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We conduct a theoretical study of the propagation of few-cycle ultrafast vortices (UFVs) carrying orbital
angular momentum (OAM) in free space. Our analysis reveals much more complex temporal dynamics than
that of few-cycle fundamental Gaussian-like beams, particularly when approaching the single-cycle regime and
the magnitude of the topological charge l is high. The recently described lower bound

√|l| to the number
of oscillations of UFVs with propagation-invariant temporal shape (isodiffracting UFVs) is found to hold on
average also for UFVs of general type, with variations along the propagation direction above and below that
bound, even vanishing locally. These variations are determined by the so-called Porras factor, or g0 factor,
characterizing the dependence of the Rayleigh distance of the spectral constituents with frequency. With a given
available bandwidth, UFVs must widen temporally with increasing magnitude of the topological charge and
must widen or may shrink temporally during propagation as a result of the axially varying g0-dependent lower
bound. Under very restrictive conditions in their generation, an UFV can be shrunk below the lower bound

√|l|
at a focus into a kind of locally compressed state of OAM, but it broadens well above

√|l| and is distorted
in a tiny fraction of the depth of focus because of the dispersions introduced by Gouy’s phase and wave-front
mismatch. These propagation phenomena have implications and should be taken into account in experiments
and applications of UFVs, such as the generation of high harmonics and attosecond pulses with high OAM, or in
OAM-based ultrafast communications systems, as well as in other areas of physics such as acoustics or electron
waves.
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I. INTRODUCTION

In recent years there has been a great deal of interest in
the generation and application of ultrafast vortices (UFVs), or
ultrashort pulses carrying orbital angular momentum (OAM),
particularly those with few optical cycles approaching the
single-cycle regime, and in their application to, e.g., high-
harmonic and attosecond pulse generation, high-resolution
imaging, and fast optical classical and quantum information
processing. In an important part of the experiments the aim
is to generate shorter and shorter vortices of better quality
by eliminating undesirable effects such as topological charge
and angular dispersions [1–13]. Technical improvements have
made it possible to approach the single-cycle regime of du-
rations and to reach two-digit topological charges of the
vortices [10]. On the other hand, the use of these UFVs in
strong-field light-matter interactions, as in high-harmonic and
attosecond generation experiments [14–21], has led to the
generation of UFVs of high topological charges, typically a
few dozen, even exotic waves with fractional and time-varying
topological charges [22,23]. Recent proposals [24] that mimic
high-harmonic generation based on phase-only spatial light
modulators allow for increased topological charge on demand.

Given these huge experimental efforts, somewhat surpris-
ing is the small amount of theoretical work on the propagation
characteristics of UFVs [25–36], even in the a priori simplest
situation of free-space propagation. A comprehensive theory

of the propagation dynamics of UFVs, similar to that devel-
oped a few decades ago for fundamental few-cycle pulses
without OAM [37–45] when the single-cycle regime was
reached [46], is still pending.

Indeed, the propagation dynamics of UFVs differs in sub-
stantial aspects from that of fundamental pulses without OAM
because of a strong coupling between the temporal and OAM
degrees of freedom in the UFV, as reported in [30–34] for
Laguerre-Gauss-type UFVs and in [34–36] for nondiffracting
X-type vortices. The effects of this coupling remain small, but
are observable, at low topological charges and/or many-cycle
durations, but become large and dominate the propagation
dynamics when the single-cycle and high-topological-charge
regimes are approached.

These previous studies considered the so-called isodiffract-
ing UFVs, characterized by a Rayleigh distance that is
independent of the frequency of the monochromatic Laguerre-
Gauss (LG) constituents. Isodiffracting UFVs play a central
role in the theory of UFV propagation because they are the
only UFVs whose pulse temporal shape do not change during
propagation regardless of how short the pulse and how high
the topological charge are, as pointed out in [30]. For these
UFVs, Ref. [30] establishes a strong coupling between the
pulse temporal shape at the bright ring surrounding the vortex
singularity and the magnitude of the topological charge that
settles an upper bound to the topological charge that an UFV
of a certain number of oscillations can carry, and vice versa,
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settles a lower bound
√|l| to the number of oscillations of

an UFV of given magnitude of the topological charge |l|. As
a result, an UFV synthesized with a certain bandwidth must
increase its duration from that expected from its bandwidth
when the imprinted topological charge is increased [31].

