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Revealing the modal content of obstructed beams
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In this paper, we propose a predictor or indicator of the self-healing ability of coherent structured light
beams: the field’s modal content. Specifically, the fidelity between the obstructed and unobstructed beams’
modal spectrum serves as a useful measure of the degree to which the beam will likely self-heal after an
arbitrary obstacle. Since any optical field can be decomposed in terms of any chosen orthonormal basis, this
analysis is, therefore, less restrictive than other methods for determining self-healing ability. Furthermore, since
modal content is propagation invariant, this allows beam self-reconstruction to be studied in this way at any
available transverse plane. As a case study, we present convincing experimental evidence for the superiority of the
self-healing properties of Laguerre-Gaussian over Bessel-Gaussian beams, analysis that is facilitated primarily
by the proposed measure.
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I. INTRODUCTION

Self-healing (or self-reconstruction) of structured light
fields has received a steady amount of interest in the optical
community in recent years, starting with the seminal work
in Ref. [1] and progressing to the numerous applications that
have been fostered in fields such as imaging [2], microscopy
[3], micromanipulation [4], communications [5], and quan-
tum key distribution [6]. Self-healing describes the process
whereby an optical field can reconstruct some intrinsic prop-
erty (such as amplitude, phase, or angular momentum) after an
obstacle. Initial work on the subject of self-healing showed the
ability of nondiffracting beams [7], such as Bessel beams, to
self-reconstruct their intensity at some distance behind an ob-
stacle [1], but it was later found to extend to polarization [8,9]
and orbital angular momentum [10], including the self-healing
of nonseparable states of classical light [11] and quantum en-
tangled states [12]. It was also shown that optical vortices are
able to self-reconstruct [13], although not necessarily about
the same orbital axis.

Typically, a geometric (ray) argument is given as the root
for the self-healing behavior [14], but a wave-optics descrip-
tion also exists [15]. Contrary to the initial belief, many
different families of beams possess a self-healing property
[16], not just the nondiffracting type. The self-healing of
Laguerre-Gaussian (LG) beams [17] and Hermite-Gaussian
(HG) beams [18] has been demonstrated. More generally, it
turns out that any beam has the capacity to self-heal [19]. It
is known that the self-healing ability of the obstructed beam
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strongly depends on the form, size, and position of the obsta-
cle in a complex way [20]. Note that the reconstruction is only
perfect in the limit of a vanishingly small obstacle. Otherwise,
the field reconstruction is only partial with different beams
possessing different self-healing abilities for different degrees
of freedom. It was remarked that the obstacle affects the field’s
spatial frequency content, from which it follows that filtering
theory should be a useful tool for the analysis of self-healing
ability [21], although this was not elaborated on.

Various measures of the degree of self-healing have been
proposed, but as yet none have been universally agreed
upon. One such example requires the computation of vari-
ous inner products over differently sized (and dynamically
changing) domains [22]. Another requires the determination
of the full complex amplitude of the field at various propa-
gation distances [19]. Although a convincing argument can
be made for the appropriateness of these measures, it would
nevertheless be desirable to have a robust measure of self-
healing which can be determined in a more straightforward
manner.

In this regard, we investigate here the self-healing prop-
erties of scalar optical modes via their modal content. We
begin by providing a rationale for why modal content could
be a useful predictor or indicator of an obstructed field’s
propensity to self-heal. We then demonstrate this usefulness
experimentally in the context of comparing the self-healing
ability of LG and Bessel-Gaussian (BG) beams under similar
circumstances. As a consequence, we confirm and extend
previous theoretical work, which conjectures that the self-
healing properties of LG beams are more favorable to that
of BG beams [23]. This has important consequences for a
wide range of applications where self-healing BG beams are
currently being utilized, where LG beams may offer better
performance.
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FIG. 1. Simulation showing the modal content and propagated beam of an obstructed LG superposition and an obstructed HG mode, where
the blacked-out regions correspond to the obstruction. For the LG (HG) beam, the field amplitude is maximally self-reconstructed by 94.8%
(64.6%) at the plane z = 0.6zR (0.8zR), with a mode spectrum fidelity of F = 0.81 (0.50). For this particular example, there is a clear link
between the mode spectrum fidelity and the degree of self-healing.

