought-after goal in
scattering systems.
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FIG. 1. (a) SEM image of the PS287 sample that shows the clusters consist of monodisperse scatterers. The FT image in the inset shows
the ring formation due to the presence of short-range order. (b) The radial distribution function [g(r)] shows the periodic oscillations until
r � 1 μm which also indicates the presence of short-range order. Inset: The g(r) for the reference sample shows the absence of oscillations
due to the lack of any local structural order and the FT image also depicts a bright spot at the center without any ring formation.

II. RESULTS AND DISCUSSION

The 3D photonic sample with short-range order is synthe-
sized using an optimized self-assembling method. The sample
consists of monodisperse polystyrene (PS) beads (scatterers)
on a glass microslide. A custom-built hollow Teflon cylinder
is used to control the sample dimensions. The PS beads are
charge stabilized in the suspension. The repulsive Columbic
forces between the negatively charged PS beads are compen-
sated by the controlled addition of positive electrolyte so that
the flocculation occurs during the self-assembling process.
We found 0.1 M of positive electrolyte (CaCl2) is sufficient
to induce the flocculation in the PS suspension to form the
clusters with short-range order.

The synthesis process can be precisely controlled using
the electrolyte concentration. Samples are synthesized using
different beads with varying diameters (d) and the concentra-
tion of the beads is varied to achieve samples with varying
fill fraction (φ) for a specific d value (see Appendix A). The
value of φ signifies the amount of scatterers present in the
sample and an optimal value of φ is essential to induce the
spatial correlation between the scatterers. Figure 1(a) shows
the scanning electron microscope (SEM) image of the sam-
ple made using PS scatterers with d value of 287 ± 10 nm
(PS287). The scatterers are connected to form clusters with
local short-range order in the submicron scale as seen in
the SEM image. The inset in Figure 1(a) shows the Fourier
transform (FT) of the SEM image that shows the concentric
rings which validate the short-range order with no long-range
translational symmetry [24]. Figure 1(b) shows the radial dis-
tribution function [g(r)] which is characterized by damped
oscillations as a function of spatial interval r. The nearest
scatterer-scatterer distance is estimated to be 280 nm in close
agreement with the d value of the PS287 sample. The second
and third peaks occur at r ≈ 0.5 and 0.8 µm which correspond
to r ≈ 2d and 3d , respectively, which also confirms the short-
range periodicity of scatterers. The periodic oscillations decay
faster for r > 1 μm due to the lack of long-range order. Such
oscillations are absent for the TiO2 sample which consists of
polydisperse scatterers as shown in the Fig. 1(b) inset. The
ringlike pattern is also absent in the FT image for the TiO2

sample [Fig. 1(b) inset] due to the lack of any order and hence
is taken as a “reference” sample.

When the light impinges on such a sample, it is multiply
scattered in random directions. Therefore, to account for all
the transmission channels, the measurement of wavelength-
dependent total transmission is required. A home-built setup
equipped with an integrating sphere is used to measure the to-
tal transmission of light passing through the samples (see Ap-
pendix A). Figure 2(a) shows the measured total transmission
spectra for the reference (solid line) and the PS287 sample
(dotted line) with an L value of 30 ± 3 µm and φ = 0.55. The
reference sample shows the expected monotonic decrease in
the total transmittance value with a decrease in wavelength
[23]. The PS287 sample shows an interesting wavelength-
dependent variation with a noticeable drop in transmitted
light at a particular wavelength (λg) of 655 ± 5 nm.
The transmission value at 655 nm is reduced to 16% in com-
parison to the same at the long-wavelength limit of 950 nm.
The drop in transmission value is originated due to the in-
terference of light induced by the local short-range order
supported by the spatial correlation of scatterers and, there-
fore, we signify the transmission dip as a frequency gap. Such
a frequency gap is absent for the reference sample as it does
not have structural correlation due to polydisperse scatterers
[23].