However, femtosecond laser sources that emit with
frequency-independent Rayleigh distance seem to be more the
exception than the rule [47–50] (see [51] for a possible excep-
tion). The dependence of the Rayleigh distance on frequency
is characterized by the g0 factor, first introduced in [44]. For
ultrafast Gaussian beams, a small red or blue carrier frequency
shift experienced during propagation is determined by its g0

factor. More importantly, the g0 factor determines the carrier-
envelope phase distribution in the focal volume [44,52]. This
is why the g0 factor of the source has proved to be a cru-
cial parameter in phase-sensitive light-matter interactions, as
in [47,48] for electron photoemission and in [49] for electron
acceleration with radially polarized pulses, since the outcome
of experiments depends crucially on the g0 factor of the
source. Conversely, use of phase-sensitive interactions allow
the measurement of the carrier-envelope phase focal map and
from it to determine the g0 factor of the source [47]. The value
g0 = 0 corresponds to the isodiffracting geometry in ultrafast
Gaussian beams and UFVs. Hoff et al. [47] report average val-
ues g0 = −1.95 and g0 = −1.2 in two experiments with the
same source but different tuning; Jolly [49] suggests that high-
power lasers would be characterized by g0 � 1; measurements
of the carrier-envelope phase in [50,51] using similar few-
cycle Kerr-lens mode-locked Ti:sapphire lasers suggest that
these sources would be characterized by −1 < g0 < 0. Most
of these measurements indicate significant variations of the
Rayleigh distance with frequency.

In this paper we study the propagation (focusing) of UFVs
of the LG type beyond the isodiffracting model and therefore
those synthesized from actual femtosecond laser sources with
g0 factors different from zero. We do not intend to describe in
detail the propagation features of the different types of UFVs,
whose detailed description could be deferred to separate stud-
ies, but reveal general laws in the form of temporal-OAM
couplings that affect all of them and underlie the different
propagation phenomena observed numerically. For clarity, we
often compare the phenomena found here with those already
known in ultrafast Gaussian beams and isodiffracting UFVs.
We find that the lower bound to the number of oscillations
of the pulse at the bright ring proportional to

√|l| continues
to hold for general UFVs, with upward and downward axial
variations averaging in

√|l| or a higher value whose loca-
tion is dictated by the g0 factor of the source. Thus, as for
isodiffracting UFVs, the duration of general UFVs increases
compared to that expected from the available source band-
width with increasing imprinted topological charge. Unlike
ultrafast Gaussian beams and isodiffracting UFVs, the dura-
tion and shape of general UFVs change during propagation
as a result of the axially varying lower bound, these variations
being more pronounced as |l| and |g0| are larger and approach-
ing the single-cycle regime. At certain axial locations it is
possible to decrease the number of oscillations below

√|l|, but
this is only feasible in practice with sources with 0 < g0 � 1
at the far field and sources with −1 � g0 < 0 at the waist
or focus; the optimum situation is the use of a source with

g0 = −1. Even if it is possible to locally beat the
√|l| limit in

a kind of compressed state of OAM, the UFV broadens to a
number of oscillations well above

√|l| in a small fraction of
the depth of focus because of the strong dispersive effects of
Gouy’s phase and wave-front mismatch in UFVs with g0 �= 0
and high topological charges.

II. PRELIMINARIES ON ULTRAFAST
LAGUERRE-GAUSS VORTICES

We represent an UFV of topological charge l propagating
in free space as the superposition

E (r, t ′, z)eilϕ = 1

π

∫ ∞

0
Ê (r, ω, z)e−iωt ′

dωeilϕ (1)

of LG monochromatic light beams

Ê (r, ω, z) = â(ω)
s(ω)

s(ω, z)

[ √
2r

s(ω, z)

]|l|
e−r2/s2(ω,z)

× ei[ωr2/2cR(ω,z)]e−i(|l|+1)ψ (ω,z) (2)

of zero radial order (the only ones used in the cited exper-
iments) and of the same charge l . In the above equations,
a(ω) are generally complex-valued weights, z is the parax-
ial propagation direction, (r, z, ϕ) are cylindrical coordinates,
t ′ = t − z/c is the local time, and

s(ω) =
√

2zR(ω)c

ω
(3)

is the width at the waist, located at z = 0, of the fundamental
Gaussian beam (l = 0) as a function of the Rayleigh distance
zR(ω) of each LG monochromatic constituent. One could
specify s(ω) and determine from it the Rayleigh distance from
the standard relation zR(ω) = ωs2(ω)/2c, but the opposite is
more appropriate since the g0 factor is directly linked to the
Rayleigh distance. Also,

s(ω, z) = s(ω)