II. MOTIVATION

Why would modal content be a useful indicator of
self-healing ability? First, consider a scalar field U (x⊥, z)
propagating along the z axis, where x⊥ are transverse spatial
coordinates. Suppose that this field encounters an obstacle at
z = 0 having transmission function O(x⊥). Now, any field can
be expressed in terms of an arbitrarily selected orthonormal
basis �n(x⊥, z) where n are the mode indices. Note that n
may represent multiple indices, for example, the radial and
azimuthal indices (p, �), respectively, in the LG basis. The
completeness of this basis ensures the validity of the following
expansion:

U (x⊥, z) =
∑

n

cn �n(x⊥, z), (1)

where the set of numbers cn specifies the modal spectrum of
the field in the chosen basis. Observe that the mode indices are
constants and, crucially, are independent of the propagation
coordinate z.

Now, there are numerous definitions of self-healing, but
one such definition is that there exists some plane z = zSH

(the so-called self-healing plane) where the obstructed field
Ū (·) = O(·)U (·) has self-reconstructed and now closely re-
sembles the original field:

Ū (x⊥, zSH) ≈ α U (x⊥, zSH), (2)

where α is a constant that indicates how much of the beam
power is reduced by the obstruction. Substitution of Eq. (1)
into the above and using the orthonormality of the basis func-
tions yields

c̄n ≈ α cn. (3)

This suggests that for self-healing to occur the modal spec-
trum of the obstructed beam should resemble (to be quantified
later) the modal spectrum of the unobstructed beam. Crucially,
since the modal spectrum is invariant under propagation, this
decomposition can be performed at any convenient plane
after the obstruction. Further, since there exists an effective

and simple optical procedure for finding the modal spectrum
coefficients [24], this allows the self-healing propensity of
the field to be studied in an entirely experimental manner,
something which some previous analyses are incapable of
doing. Moreover, this type of analysis is not restricted to a
particular beam type since any laser field can be expanded
into any desired modal basis.

These ideas are highlighted qualitatively in a simulation
shown in Fig. 1 for two different structured light beams: a
superposition of two LG modes and a single HG mode, each
with different obstructions at different transverse positions
at the waist plane (defined to be z = 0). In each case, the
obstructed fields were propagated by computing the Fresnel
diffraction integrals over z ∈ [0, 2zR], where zR is the Rayleigh
length, and the amplitude correlation (quantified in the next
section) at each z was computed. A modal decomposition
in the respective basis was also performed before and after
the obstruction. One can qualitatively observe that the LG
superposition field experiences superior self-reconstruction
which is correlated to the fidelity between the obstructed and
unobstructed modal spectra.

Several intriguing aspects of self-healing are manifested
here. We see, perhaps counterintuitively, that the LG field
has better self-reconstruction than the HG mode, even though
the relative size of the obstruction is larger and more greatly
reduces the initial beam power. This alludes to the fact that not
only the size of the obstruction but its position is important.
Since these fields are scaled-propagation invariant, a spatial
frequency argument may be employed to partially explain the
results: the HG obstruction more greatly impacts the high
spatial frequency content, which is where the bulk of the field
information is stored [21]. Put simply, an obstruction has a
more damaging effect if it blocks those parts of the beam that
are further from the origin.