The dip in transmission spectra is reminiscent of a fre-
quency gap associated with long-range ordered samples such
as photonic crystals [24]. If such a concurrence exists, then the
transmission dip at λg should be tunable with φ and d values.
To analyze this concurrence, we devise a scattering model
based on the structural morphology of the sample inferred
from the SEM image to illustrate the frequency gap. The scat-
terers are spatially connected to form clusters with short-range
order within it and, thus, a cluster model is considered which
consists of few scatterers as shown in Fig. 2(b). The light
with wave vector �kin is incident on the cluster that results in a
scattered wave with wave vector �ksc at an angle (θ ). The dif-
ference between the two wave vectors corresponds to a spatial
momentum vector �q. Since the scattering is elastic, we have
|�kin| = |�ksc| = k that results in | �q| = 2k sin(θ/2) where k =
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FIG. 2. (a) The measured total transmission spectra for the PS287 sample (dotted line) depict the frequency gap (λg) at 655 nm which is
absent for the polydisperse TiO2 film (solid line). (b) The schematic of the scattering model used in the calculations of λg. (c) The measured
(open squares) and calculated (solid line) λg as a function of fill fraction (φ). (d) The measured (open squares) and calculated (solid line) λg as
a function of scatterer diameter.

2πneff
λ

, where λ is the free-space wavelength (see Appendix B).
The neff value is calculated using the Maxwell-Garnett

theory, neff = nair

√
2n2

air+n2
s +2φ(n2

s −n2
air )

2n2
air+n2

s −φ(n2
s −n2

air )
, where nair and ns are

the refractive indices of air and scatterers, respectively [32].
The estimation of neff using effective medium approximations
is often debatable for their validity and, therefore, we have
compared different available theories for the calculation of
neff (see Appendix C). We found that the calculated λg value
using the neff value obtained from the Maxwell-Garnett effec-
tive medium approximation is best fitted with the measured
λg values in comparison to other models (see Appendix C).
The sample discussed here has low index contrast and, there-
fore, the measured λg values can be compared with calculated
λg values obtained using the neff values from the Maxwell-
Garnett theory even though the sample has a high φ value.
In fact, the Maxwell-Garnett theory has also been applied
for photonic crystal and biomimetic systems which have very
high φ values [33,34].

The resonant scattering of light is governed by the form
factor [F(q)] and structure factor [S(q)] [11]. The F(q) de-
fines the individual scattering information from each scatterer
within the cluster. The interference between the scattered light
from each scatterer in the cluster is imputed by the S(q) value
[17,18]. The S(q) value is calculated using the solution of
the Ornstein-Zernike equation with the Percus-Yevick closure
approximation (see Appendix B) [35]. The presence of a peak

in the calculated S(q) spectra at a particular value of q = q0 is
related to λg. It occurs when the phase difference between the
scattered light from adjacent scatterers is an integer multiple
of 2π . The λg value is calculated using the equation

λg = 4πneff d

y0
sin

(
θ

2

)
, (1)

where d is the distance between the scatterers which is equal
to the mean diameter of scatterers and y0(= q0d ) is obtained
from the peak value of the calculated S(q) spectra (see Ap-
pendix B). The S(q) value depends on φ and, therefore, the
value of λg. Figure 2(c) shows the variation of measured (open
squares) and calculated (solid line) λg as a function of φ for the
PS287 sample. Good agreement between the measured and
calculated λg is seen for φ � 0.2. The measured λg deviates
from the calculated values for φ � 0.2 which is due to the
negligible spatial correlation between scatterers. Samples with
such low φ values hinder the formation of strong resonant
scattering which is supported by a feeble peak in the calcu-
lated S(q) spectra (see Appendix B). However, the measured
transmission spectra depict a shallow drop in the transmit-
ted light at 670 nm as seen in Fig. 2(c) for φ � 0.2. This
highlights the fact that sufficient spatial correlation among
scatterers in the sample is necessary to have a strong drop
in transmission which is validated by the S(q) calculations
for samples with high φ values (see Appendix B). The trans-
mittance value at λg decreases with an increase in the value
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FIG. 3. (a) The measured total transmission values fitted with a solution to the diffusion approximation (solid line) to extract the lt values
at 650 nm (open circles) and 900 nm (open squares). (b) The estimated values of lt and ls as a function of wavelength. The ls is obtained
using the Lambert-Beer law (open squares), whereas lt is obtained using the solution to diffusion approximation (open circles) and CBS cone
(solid spheres). (c) The comparison between the lt (symbol) and the structure factor S(q) (line) values for the PS287 sample (d) The measured
(symbol) and calculated (line) wavelength-dependent anisotropic scattering (g) value for the PS287 sample with a φ value of 0.55.