√
1 + z2

z2
R(ω)

=
√

2zR(ω)c

ω

√
1 + z2

z2
R(ω)

(4)

is the Gaussian width at each distance, R(ω, z) = z + z2
R(ω)/z

is the radius of curvature of the wave fronts, and ψ (ω, z) =
tan−1[z/zR(ω)] is Gouy’s phase of the fundamental Gaussian
beam. The divergence angle at the far field can be evaluated
from θ (ω) = √

2c/ωzR(ω). Being limited to positive frequen-
cies, the optical field E in (1) is the analytical signal complex
representation of the real optical field Re{E} [53].

We also consider the spatial distribution of pulse energy,
energy density, or fluence, given by

E (r, z) =
∫ ∞

−∞
[ReE (r, t ′, z)]2dt ′ = 1

2

∫ ∞

−∞
|E (r, t ′, z)|2dt ′

= 1

π

∫ ∞

0
|Ê (r, ω, z)|2dω, (5)

which vanishes at the vortex center at r = 0 and at infinity
for a localized field and then takes a maximum value at a
certain radius rmax at each propagation distance, henceforth
referred to as the radius rmax of the bright ring. The temporal
shape of the pulse at this radius is particularly relevant in
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experiments, especially those involving nonlinear propagation
and interactions with matter.

The optical field in Eqs. (1) and (2) may be regarded as
generated on a plane source at z = 0. Alternatively, and more
closely related to current experiments, Eqs. (1) and (2) also
represent the focused optical field in the Debye approximation
(no focal shift) [44], with the focus at z = 0, when an ideal
focusing element of focal length f , as a spherical or parabolic
mirror, is illuminated by an input field in the form of a colli-
mated UFV

EL(r, t )eilϕ = 1

π

∫ ∞

0
ÊL(r, ω)e−iωt dω eilϕ (6)

made of the collimated monochromatic LG beams

ÊL(r, ω)eilϕ = Â(ω)

[ √
2r

S(ω)

]|l|
e−r2/S2(ω)eilϕ (7)

of Rayleigh distance ZR(ω), Gaussian width S(ω) =√
2ZR(ω)c/ω on the focusing system, and divergence angle

�(ω) = √
2c/ωZR(ω). We cannot pursue the sophisticated

experimental techniques for the generation of vortices of fem-
tosecond duration as in Eqs. (6) and (7), but the Rayleigh
distance ZR(ω) and the spectrum Â(ω) in these equations are
closely related to the geometry and spectrum of the femtosec-
ond laser source. The spectrum Â(ω) is characterized by a
certain mean frequency

ω0 =
∫ ∞

0 |Â(ω)|2ω dω∫ ∞
0 |Â(ω)|2dω

(8)

and corresponds in the time domain to a certain pulse shape

A(t ) = 1

π

∫ ∞

0
Â(ω)e−iωt dω (9)

of a physically meaningful carrier frequency ω0 if, according
to the standard definition [46], the full width at half maxi-
mum (FWHM) of |A(t )|2 comprises at least one carrier period
2π/ω0. In the Debye approximation of focusing, the Rayleigh
distance and spectra of the focused UFV and of the input UFV
from the femtosecond source are related by [54]

zR(ω) = f 2

ZR(ω)
, â(ω) = −i

f

zR(ω)
Â(ω). (10)

For ulterior use, given a function f (ω) of frequency, we
introduce the notation

f (ω) =
∫ ∞

0 |Ê (r, ω, z)|2 f (ω)dω∫ ∞
0 |Ê (r, ω, z)|2dω

(11)

for its mean value with the spectral density |Ê (r, ω, z)|2 of the
UFV, and for any function g(t ′) of time, the notation

g(t ′) =
∫ ∞
−∞ |E (r, t ′, z)|2g(t ′)dt ′∫ ∞

−∞ |E (r, t ′, z)|2dt ′ (12)

for its mean value with the intensity |E (r, t ′, z)|2 of the UFV.
Note that these mean values depend in general on r and z
because |Ê (r, ω, z)|2 and |E (r, t ′, z)|2 depend on r and z [and
because f (ω) and g(t ′) may be functions of r and z too].

