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Square-root higher-order topological insulator on a decorated honeycomb lattice
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Square-root topological insulators are recently proposed intriguing topological insulators, where the topo-
logically nontrivial nature of Bloch wave functions is inherited from the square of the Hamiltonian. In this
paper, we propose that higher-order topological insulators can also have their square-root descendants, which we
term square-root higher-order topological insulators. There, emergence of in-gap corner states is inherited from
the squared Hamiltonian which hosts higher-order topology. As an example of such systems, we investigate
the tight-binding model on a decorated honeycomb lattice, whose squared Hamiltonian includes a breathing
kagome-lattice model, a well-known example of higher-order topological insulators. We show that the in-gap
corner states appear at finite energies, which coincides with the nontrivial bulk polarization. We further show
that the existence of in-gap corner states results in characteristic single-particle dynamics; namely, setting the
initial state to be localized at the corner, the particle stays at the corner even after a long time. Such characteristic
dynamics may experimentally be detectable in photonic crystals.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect [1] and find-
ing of its topological origin [2–4], topological phase of matter
has attracted considerable interest in the field of condensed-
matter physics. Topological insulators and superconductors
(TIs and TSCs) [5,6] are representatives of such systems of
noninteracting fermions, where topologically nontrivial na-
ture of the Bloch wave functions or Bogoliubov quasiparticles,
characterized by topological indices [7–9], gives rise to robust
gapless states at boundaries of samples [10,11]. Such a rela-
tion between bulk topological indices and boundary states is
called bulk-boundary correspondence [12].

It has also been revealed that incorporating crystalline
symmetries [13–18] and/or non-Hermiticity [19–28] makes
the topological phases more abundant. Remarkably, the
notion of bulk-boundary correspondence is enriched accord-
ingly [27–39]. Higher-order topological insulators (HOTIs)
[29–34,40–42] are one of the examples exhibiting a novel
type of bulk-boundary correspondence, where topologically
protected boundary modes appear not at (d − 1)-dimensional
boundaries but at (d − n) (n � 2) -dimensional boundaries,
with d being the spatial dimension of the bulk. Nowadays,
various theoretical models [31,33,40,43] as well as possible
realizations in solid-states systems [44–50] have been pro-
posed. Furthermore, realization and potential applications in
artificial materials [51–60] have also been intensively pur-
sued. The effects of interactions [61–64] and disorders [65]
have also been investigated.

Besides these developments, Arkinstall et al. recently pro-
posed a pathway to realize a novel type of TIs, by utilizing
the square-root operation [66]. Namely, for a proper choice
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of positive-semidefinite tight-binding Hamiltonians, referred
to as the parent Hamiltonians, their square-root Hamiltonian
can be generated by inserting additional sublattice degrees
of freedom. Then the Hamiltonian thus obtained has a spec-
tral symmetry around E = 0, and the topologically protected
boundary modes on the parent Hamiltonian are inherited to its
square root. Such TIs are referred to as square-root TIs [67],
and they are realized in, e.g., a diamond-chain photonic crystal
[68].

Inspired by these findings, in the present paper, we pro-
pose that the idea of taking the square root can be applied
to the HOTI. Namely, we can construct the model of HOTI
by taking the square root of the well-known model of the
HOTI; we term such systems square-root HOTIs. The model
thus obtained has characteristic corner states appearing at
positive and negative energies in a pairwise manner, which
is a sharp contrast to the parent model. To be concrete, we
study a decorated honeycomb-lattice model. Here a decorated
honeycomb lattice stands for a honeycomb lattice with one ad-
ditional site at each edge; such a lattice structure is relevant to
several solid-state systems, such as graphene superstructures
[69], metal-organic frameworks [70], and 1T-TaS2 [71,72],
and thus has long been studied mainly as an example of
flat-band models. As for the topological aspect, the possi-
bility of the HOTI in a similar model was pointed out in
Ref. [71], and here we present a viewpoint from its parent
Hamiltonian. Namely, the parent Hamiltonian of the present
system is the direct sum of the honeycomb-lattice model with
different on-site potentials and the breathing kagome-lattice
model [73]. The breathing kagome-lattice model hosts the
HOTI in which boundary modes are localized at the corner
of the sample, and this higher-order topology is succeeded to
the decorated honeycomb model as well. We demonstrate this
by numerically calculating the eignevalues and eigenvectors
to show the existence of the corner modes, and by relating
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them to the topological invariant for both original and squared
Hamiltonians.