of φ due to the buildup of spatial correlation between the
scatterers. The λg shows a slight redshift with an increase in
φ value and attains a maximum λg value for φ = 0.35 and,
thereafter, it reduces for φ > 0.35. The parabolic variation
of λg is related to the variation of the ratio neff/y0, which
is precisely controlled through the φ value. The dependence
of y0 on φ is obtained from the calculated S(q) values for
the PS287 sample (see Appendix B). Figure 2(d) depicts the
variation of measured (open squares) and calculated (solid
line) λg as a function of d for φ = 0.55. This linear scaling of
λg is commendable, similar to the stopgap scaling in photonic
crystals [4]. This is expected as both frequency gaps convey
the absence of optical states within the sample at λg.

The frequency gap in the light transport should result
in a reflection of a particular color which is precluded
due to strong background multiple scattering. Therefore, the
wavelength-dependent lt and ls values are required to fur-
ther study the role of structural correlation among scatterers.
The lt value is obtained by fitting the diffusion equation to
the measured L-dependent total transmission values (see Ap-
pendix D). The sample is assumed to be in a slablike geometry
with x and y dimensions much larger than the z dimension
(z = 0 to z = L) with a delta source at z = zp and, therefore,
the 3D diffusion equation reduces to one dimension [36]:

∂2ρ

∂z2
− ρ

L2
a

= − 1

D
I0δ(z − zp), (2)

where ρ is energy density in the stationary state, I0 is the
incident light intensity, D is the diffusion constant, and La is
the absorption length. The solution to Eq. (2) in the absence of
absorption (La 	 L) is approximated as the L-dependent total
transmission (TT ) as [23,36]

TT = lt + ze1

L + ze1 + ze2
, (3)

where ze1 and ze2 are the extrapolation lengths given by
ze1 = 2

3 lt ( 1+R
1−R ) and ze2 = 0.7lt , where R is the angle- and

polarization-averaged specular reflectivity from the sample
surface [37]. The R value used in the calculation is 0.40 for
φ = 0.55. The measured TT value shows a decrease with an
increase in the L value which signifies the photonic Ohm’s law
TT ∝ lt/L (see Appendix D). Figure 3(a) shows the measured
TT values at 650 nm (open circles) and 900 nm (open squares)
along with the fit (solid line) using Eq. (3) as a function of the
L value. Here 650 nm corresponds to λg whereas 900 nm cor-
responds to the long-wavelength limit for the PS287 sample.
The estimated lt value is 2.0 ± 0.2 µm and 4.4 ± 0.3 µm at
650 and 900 nm, respectively, which is much smaller than the
L value that supports the diffusive propagation (λ � lt � L).
The lt values are also obtained directly using the coherent
backscattering (CBS) cone measurements at 532 and 633 nm
which are fitted using a diffusion slab model to estimate the lt
value (see Appendix E) [18]. The lt values obtained from the
CBS cone are 2.7 ± 0.1 µm at 532 nm and 2.6 ± 0.2 µm at 633
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nm, which are in close agreement with lt values obtained using
Eq. (3). The ls value is estimated using the Lambert-Beer law:
T = T0e−L/ls where T is the ballistic transmission and T0 is the
transmission value at the interface (z = 0) of the sample [24].
Figure 3(b) shows a similar wavelength-dependent variation
of ls (open squares), lt (open circles) values along with the
lt value obtained from the CBS cone (solid sphere) for the
PS287 sample. The estimated ls value is 3.9 ± 0.1 µm at 650
nm, whereas it is 4.3 ± 0.1 µm at 900 nm. It is observed
that the lt and ls values show an appreciable drop at λg in
comparison to wavelengths on either side of λg.