The variance of f (ω) is σ 2
f (ω) = [ f (ω) − f (ω)]2 = f 2(ω) −

f (ω)
2
, and similarly for a function of time. In particular, ω̄

is the mean or carrier frequency at any point of the UFV and
σ 2

ω = ω2 − ω̄2 is the variance of ω with the spectral density.

Similarly, t ′ is the mean temporal location and σ 2
t ′ = t ′2 − t ′2

is the variance of time with the pulse intensity. Suitable mea-
sures of the spectral bandwidth and duration of the UFV
at a given point (r, z) are the so-called Gaussian-equivalent
half-bandwidth and half-duration 	ω = 2σω and 	t = 2σt ′ ,
respectively, yielding the 1/e2-decay half-width for Gaussian
spectral density and intensity. The product 	t	ω is always
larger than or equal to 2, with the minimum value of 2 reached
for the Gaussian-shaped spectral density |Ê (r, ω, z)|2 with
uniform spectral phases. Also, the product ω̄	t/π = 2	t/T ,
where T = 2π/ω̄ is the mean or carrier period, is the number
of oscillations in the full Gaussian-equivalent duration 2	t ,
but to avoid these π factors in relevant formulas we will refer
to ω̄	t as the number of oscillations.

A. The g0 factor of the source

In previous theoretical studies on UFVs, ZR(ω), and
hence zR(ω), is taken to be independent of frequency in the
isodiffracting model of UFVs, in which case the temporal
shape of the UFV does not change with propagation dis-
tance. While this property confers on isodiffracting UFVs
a prominent place from the theoretical point of view, cur-
rent femtosecond laser sources emit pulses with different
Rayleigh distances for different frequencies, as recently
demonstrated [47,48]. Since the function ZR(ω) is generally
unknown, several simple models are often used [49]. For
example, the model ZR(ω) = ZR(ω0)(ω/ω0)g0 yields, using
the above relations between ZR(ω), S(ω), and �(ω), S(ω) =
S(ω0)(ω/ω0)(g0−1)/2 and �(ω) = �(ω0)(ω0/ω)(g0+1)/2 for the
input UFV, and using Eqs. (10), zR(ω) = zR(ω0)(ω0/ω)g0 ,
s(ω) = s(ω0)(ω0/ω)(g0+1)/2, and θ (ω) = θ (ω0)(ω/ω0)(g0−1)2

for the focused UFV. In particular, g0 = 0 is the isodiffracting
model, g0 = 1 describes an input UFV with constant width,
and hence a focused UFV with constant convergence angle
and focal width inversely proportional to frequency, and g0 =
−1 describes an input UFV with constant divergence angle
and width inversely proportional to frequency, corresponding
to a focused UFV with convergence angle inversely propor-
tional to frequency and constant width at the focus. With other
g0 values, none of the parameters are constant. The above
formula for ZR(ω) is a simple model that will be used in the
examples below, but obviously real sources do not have to
conform to it.

Fortunately, for pulses with at least one carrier oscilla-
tion, it has been theoretically suggested and experimentally
demonstrated that it is only the variation of the Rayleigh
distance with frequency in the vicinity of the carrier fre-
quency ω0 that determines most of propagation properties of
pulsed beams [44,47,52]. The different situations are suitably
described by a single dimensionless parameter called the g0

factor, defined as [44]

g0 = dZR(ω)

dω

∣∣∣∣
ω0

1

ZR(ω0)
ω0 = −dzR(ω)

dω

∣∣∣∣
ω0

1

zR(ω0)
ω0, (13)

that characterizes the variation of the Rayleigh range with
frequency about the carrier frequency ω0. The symbol g0 is
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FIG. 1. Power-exponential spectrum Â(ω) ∝ (ω/ω0)α−1/2

exp(−αω/ω0) with α = 14.25 and ω0 = 2.5 rad/fs of the
quasi-Gaussian pulse A(t ) = [−iα/(ω0t − iα)]α+1/2 of carrier
frequency ω0. The value of α is chosen such that the FWHM
duration of |A(t )|2 is one carrier period. For α = 14.25 or higher
Â(ω) approaches a Gaussian spectrum but without a DC component
at ω = 0, and A(t ) approaches a Gaussian pulse, as detailed, e.g.,
in [41,55].

the same as in the model in the preceding paragraph because
they coincide in that model. Thus, g0 = 1 means constant
width S(ω) only about ω0, g0 = −1 constant divergence about
ω0, and so on. Recent studies outline the need of measuring
the g0 factor for each particular femtosecond laser source
since its value has been evidenced to strongly affect the out-
come of experiments with these sources, particularly those
involving phase-sensitive light-matter interactions [47–51].
Recent direct measurements yield values of g0 between −1
and −2 for femtosecond sources using hollow-core fiber
compressors [47]. High-power lasers are suggested to have
g0 = +1 [49], and the values inferred from measurements of
the carrier-envelope phase of focused few-cycle pulses from
Kerr-lens mode-locked Ti:sapphire lasers are in the range
−1 < g0 < 0 [50,51]. Thus, according to previous literature,
we assume here that |g0| does not exceed 2.