Besides the solid-state systems listed above, our model
of the decorated honeycomb lattice is also experimentally
feasible in photonic waveguide crystals, as recently reported
in Refs. [74,75]. Therefore, to detect the topologically pro-
tected corner modes in the present system, we calculate the
single-particle dynamics. Such a single particle initial state
can be easily prepared by injecting an excitation beam in
photonic crystals, and its propagation pattern, corresponding
to the particle dynamics of the quantum-mechanical systems,
is measurable. We find that, when the corner states exist, the
particle localized at the corner sites stays at the same corner
and does not spread into the bulk.

The remainder of this paper is organized as follows. In
Sec. II, we explain the decorated honeycomb-lattice model we
use in this paper, and point out that its squared Hamiltonian
corresponds to the direct sum of the honeycomb lattice model
and the breathing kagome-lattice model. We also present the
exact dispersion relations. In Sec. III, we elucidate the higher-
order topology of this model, by demonstrating the existence
of the in-gap corner states in the finite system under the
open boundary conditions. We also calculate the topological
invariant, i.e., the polarization, and show how the HOTI in
the squared Hamiltonian is inherited to the original model. In
Sec. IV, we study the single-particle dynamics, and show its
localized nature originating from the existence of the corner
states. Finally, in Sec. V, we present a summary of this paper.

II. MODEL

We consider the following tight-binding Hamiltonian on a
decorated honeycomb lattice that has five sites per unit cell
[Fig. 1(a)]:

H =
∑

k

C†
kHkCk, (1)

where Ck = (Ck,•,(I),Ck,•,(II),Ck,◦,(i),Ck,◦,(ii),Ck,◦,(iii) )T and

Hk =
(
O2,2 �

†
k

�k O3,3

)
. (2)

Here Ol,m represents the l × m zero matrix; the �k is the 3 × 2
matrix:

�k =
⎛
⎝t1 t2

t1 t2e−ik·a1

t1 t2e−ik·a2

⎞
⎠. (3)

For the definitions of the lattice vectors a1 and a2, see
Fig. 1(a). Note that the model includes only nearest-neighbor
(NN) hoppings with two different parameters t1 and t2.

The Hamiltonian is chiral symmetric, i.e., Hk satisfies
γHkγ = −Hk, where

γ =
( I2,2 O2,3

O3,2 −I3,3

)
. (4)

Here In,n stands for the n × n identity matrix. This indicates
the existence of the parent Hamiltonian whose square root cor-
responds to Hk [66]. The Hamiltonian also has C3 symmetry

FIG. 1. (a) Model considered in this paper. Gray arrows represent
the lattice vectors: a1 = ( 1

2 ,
√

3
2 ) and a2 = (− 1

2 ,
√

3
2 ). (b) A schematic

figure of the relation between the original Hamiltonian and its square.
The squared Hamiltonian is the direct sum of the honeycomb-lattice
model with sublattice-dependent on-site potentials and the breathing
kagome-lattice model.

around the sublattice (I),

H(C3k) = UkHkU †
k , (5)

where

Uk =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 e−ik·a2 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎠. (6)

The key feature of this Hamiltonian can be clarified by
taking a square of the Hamiltonian matrix:

[Hk]2 =
(

h(H)
k O2,3

O3,2 h(K)
k

)
, (7)

where

h(H)
k = �

†
k�k (8a)

is the 2 × 2 matrix and

h(K)
k = �k�

†
k (8b)

is the 3 × 3 matrix. Remarkably, h(H)
k equals the Hamiltonian

of the honeycomb-lattice model with different on-site poten-
tials on two sublattices [3t2

1 for (I) and 3t2
2 for (II)], while

h(K)
k equals the Hamiltonian of the breathing kagome-lattice

model, as schematically depicted in Fig. 1(b). From the real-
space viewpoint, this is understood as follows. The particle
on a white (black) site can move to the neighboring black
(white) sites by operating the Hamiltonian. Then, operating
the Hamiltonian twice corresponds to two NN moves of the
particles [76,77], meaning that a particle on a white (black)
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FIG. 2. Band structures of the Hamiltonian Hk for (a) t1 = 1,
t2 = 1, and (b) t1 = 1, t2 = 1.2. � = (0, 0), K = ( 4π

3 , 0), and M =
(π, π√

3
) are high-symmetry points in the Brillouin zone.

site can either go to the neighboring white (black) sites or
come back to the original site; the former networks the hon-
eycomb (kagome) lattice formed by white (black) sites, while
the latter corresponds to the on-site potentials. We call the
squared Hamiltonian, [Hk]2, the parent Hamiltonian of this
model. The role of the parent Hamiltonian here is to help
us understand the topological characters of its child, namely
the decorated honeycomb model of Eq. (1). As such, the
fine-tuned nature of the parent Hamiltonian (i.e., the on-site
potential is not independent of the NN hoppings) does not
matter to the following discussions, as the main target we deal
with is not the parent Hamiltonian itself but its child.