Figure 3(c) shows the variation of lt and the S(q = 2k)
values as a function of scaled frequency (d/λ) for the PS287
sample. The S(q) value is peaked at d/λ = 0.45 which exactly
coincides with the trough in the lt values, which is originated
due to the frequency gap. This authorizes the role of short-
range order in the sample which enhances scattering cross
section σ ∗ and thus reduces the lt value at λg. The wavelength-
dependent variation of ls and lt values shows dissimilar values
except in the long-wavelength limit ∼900 nm. The ls value
is always higher than the lt value, which is a signature of
negative g values. Therefore, to gain further insight into the
anisotropic scattering, the g value is calculated as [12,17]

lt
ls

= 1

1 − g
= 2k2

o

∫ 2ko

0 F (q)S(q)qdq∫ 2ko

0 F (q)S(q)q3dq
. (4)

The F(q) is governed by the differential scattering cross
section of a single scatterer which is given by F (q) = k2

o ( dσ
d�

)
where ko = 2π/λ (see Appendix F) [11]. The scatterers are
assumed to be independent of each other in the F(q) cal-
culation so that dσ

d�
is obtained whereas S(q) is associated

with the interference of waves scattered from the cluster with
short-range order. In experiments, the wavelength-dependent
g value is estimated using the measured values of ls and
lt . Figure 3(d) shows the measured (symbol) and calculated
(solid line) wavelength-dependent g values for the PS287
sample. The measured g value is −0.7 ± 0.2 at λg, which is
in complete agreement with the calculated g value of −0.7
for φ = 0.55. The observation of the negative g value at λg

is related to the enhanced value of σ ∗ due to collective res-
onant scattering induced by the local short-range order. On
either side of λg, the g value increases toward the positive
values which designates the dominance of isotropic scattering
with g � 0. The negative g value is indicative of the strong
backward scattering which indicates the proximity toward the
Anderson localization with λ ∼ lt [17,38]. Though we have
observed the negative g values in our samples, but we are
not in the regime of light localization. However, we have dis-
cussed the mechanism that leads to negative g values through
engineering the lt and ls values using samples with short-range
order. The value of g is φ dependent through its depen-
dence on the S(q) value (see Appendix F). This suggests that
the proper tuning of φ can control the lt and ls values, and
hence the negative g value.

We would also like to emphasize that the present results
are applicable in general for any kind of wave transport such
as the acoustic or matter wave at the relevant length scales.
Further, the observation of negative g value indicates an in-
clination to Anderson localization [38], and the results put

forward an alternative direction of localization in samples
with coexistence of order and disorder [39]. Recently, many
natural biogenic species have exhibited short-range order and
the present results are useful in analyzing their scattering
properties with the possibility to observe negative g values.
The frequency gap could also exhibit reduced photon density
of states and this will be useful for quantum electrodynamics
experiments such as controlled emission using single emitters.
The results are also applicable in the broad area of condensed
matter physics such as the disorder-induced process in super-
conductivity, magnetic materials, Bose-Einstein condensate,
and liquid metal [40–43]. Therefore, our results apply for
a range of areas spanning from condensed matter physics,
including soft materials and the optical domain, to aid in
understanding new physical processes induced by the spatially
correlated scatterers with short-range order in the relevant
wavelength scales.

III. CONCLUSIONS

In summary, we have studied a tunable frequency gap
associated with three-dimensional photonic structures with
short-range order made using monodisperse scatterers. The
scattering model based on the structural morphology of the
sample reveals the frequency gap that is originated due to
the interference of collective scattering events induced by
local short-range order. This is further confirmed using the
structure factor calculations wherein the structure factor peak
is coinciding with the measured frequency gap that supports
the role of local short-range order. We have obtained negative
anisotropy scattering values at the frequency gap which is
supported by theoretical calculations. Therefore, the photonic
structures with short-range order provide a feasible route to
achieve the rarely observed negative anisotropy scattering val-
ues in the visible wavelength region. The presented results are
not limited to photonic systems; rather it has general applica-
bility in other kinds of wave transport such as the acoustic and
matter waves, and many areas of disorder-induced processes
in condensed matter systems.
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APPENDIX A: SAMPLE SYNTHESIS AND
EXPERIMENTAL DETAILS

The samples are synthesized using the colloidal suspen-
sion consisting of 2.5 wt % monodisperse polystyrene (PS)
beads (MicroParticles GmbH) of submicron diameter. The
beads are negatively charged and, therefore, the repulsive
Coulombic forces between beads ensure that the beads do
not collide with each other in the suspension and are stable
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FIG. 4. The schematic view of the total transmission measure-
ment setup using a white light source along with an integrat-
ing sphere. The collected light is sent through a fiber to the
minispectrometer.