III. SELF-HEALING MEASURES

In what follows, we will study the self-healing of the
field amplitude. We propose to compare the obstructed and
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FIG. 2. Experimental setup for switching between digital propagation and modal decomposition, enabled by flipping a pop-up mirror
(dashed line). The images shown are for the case where a LG0

5 mode is obstructed up to its third zero.

unobstructed field amplitudes (obtained via a CCD camera)
over a range of propagation distances z according to a slightly
altered and strengthened version of a measure used to deter-
mine the quality index of an original and test image [25].
One can view this measure as a kind of correlation measure
between two matrices x and y having N elements, which we
define as

C(x, y) = 1

2

(
1 −

∑
i(xi − yi )2

N − 1

)(
1 + σxy

σxσy

)

×
(

2x̄ȳ

(x̄)2 + (ȳ)2

)(
2σxσy

σ 2
x + σ 2

y

)
, (4)

where

ā = 1

N

∑
i

ai, (5)

σ 2
a = 1

N − 1

∑
i

(ai − ā)2, (6)

σab = 1

N − 1

∑
i

(ai − ā)(bi − b̄). (7)

The proposed correlation measure C(x, y) ∈ [0, 1] is a product
of the quantities: normalized mean-square error, correlation
coefficient, luminance, and contrast.

To measure the resemblance of the modal content, we
compute the distance between the two modal spectra in terms
of the fidelity:

F (U, Ū ) = |〈U |Ū 〉|2 =
∑

n

|c∗
n c̄n|. (8)

The above is an already widely used metric, such as in the
determination of the fidelity of two pure quantum states [26].

IV. LG VERSUS BG SHOWDOWN

We will study the modal content and self-healing of ob-
structed structured light fields in the context of comparing
the self-healing ability of LG versus BG beams, as was done
theoretically in Ref. [23]. In doing so, we aim to experimen-
tally confirm the theoretical prediction that the self-healing
properties of LG beams are more favorable than that of the
corresponding BG beams. Further, we show how the modal
content can be effectively used to predict this behavior.

In order to facilitate a fair comparison, it turns out that the
BG and LG field profiles can be made similar if for any given

LG�
p(·) mode of Gaussian waist radius w0, radial mode index

p, and topological charge � we choose for the BG beam

kr = 2M

w0
, (9)

wBG = M w0, (10)

where kr and wBG are the radial mode index and Gaussian
waist radius of the BG mode and M = √

2p + |�| + 1 is the
square root of the LG beam quality factor. This comparison
follows from the asymptotic form of the associated Laguerre
polynomials in the limit of a large radial index p [27]. In
this regime, the Rayleigh range (zR) of the LG beam and the
maximum propagation distance (zmax) of the BG beam are
identical, as can be seen by substituting the above into

zR = πw2
0

λ
, (11)

zmax = 2πwBG

λkr
. (12)

The quantity zmax is the distance over which the BG beam is
quasi-non-diffracting; thereafter the beam energy expands to
form a ring in the far field. Similarly, LG beams are collimated
within the depth of focus related to zR; however, since they
are scaled-propagation invariant they retain their amplitude
profile in the far field.

V. EXPERIMENTAL SETUP

To test the ideas experimentally, we built the optical setup
shown schematically in Fig. 2. In actuality, this setup is a
combination of two parts that each perform distinct tasks and
can be alternated by flipping a pop-up mirror (denoted by the
dashed line after lens L3). When the pop-up mirror is flipped
up, the setup can be used for digital propagation in accordance
with Ref. [28], which has the advantage of having no moving
parts. When the pop-up mirror is down, the setup can be
used for modal decomposition. In each case, the beam from a
He-Ne laser is expanded and collimated to be approximately
uniform over the first spatial light modulator (SLM).

In order to study the propagation dynamics of any par-
ticular optical field U (x⊥, 0), one can perform the following
operations:

U (x⊥, z) = F−1{F{U (x⊥, 0)} exp(ikzz)}, (13)
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FIG. 3. Experimental results of the LG vs BG showdown. Shown are the experimental beam images for different sized obstructions (first
row), the corresponding rescaled radial mode spectra (second row), and the field amplitude correlation as a function of z (last row). Dashed
lines in the last row correspond to the modal spectrum fidelities with the unobstructed beam. Experiment (Expt.) and theory (Theor.) are in
excellent agreement.