As is well known, the HOTI is realized in the breath-
ing kagome-lattice model [37,40,41], and this higher-order
topology of the parent Hamiltonian is indeed succeeded to
its descendant Hk, as we will show later. We note that the
uniform on-site potential in the kagome-lattice Hamiltonian
in Eq. (8b) is an artifact of the square operation, and it does
not affect the topological nature.

By utilizing the square of the Hamiltonian, the dispersion
relations of five bands can be obtained, because the dispersion
relations can be obtained for both the honeycomb and the
breathing-kagome models [78]. To be concrete, the dispersion
relations for h(H)

k are

ε
(H)
k = E±

k = 3
2

[
t2
1 + t2

2 ±
√

(t2
1 − t2

2 )2 + 4t2
1 t2

2 |�(k)|2] (9)

and those for h(K)
k are

ε
(K)
k = 0, E±

k , (10)

where �(k) = (1 + eik·a1 + eik·a2 )/3. We note that the disper-
sion relations for ε

(H)
k and for h(K)

k are the same except for the
existence of the zero-energy flat band for h(K)

k . It follows from
Eqs. (9) and (10) that the dispersion relations of the decorated
honeycomb-lattice models are

εk = 0,±
√

E±
k . (11)

The band structures for several parameters are depicted in
Fig. 2. There is a flat band at zero energy regardless of
the choice of parameters, which originates from the chiral
symmetry with sublattice imbalance from the conventional
viewpoint [79–82]. Alternatively, we can regard that this flat
band is inherited from the breathing kagome bands of the

squared Hamiltonian. When |t1| = |t2|, the squared Hamil-
tonian equals that for the honeycomb-lattice model with a
uniform on-site potential plus the isotropic kagome-lattice
model; thus the Dirac cones appear at K and K′ points
[Fig. 2(a)], whereas they are gapped out when |t1| �= |t2|
[Fig. 2(b)]. This gap opening makes it possible to seek the
HOTI in this model.

We further point out the eigenvectors of Hk can be con-
structed from those of h(H)

k and h(K)
k . To be specific, let us

focus on the first and the fifth bands, which are relevant to
the higher-order topology discussed in the next section. Let
u(H)(k) be the eigenvector of h(H)

k with the eigenenergy E+
k

and u(K)(k) be that of h(K)
k . In fact, u(K)(k) can be written as

[76,78]

u(K)(k) = �ku(H)(k). (12)

Note that u(H)(k) and u(K)(k) are not necessarily normalized.
Then, it follows that the fifth eigenvector of Hk, which we
write u5(k), can be written as

u5(k) = 1

Nk

(√
E+

k u(H)(k)

u(K)(k)

)
, (13)

with Nk being the normalization constant. One can easily
check that u5(k) is indeed the eigenvector of Hk with the

eigenenergy
√

E+
k , as

Hku5(k) =
(
O2,2 �

†
k

�k O3,3

)
u5(k)

= 1

Nk

(
�

†
ku(K)(k)√

E+
k �ku(H)(k)

)

= 1

Nk

(
�

†
k�ku(H)(k)√
E+

k u(K)(k)

)

= 1

Nk

(
E+

k u(H)(k)√
E+

k u(K)(k)

)

=
√

E+
k u5(k). (14)

Further, due to the chiral symmetry, the first eigenvector u1(k)
can be obtained as

u1(k) = γ u5(k) = 1

Nk

(√
E+

k u(H)(k)

−u(K)(k)

)
. (15)

III. CORNER STATES AND THEIR
TOPOLOGICAL ORIGIN

In this section, we discuss the topological nature of the
present model, focusing on the higher-order topological phase
and its relation to the squared Hamiltonian.

We first study the finite sample shaped into a triangle
under the open boundary conditions, shown in Fig. 3(a).
For this system, the energy spectrum as a function of t1/t2
is plotted in Fig. 3(b); without loss of generality, we set
t1/2 � 0 hereafter [83]. We see there exist in-gap states for
t1/t2 < 1, whereas they vanish for t1/t2 > 1; as we have seen
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FIG. 3. (a) Finite system under the open boundary conditions,
consisting of 45 black and 36 white sites. (b) The energy spectrum
as a function of t1/t2. The red dashed lines correspond to the in-gap
corner states. (c) The energy spectrum for t1 = 0.3, t2 = 1. The in-
gap corner states are encircled by cyan (lower) and magenta (upper)
ellipses. The charge density of (d) the lower three in-gap states and
(e) the higher three in-gap states. The radii of yellow shaded dots
represent the probability density.

in the previous section, t1/t2 = 1 corresponds to the gap-
closing point, indicating the topological phase transition at
this point. Figure 3(c) is the energy spectrum for fixed values
of t1 and t2 with t1/t2 < 1. We see that each in-gap state
has threefold degeneracy, as indicated by cyan and magenta
ellipses.