in the suspension. The repulsive Coulombic force between
the micron-sized beads can be weakened by adding a positive
electrolyte such as calcium chloride (CaCl2) so that the self-
assembling of PS beads can be precisely manipulated. The
addition of 0.1 M CaCl2 to the PS suspension gives rise to
a net attractive force between the microbeads. This results
in the formation of clusters induced by the flocculation of
beads in the suspension [44]. The colloidal suspension is quite
stable and the sample synthesis is repeatable and reproducible.
The fill fraction (φ) of the sample is controlled with volume
fractions of the scatterers during the sample synthesis process.
Samples are synthesized using different bead diameters (d)
and different φ values which result in samples with different
values of effective refractive index (neff ).

The structural morphology of the samples is studied using
a scanning electron microscope (JEOL JSM-6610 LV). The
thickness (L) of the samples is measured using a profilometer
(Bruker DektakXT) with the substrate as the reference point.
Figure 4 shows a schematic view of the home-built setup used
to measure the total transmission of light through the samples.
A broadband light from the supercontinuum (Fianium White-
Lase Micro) is incident on the sample which is kept at the
entrance port of the integrating sphere (Labsphere). The light
transmitted through the samples is collected using an integrat-
ing sphere which is connected to a fiber-coupled spectrometer
(Avantes). The CBS cone measurements are performed using
532- and 633-nm diodes and a He-Ne laser, respectively The
circularly polarized light made using a quarter-wave plate is
incident on the sample and the scattered light is collected
using a charge-coupled device (CCD) camera (DCU224C
Thorlabs).

APPENDIX B: STRUCTURE FACTOR [S(q)] AND
FREQUENCY-GAP WAVELENGTH (λg) CALCULATIONS

The structure factor [S(q)] provides statistical informa-
tion about the scatterers arrangement in q space which is
given by

S(q) = 1

n

∑
i, j

e−i �q(�y j−�yi ), (B1)

where n is the number density of scatterers; yi and y j are the
spatial positions of the scatterers. The S(q) value is calculated
using the solution of the Ornstein-Zernike equation with the
Percus-Yevick closure approximation for a hard sphere (in our
case PS beads) [35,45]. We have used the following analytical
expression for the S(q) calculation:

S(q) = 1

1 − c(q, φ)
, (B2)

with

c(q, φ) = −24φ
(1 + 2φ)2

(1 − φ)4

sin q − q cos q

q3
− 6φ

−(
1 + φ

2

)2

(1 − φ)4

q2 cos q − 2q sin q − 2 cos q + 2

q4

−φ
(1 + 2φ)2

(1 − φ)4

q4 cos q − 4q3 sin q − 12q2 cos q + 24q sin q + 24 cos q − 24

q6
.

Figure 5(a) shows the S(q) plot for the PS287 sample with
φ = 0.55 as a function of q, which is obtained using Eq. (B2).
The first peak of the S(q) spectra at qo corresponds to the av-
erage spacing between the coordination shells a = 2π

|q| which
is schematically shown in the inset of Fig. 5(a).

Figure 5(b) shows the S(q) for the PS287 sample as a
function of the dimensionless variable y = qd for different
values of φ (0.11–0.55). It is seen that with an increase in
the φ value, the intensity of the interference peak at y0 = q0d
increases along with a redshift in the peak position, which is
primarily responsible for the observed shift in the frequency
gap. The transmission spectra show a shallow dip for samples
with φ = 0.11 due to the weak spatial correlation between the
scatterers. With an increase in the φ value, the transmission

dip becomes stronger due to the strong spatial correlation
between the scatterers. Figure 5(c) depicts the d-dependent
S(q) plot for the samples with a fixed value of φ = 0.55.
The S(q) peaks are having the same intensity whereas the
position of the y0 peak is redshifted with an increase in the d
value, which further validates the frequency gap scaling with
d . The frequency gap (λg) wavelength can be calculated using
the peak position value from the S(q) calculation. Consider the
scattering geometry as shown in Fig. 2(b); we have

�ksc = �q + �kin,

| �q|2 = |�kin|2 + |�ksc|2 − 2�ksc · �kin.
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FIG. 5. (a) The calculated S(q) spectra for the PS287 sample with φ = 0.55. Inset: Schematic of the spatial arrangement of the scatterers,
where the average spacing between coordination shells (dashed line) is a. The calculated S(q) spectra (b) for different φ values for fixed d
value and (c) for different d values for the scatterers with fixed φ value.