where F{·} denotes the Fourier transform and kz is the lon-
gitudinal component of the wave vector. This is equivalent to
propagating the field via the angular spectrum approach. By
encoding F{U (x⊥, 0)} exp(ikzz) on the first SLM and Fourier
transforming this with a lens, the field at the focal plane is pre-
cisely the desired propagated field. By placing a CCD camera
at this plane, the amplitude information of the propagated field
can be acquired and the correlation between the obstructed
and unobstructed amplitudes can be determined using Eq. (4).
We then adjust z digitally so as to enable the study of the
field’s propagation dynamics without any moving parts. Note
that, in general, the optical field need not be known; the setup
may be adjusted so that the SLM lies at the Fourier plane of
another lens upon which the unknown field is impinged. In
this case, only the propagation transfer function exp(ikzz) is
encoded. To save having to use another SLM, however, we
choose to both generate the obstructed field and apply the
propagation transfer function in a single step.

When the pop-up mirror is down, the modal decomposition
part of the setup includes the last three elements: SLM2, lens
L4, and a CCD camera. This is known to be sufficient for
optically determining the modal spectrum coefficients cn in
Eq. (1). Specifically, the first SLM generates the obstructed
beam Ū (·) = O(·)U (·) which is then imaged to the second
SLM to be overlapped with the chosen set of basis func-
tions �n(x⊥, z). Since the mode spectrum is invariant with
respect to z, for simplicity we chose to perform the opti-
cal inner product at the plane z = 0 (immediately after the
obstacle).

In the case of the LG basis, their inner product produces
a Kronecker delta relation between the mode indices (p, �)
since these are discrete. For BG beams, however, the radial
mode index kr is continuous and so one has to manually
discretize this parameter to form an orthogonal set of modes.

It was found that choosing the spacing as

�kr > 1.5
2πwBG

λ f
, (14)

where f is the focal length of the Fourier lens, ensures that
the set of BG modes is orthogonal and can be used as a basis
[29]. For our optical system, a spacing of �kr = 10 mm−1 was
selected.

A free parameter when choosing the basis functions in
which to expand the field is the inherent scale parameter (such
as w0 in the case of Gaussian-type modes). It is important to
choose an appropriate scale since selecting a suboptimal scale
will require extra radial modes in the expansion to reconstruct
the field. In other words, a poor choice has the effect of in-
creasing the spread of the radial mode spectrum. In this regard,
a simple two-step approach has been offered to determine the
beam size and propagation factor, which is sufficient to extract
the optimal scale of the modes in the modal decomposition
(provided the family of modes which the beam belongs to
is known) [30]. This enhancement improves the overall time
efficiency of performing the modal decomposition and should
be employed if the mode size is unknown.

In what follows, we obstructed the beams with a range of
differently sized circular obstacles centered on the optical axis
and with radii coinciding with the zeros of the field: the zeros
of the associated Laguerre polynomials or Bessel functions
for the LG and BG beams, respectively. Owing to the fact
that the fields are comparable, due to Eqs. (9) and (10), these
zeros are approximately the same. One can view this obstacle
function as effectively removing a certain number of inner
rings from the beam. We also make the choice of using an
LG mode with p = 5 and w0 = 0.15 mm, which necessitates
kr ≈ 44 mm−1 and wBG ≈ 0.5 mm. For simplicity, we also
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FIG. 4. Maximum amplitude correlation vs modal spectrum fi-
delity for the LG vs BG showdown. Matching symbols correspond
to the same obstruction.

restrict the experimental analysis to the case where � = 0,
although we have found that the results extend analogously.

VI. RESULTS

A large subset of the experimental results is summarized
in Fig. 3 for three different obstruction sizes (the full results
correspond to all five obstructions). Self-healing is observed
to some degree in all cases, as can be seen by the increase
in the correlation coefficient after the obstruction at z = 0.
Most notably, the degree of self-healing, which we define
as the maximum achieved correlation after the obstacle, is
proportional to the fidelity of the obstructed and unobstructed
mode spectra in every case. The mode fidelity in each case
is denoted by the dashed horizontal lines in the last row of
Fig. 3, all of which neatly follow along with the degree of
self-healing.