FIG. 4. Polarization of Eq. (18) as a function of t1/t2. Blue dots
and orange triangles are for the first and the fifth bands of the
decorated honeycomb-lattice model, respectively. Purple squares are
for the upper dispersive band of the breaking kagome-lattice model
h(K)

k and the green diamonds are for the upper dispersive band of the
honeycomb-lattice model h(H)

k .

To further reveal the real-space profiles of the in-gap states,
we plot the probability distribution for the in-gap states:

Nν
j = ∣∣φ(ν)

j

∣∣2
, (16)

where j denotes the sites and φ
(ν)
j is the real-space wave

function defined for the eigenmode γν as

γν =
∑

j

(
φ

(ν)
j

)∗
Cj, (17)

with Cj being the annihilation operator at the site j. The re-
sults are shown in Fig. 3(d) for the negative-energy modes and
Fig. 3(e) for the positive-energy modes [84], respectively; here
we take averages over the three quasidegenerate states. We
clearly see that the in-gap states are indeed the corner states,
manifesting that the HOTI is realized in the present model.
It is worth noting that the corner states have large amplitude
on both black sites and white sites at the corners. In fact, the
proper choice of the corner-site termination is necessary to
obtain the in-gap corner states, which is a ubiquitous feature
of two-dimensional HOTIs. The present corner termination
is chosen such that the square of the Hamiltonian of the
finite system corresponds to the triangular geometry for the
breathing kagome lattice which was used in Ref. [40].

Next, we discuss the topological origin of the corner states.
To this end, we employ the polarization as a topological
invariant. For C3-symmetric systems, it can be written in a
concise form [34,54,85]:

2π pn ≡ arg θn(K) (mod 2π ), (18)

where

θn(k) = u†
n(k) · (Ukun(k)). (19)

The C3 symmetry enforces the quantization of pn as pn = l
3 · l

with l = 0, 1, 2. To characterize the corner states, we focus on
the first and the fifth bands. In Fig. 4, we plot the polarization.
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Clearly, both p1 and p5 take 1
3 for t1/t2 < 1, where the corner

states emerge, and 0 for t1/t2 > 1, where the corner states do
not emerge. The jump of pn occurs at t1 = t2, where the band
gap closes and the topological phase transition occurs.

How is the polarization related to the squared Hamiltonian?
To see this, we calculate the polarization for u(H)(k) and
u(K)(k). Note that the C3 rotation matrix Uk is block diag-
onalized into the kagome sector and the honeycomb sector
[see Eq. (6)]; thus in the calculation of pK/H we employ each
sector of Uk as a C3 rotation matrix. The results are plotted
in Fig. 4. We see that p changes from 1

3 (t1/t2 < 1) to 0
(t1/t2 > 1) for h(K)

k , whereas it is 0 for h(H)
k . This indicates

that the higher-order topology of the present model is inher-
ited from the breathing kagome-lattice model. However, as
we have pointed out, the corner modes have amplitudes on
both honeycomb (white) and kagome (black) sites, meaning
that the actual corner states are not described by the kagome
lattice alone. One can also find that the following relation of
the topological invariants between the original model and the
squared model holds:

2π p1 ≡ 2π p5 ≡ 2π (pK + pH) (mod 2π ), (20)

which follows from Eqs. (13) and (15) [86]. Note that, unlike
the case of the square-root TI in the diamond chain [68], the
fractionalization of the topological invariant does not occur in
the present model, because the key symmetries are not broken
by the square-root operation.

IV. DYNAMICAL PROPERTIES

In this section, we address the dynamics of the single-
particle state associated with the localized corner states.
Although the following formulation is written in the language
of the second quantization, one can employ the same scheme
to describe the dynamics of electro-magnetic waves in pho-
tonic crystals [66,68,87–90]. To be concrete, time dependence
of single-particle wave functions in tight-binding models can
be translated into the z dependence of electromagnetic waves
in photonic crystals, where z stands for the spatial direction in
which the wave propagates. Thus the characteristic dynamics
we show below may experimentally be realizable by using the
photonic crystal setup.