We assume elastic scattering, so that �kin = �ksc = �k = |k|;
hence

q2 = 2k2[1 − cos(θ )], q2 = 4k2sin2

(
θ

2

)
,

q = 2k sin

(
θ

2

)
, (B3)

λg = 4πneff d

y0
sin

(
θ

2

)
. (B4)

The value of y0 is obtained from the peak position of the
S(q) spectra.

APPENDIX C: ESTIMATION OF neff VALUE

Various effective medium approximations have been pro-
posed for the estimation of the effective refractive index
(neff ) or the effective dielectric constant (εeff ) value [46].
Here we compare three important models such as the scalar,
Maxwell-Garnett (MG), and the coherent potential approxi-
mation (CPA) for the neff calculation [47,48]. All these models

assume that the scatterers with a dielectric constant ε2 are
embedded in a background dielectric medium of dielectric
constant ε1. The scalar model is the simplest method for the
estimation of the εeff value which is defined as εeff = ε1(1 −
φ) + ε2φ. However, the scalar method is more adequate for
samples with high values of φ such as the self-assembled
photonic crystals (φ = 0.74). Another widely used approach
is the MG model. The εeff is calculated according to the MG
model as εeff = ε1( 2ε1+ε2+2φ(ε2−ε1 )

2ε1+ε2−φ(ε2−ε1 ) ). The MG model gives a
more realistic picture than the scalar method because it con-
siders the cumulative polarizabilities of the scatterers, and not
their refractive indices [47]. The CPA theory is an alternative
approach used to estimate the εeff value which is defined as
3(1−φ)

2+ ε1
εeff

+ 3φ

2+ ε2
εeff

= 1 [48].

Figure 6(a) shows the variation of neff values as a function
of φ calculated using different models similar to those consid-
ered by Soukoulis et al. [48]. The neff values obtained using
the scalar approximation method (solid line) are always higher
than those obtained from the other methods and increase
linearly with an increase in φ values. The MG approxima-
tion is not a symmetric method and therefore two cases are

FIG. 6. (a) The estimated neff as a function of the φ values for samples made with scatterers of refractive index of (a) 3.60 and (b) 1.6. The
neff values are obtained using three effective medium approximations such as scalar (solid line), MG1 (short dotted line), MG2 (short dashed
line), and CPA (dash-dotted line). (c) A comparison between the measured (symbols) and calculated (lines) λg as a function of φ for all the
considered effective medium approximations.
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considered here. In Fig. 6(a), the MG1 model (dotted line)
represents the case where ε1 = 1, ε2 = 13 and φ is the volume
fraction of the ε2 material whereas in the MG2 model (dashed
line), we take ε1 = 13, ε2 = 1 and now φ is the volume frac-
tion of the ε1 material. The neff values for both the MG1 and
MG2 models increases with an increase in the φ value, but for
a particular value of φ both cases have a noticeable difference.
The neff value estimated using the CPA method (dash-dotted
line) also increases with an increase in the φ values with neff

values appearing between the MG1 and MG2 curves. It is
noticed that for φ < 0.2, the neff values are very close to the
values obtained using the MG1 method and for high values of
φ > 0.7, the neff values coincideg with those obtained using
the MG2 method.

Figure 6(b) shows the estimated neff values as a function
of φ for the sample considered in the present work made
using PS scatterers of refractive index 1.6. Similar to Fig. 6(a),
the neff values obtained using the scalar method are always
higher in comparison to other models for any values of φ.
The MG1 and MG2 models show similar variation in the neff

values. However, due to the low index contrast of the sample,
the difference between the neff values for both cases is very
minimal. The neff values obtained from the CPA method are
partly overlapping with the neff values estimated from the
MG1 and MG2 approach. We can conclude that for samples
with less index contrast, all the models give similar variation
of neff with the φ value.