We further note that the LG amplitude self-reconstruction
persists after the self-healing plane [the plane where C(U, Ū )
is a maximum]. This is in contrast to the BG amplitude the
correlation of which degrades to some degree after zSH. Notice

that the BG amplitude correlation is plotted over z ∈ [0, zmax]
whereas the LG amplitude correlation is plotted over three
times this distance. This is facilitated by the fact that LG
modes are scaled-propagation invariant, and so can be uti-
lized over greater distances than the corresponding BG beams
(which only propagate over a finite range). We also observe
that for corresponding obstruction sizes the modal content
of LG beams is less disturbed and the maximum amplitude
correlation is higher.

A winner for the LG versus BG showdown is more clearly
discerned from Fig. 4, where the maximum amplitude corre-
lation is plotted against mode spectrum fidelity. Each of the
five points corresponds to each of the five obstruction sizes
(one for each zero of the field). We see that corresponding
points in the LG line are higher and further to the right,
indicating that for similar obstruction sizes the LG modes
display superior self-healing and that the obstruction has a
less damaging effect on the modal content. The proportion-
ality between self-reconstruction and modal content is also
clearly visible, further supporting the hypothesis that modal
content can be a useful indicator of self-healing ability. Taken
together, the facts presented above provide a very convincing
argument for the superiority of the self-healing properties of
LG beams over BG beams, with modal content being a useful
indicator or predictor of this fact.

VII. CONCLUSION

To summarize, we provided theoretical and experimental
evidence indicating the utility of using a field’s modal content
to predict self-healing ability. As a case study, we applied
these concepts in the context of a showdown between LG
and BG beams, ultimately showing the superiority of the
self-healing ability of LG beams. This has immediate conse-
quences in applications where BG beams are currently being
utilized where LG beams can offer better performance, such
as the self-reconstruction of entanglement after an obstacle.
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Řeháček, P. de la Hoz, G. Leuchs, and L. L. Sánchez-Soto, Opt.
Express 25, 19147 (2017).

[20] I. A. Litvin, L. Burger, and A. Forbes, Opt. Lett. 38, 3363
(2013).

[21] A. Cámara and T. Alieva, J. Mod. Opt. 58, 743 (2011).
[22] V. Arrizon, G. M.-V. nor, D. Aguirre-Olivas, and H. M. Moya-

Cessa, Opt. Express 26, 12219 (2018).
[23] J. Mendoza-Hernández, M. L. Arroyo-Carrasco, M. D.

Iturbe-Castillo, and S. Chávez-Cerda, Opt. Lett. 40, 3739
(2015).

[24] D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré,
Opt. Lett. 37, 2478 (2012).

[25] Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81
(2002).

[26] M. A. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Information, American Association of Physics Teachers
(The University Press, Cambridge, UK, 2002).

[27] N. N. Lebedev and R. Silverman, Special Functions and Their
Applications (Dover, New York, 1972), p. 85.

[28] C. Schulze, D. Flamm, M. Duparré, and A. Forbes, Opt. Lett.
37, 4687 (2012).

[29] A. Trichili, T. Mhlanga, Y. Ismail, F. S. Roux, M. McLaren,
M. Zghal, and A. Forbes, Opt. Express 22, 17553 (2014).

[30] C. Schulze, S. Ngcobo, M. Duparré, and A. Forbes, Opt.
Express 20, 27866 (2012).

033524-6

https://doi.org/10.1364/OE.25.019147
https://doi.org/10.1364/OL.38.003363
https://doi.org/10.1080/09500340.2011.573589
https://doi.org/10.1364/OE.26.012219
https://doi.org/10.1364/OL.40.003739
https://doi.org/10.1364/OL.37.002478
https://doi.org/10.1109/97.995823
https://doi.org/10.1364/OL.37.004687
https://doi.org/10.1364/OE.22.017553
https://doi.org/10.1364/OE.20.027866