Suppose that the single particle is localized at the site j in
the initial state:

|�(0)〉 = C†
j |0〉 , (21)

where |0〉 represents the vacuum state. Then, the wave func-
tion at time t can be obtained by the unitary time evolution:

|�(t )〉 = e−iHt |�(0)〉 =
∑

ν

(
φ

(ν)
j

)∗
e−iεν tγ †

ν |0〉 , (22)

where εν denotes the eigenenergy of νth mode, and we set
h̄ = 1. Thus the density at the site � is obtained as

N�(t ) = 〈�(t )|C†
�C� |�(t )〉

=
∣∣∣∣∣
∑

ν

e−iεν t
(
φ

(ν)
j

)∗
φ

(ν)
�

∣∣∣∣∣
2

. (23)

FIG. 5. Charge density N�(t ) of Eq. (23) at t = 500 represented
by the radii of green shaded dots. The panels (a) and (b) are for
t1 = 1, t2 = 0.3 and (c) and (d) are for t1 = 0.3, t2 = 1. Red circles
represent the initial position of the particle. For (a) and (b), the green
dots are smaller than black and white symbols representing the sites.

We emphasize that this quantity can be easily observed in the
photonic crystal. In Fig. 5, we plot N�(t ) for large t (compared
with the bandwidth of the system). Here the initial state is cho-
sen such that the particle is localized at either the white site or
the black site on the left-bottom corner. In the case without the
corner states [Figs. 5(a) and 5(b)], the particle spreads over the
entire system; thus the amplitude at individual sites becomes
small. In contrast, in the case with the corner states [Figs. 5(c)
and 5(d)], the particle stays at the left-bottom corner even after
a long time.

V. SUMMARY

To summarize, we have proposed the HOTI analog of the
square-root TIs, which we term the square-root HOTI. We
study the decorated honeycomb-lattice model as an example,
which can be regarded as a square root of the direct sum of the
honeycomb-lattice model with a sublattice-imbalanced on-site
potential and the breathing kagome-lattice model, the latter
of which is a representative model for the HOTI. We indeed
find that the HOTI in the breathing kagome-lattice model is
succeeded to this model, as manifested by the existence of the
corner states at finite energies and the nontrivial bulk polariza-
tion. The viewpoint of square-root operation is essential for
the model construction. Constructed as such, the parent and
child Hamiltonians are indeed tied to each other in various
aspects, such as bulk band structures, a topological invariant,
and proper shape of boundaries to obtain the corner states.

The present construction of the square-root HOTIs will
be applicable to various lattice models, including both two-
dimensional and three-dimensional ones. For instance, for the
decorated diamond lattice in three dimensions, its squared
Hamiltonian is composed of the diamond and pyrochlore lat-
tices, the latter of which hosts three-dimensional HOTIs [40].
Exploring various other examples is an intriguing future work.

Seeking experimental realization of the square-root HOTI
and the corner states in decorated honeycomb systems is
another interesting future problem. As we have emphasized,
implementation of the decorated honeycomb-lattice structure
in photonic crystals has been reported [74,75], which will
serve as a promising platform. Indeed, our model of Eq. (1)
only includes two independent NN hopping parameters, in-
dicating that the model is feasible without any fine-tuning
of parameters. To realize the HOTI, the imbalance of two
hoppings, t1 �= t2, is essential, and such a situation can be
realized by placing the sites on the edges of hexagons closer
(or farther) to the sublattice (I) than the sublattice (II). Under
such a setup, we expect that characteristic localized dynamics
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associated with the corner states can be observed. In addition,
the nontrivial bulk polarization in the square-root HOTI may
be experimentally accessible by observing the beam propaga-
tion if one can prepare a well-tailored beam profile as an initial
state [90].

ACKNOWLEDGMENTS

This work is supported by the JSPS KAKENHI,
Grants No. JP17H06138 and No. JP20K14371 (T.M.),
Japan.

[1] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[3] J. E. Avron, R. Seiler, and B. Simon, Phys. Rev. Lett. 51, 51
(1983).

[4] M. Kohmoto, Ann. Phys. (NY) 160, 343 (1985).
[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[7] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[8] A. Kitaev, Periodic Table for Topological Insulators and Su-

perconductors, AIP Conf. Proc. No. 1134 (AIP, Melville, NY,
2009), p. 22.

[9] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010).

[10] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005);
95, 146802 (2005).

[11] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

[12] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993); Phys. Rev. B 48,
11851 (1993).

[13] T. H. Hsiesh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat.
Commun. 3, 982 (2012).

[14] R.-J. Slager, A. Mesaros, V. V. Juričić, and J. Zaanen, Nat. Phys.
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