Figure 6(c) shows the calculated (lines) variation of λg

obtained using the neff values from the different effective
medium approximation along with the measured λg values

(symbols) as a function of φ value. The measured λg values
are in good agreement with the calculated λg values obtained
using the neff values from the MG1 method. Therefore, we
use the neff value from the MG1 method for the analysis.
However, for very low values of φ = 0.11, the measured λg

values are not in agreement with the calculated λg values
obtained using any of the neff values from different meth-
ods. At such low φ values, the scatterers are not spatially
correlated, which results in very weak resonant scattering
which is also evidenced by the calculated S(q) spectra with
a negligible peak and much less intensity as seen in Fig. 5(b)
(solid line). In fact, in the experiments also, we have observed
a shallow dip at 670 nm with a little decrease in the transmitted
light. This data point is shown in Fig. 2(c) to highlight the fact
that when the spatial correlation between the scatterers is neg-
ligible, a shallow drop in the transmitted light intensity is ob-
served and it will be difficult to fit the measurements to the cal-
culated λg values in samples with the low amount of scatterers.

APPENDIX D: DIFFUSION APPROXIMATION

The diffuse light propagates in the sample according to the
diffusion equation given by [49]

∇2I (r) − α2I (r) = − 1

D
S(r), (D1)

where D is the diffusion constant, α(= 1/La) is the inverse
absorption length, and S(r) is the source. To obtain the sta-
tionary solution for Eq. (D1), we have considered a disordered
medium with a certain thickness (L) in the slab geometry,
as shown in Fig. 7(a). The boundary conditions are required

FIG. 7. (a) Schematic of the slab geometry considered to solve the diffusion approximation. The dashed line represents the solution of the
diffusion equation. (b) The variation of L value with an increase in the volume of the scatterers in the sample. (c) The variation of λg (left axis)
and TT value (right axis) with an increase in the L value of the sample.
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for diffusion approximation which gives rise to extrapolation
lengths ze1 and ze2 as shown in Fig. 7(a). The boundary condi-
tions for the system are

I (z) = 0

{
z = −ze1

z = ze2 + L
. (D2)

The value of ze1,2 may be different at the front and back
surfaces of the sample depending on the surface reflectivity.
The stationary diffusion equation can be solved using a delta
source at z = zp (the penetration depth) with the following
boundary conditions [49]:

I (z) = I (zp)

{ sinh[(α(ze1+z))]
sinh[(α(zp+ze1 ))] z < zp

sinh[(α(L+ze2−z))]
sinh[(α(L+zp+ze2 ))] z > zp

, (D3)

where

I (zp) = S(0)

αD

sinh [α(zp + ze1)] sinh [α(L + ze2 − zp)]

sinh [α(L + ze1 + ze2)]
.

(D4)

zei = 1
2α

ln( 1+αzoi
1−αzoi

), where i = 1 and 2 represent the front
and back surface of the sample, respectively, and zoi =
2
3 lt (λ)( 1+Ri

1−Ri
). Here Ri are the polarization-dependent angle-

averaged reflectivity values at the boundaries of the sample.
The TT is the total light intensity integrated over all angles,

which is the ratio of total light collected at z = L to the
incident light [49]:

TT = 1 − R

α

sinh [α(zp + ze1)] sinh [α(ze2)]

sinh [α(L + ze1 + ze2)]
. (D5)

If L 	 lt and La 	 L, then Eq. (D5) can be approximated
as

TT = lt + ze1

L + ze1 + ze2
α

lt
L

, (D6)

where ze ∼ lt . Equation (D6) signifies that TT is directly pro-
portional to the lt value and inversely proportional to the L
value. Figure 7(b) depicts the measured L value of the sample
as a function of the volume fractions of PS beads with a
concentration of 2.5 wt %. The measured L value is 11± 2
μm for a minimum volume (100 µl) of the solution and for
maximum volume (800 µl) of the solution, the measured L
value is 152 ± 3 μm. Figure 7(c) shows the variation of λg

obtained from the TT spectra as a function of the L value.
The λg (closed symbols) is found to be independent of L
value and fluctuates in the range of 650 < λg < 665 nm,
which confirms the uniform growth of the samples. The TT

(open symbols) value at λg is 17 ± 1% for the sample with
L = 11 ± 3 μm which is reduced to 3.0 ± 0.5% for the sample
with L = 152 ± 2 μm. It can be observed that the TT value
at λg decreases exponentially with an increase in the sample
L value. The fit of Eq. (D6) to the L-dependent TT values at
specific wavelengths is shown in the Fig. 3(a).

APPENDIX E: MODEL FOR THE COHERENT
BACKSCATTERING CONE

The CBS cone provides the scattering length scale (lt ) of
the medium. The full width at half maxima of the CBS cone

FIG. 8. The measured CBS cone (symbol) for the PS287 sample
at (a) 532 nm and (b) 633 nm. To estimate the lt values, the measured
cones are fitted (solid line) using Eq. (E1).

at a certain wavelength is given by ∼0.7/klt [50]. To evaluate
the lt , the measured CBS cone is fitted using a function given
by Eq. (E1) [50]:

I (θ ) = 1 + (A − 1)
γc(θ )

γl
, (E1)

where A is the experimental enhancement factor, and its value
deviates from the theoretically expected value of 2 due to the
residual components of single scattering or the stray light.
The γc is the coherent contribution of intensity that is mainly
dominating in the formation of the backscattering cone and
γl is the incoherent diffuse background intensity. The detailed
expression of the γc for a slablike sample with a certain L
value and γl can be found elsewhere [50]. Figures 8(a) and
8(b) show the measured CBS cone (circles) along with the
fitted (solid line) curve using Eq. (E1). The estimated lt values
from the fit to the CBS cone are 2.73 ± 0.12 µm and 2.64 ±
0.18 µm at 532 and 633 nm, respectively.

APPENDIX F: φ-DEPENDENT ANISOTROPIC
SCATTERING VALUE (g) CALCULATION

The g value calculation involves the estimation of S(q)
(Appendix B) and the F(q) values as seen in Eq. (4). The form
factor F(q) for a single scatterer can be calculated as [11]

F (q) = k2
o

(
dσ

d�

)
. (F1)

The differential scattering cross section ( dσ
d�

) is the ratio of
the intensity of radiant energy scattered in a given direction
to that for the incident light per unit area per unit solid angle.
The ( dσ

d�
) for incident light is given by [11]

dσ

d�
= π

k2
o

[|S1(θs)|2 + |S2(θs)|2], (F2)

where

S1(θs) =
∞∑

n=1

2n + 1

n(n + 1)
[anπn(cos θs) + bnτn(cos θs)],

S2(θs) =
∞∑

n=1

2n + 1

n(n + 1)
[anτn(cos θs) + bnπn(cos θs)].

S1 and S2 are the scattered field amplitudes and θs is the
polar scattering angle with respect to the incident light. The
an and bn are the Mie coefficients of the single scatterer to
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calculate the amplitudes of the scattered field. The coefficients
of an and bn are defined as [11]

an = m2 jn(mx)[x jn(x)]′ − jn(x)[mx jn(mx)]′

m2 jn(mx)[xhn(x)]′ − hn(x)[mx jn(mx)]′
,

bn = jn(mx)[x jn(x)]′ − jn(x)[mx jn(mx)]′

jn(mx)[xhn(x)]′ − hn(x)[mx jn(mx)]′
,

where m is the refractive index, x = ka is the correspond-
ing size parameter, and a (d/2) is the scatterer radius. The
jn(z) and hn(z) are spherical Bessel and Hankel functions
of the first kind of order n with respect to the argument
z, respectively. The functions πn and τn describe the angu-
lar scattering patterns of the spherical harmonics which are
defined as [11]

τn(cos θ ) = −d p1
n(cos θ )

dθ
, πn(cos θ ) = − p1

n(cos θ )

sin θ
.

Figure 9 shows the calculated anisotropy scattering value
(g) as a function of scaled frequency for 0.15 � φ � 0.65. It is
observed that the φ value of the sample strongly influences the
g values. The g values are found to be positive for φ � 0.15,
because a smaller number of scatterers are not able to establish
structural correlation among themselves, which leads to an
isotropic scattering. As the density of scatterers increases with
an increase in the φ value, the short-range order in the sample

FIG. 9. The φ-dependent g values as a function of wavelength for
the PS287 sample.

is developed due to the positional correlation among the scat-
terers. Therefore, a dip in the calculated g value at the scaled
frequency of 0.45 arises, which corresponds to the frequency
gap of the sample. The negative g value is indicating the
backward scattering from the sample at the frequency gap,
and it is increasing with an increase in φ values. Hence, it
is possible to tune the scattering length scales of the sample
with a controlled density of scatterers.
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