B. Previous results and open problems

Figures 1 and 2 illustrate previously known results for
Gaussian beams and for isodiffracting UFVs, compared with
the phenomena in the propagation of general UFVs con-
sidered here. In all cases represented in Fig. 2, the source
spectrum Â(ω), shown in Fig. 1(a), is the same and corre-
sponds in time domain to the approximately Gaussian pulse
A(t ) shown in Fig. 1(b) containing a single oscillation in the
FWHM of |A(t )|2. All the graphs in Fig. 2 represent pulse
shapes ReE and amplitudes |E | of focused UFVs at the radii
rmax of maximum fluence at each propagation distance.

First, focusing of few-cycle, even single-cycle pulses in
the form of a fundamental Gaussian beam [l = 0 in Eqs. (1)
and (2) and rmax = 0] only introduces minor changes to the
pulse temporal shape [Figs. 2(a)–2(c)], irrespective of the
particular value of g0, i.e., the pulse continues to be an
approximately single-cycle Gaussian-like pulse during the
whole propagation [42], with slightly blueshifted frequency
for g0 > 0 and redshifted frequency for g0 < 0 about the

focus [38,39,44] and with different maps of carrier-envelope
phase in the focal volume, as studied in detail in [44,52].

Second, with the same source spectrum in Fig. 1 of a
single-cycle pulse, the number of oscillations of the syn-
thesized isodiffracting input UFV (g0 = 0) monotonically
increases with the magnitude of the topological charge from
that expected from the source pulse A(t ), no matter by what
technical means it is generated, and the focused isodiffracting
UFV maintains this temporal shape during the whole focus-
ing process, with no appreciable blue or red frequency shift
at the bright ring, ω̄ � ω0. The increase of the number of
oscillations with |l| is a consequence of the upper bound
to the relative bandwidth σω/ω̄ < 1/

√|l| at the bright ring
described in [30] or on account of the relation 	t	ω � 2
(	ω = 2σ ), the lower bound ω̄	t >

√|l| to the number of
oscillations [30]. In addition, with ω̄ � ω0 for isodiffracting
UFV [34], 	t >

√|l|/ω0 imposes directly a lower bound to
the pulse duration. Thus, irrespective of how wide the source
spectrum is or how short the source pulse A(t ) that can be
synthesized with it is, the UFV adapts itself to a number of
oscillations satisfying ω0	t >

√|l| [31].
The intention of this paper is to understand propagation

phenomena of UFVs with g0 �= 0, such as those observed
in Figs. 2(g)–2(i). In this example g0 = 1 because the width
S(ω) ≡ S(ω0) of the input UFV is taken to be independent
of frequency, and according to Eqs. (6) and (7) the input
field is EL(r, t )eilϕ = A(t )[

√
2r/S(ω0)]|l|e−r2/S2(ω0 )eilϕ . First,

unlike pulsed Gaussian beams and isodiffracting UFVs, the
pulse shape at rmax changes during focusing. Pulse distor-
tion is weak for small |l| but quite pronounced for large
|l|, as in Figs. 2(g)–2(i). Second, the topological charge
and duration of the input UFV in Fig. 1(b) and its initial
stage of focusing in Fig. 2(g) are chosen so that the in-
equality ω0	t >

√|l| is violated, contradicting apparently the
results in [30]. However, this lower bound applies only to
the most fundamental situation of UFVs with propagation-
invariant pulse shape. Indeed, there is no restriction, on
physical grounds, to produce the space-time factorized field
EL(r, t )eilϕ = A(t )[

√
2r/S(ω0)]|l|e−r2/S2(ω0 )eilϕ , with A(t ) as

short and |l| as large as desired at a given transversal plane
only technical issues. About the focus, however, the UFV
is distorted and broadened, as in Figs. 2(h) and 2(i), so the
inequality ω̄	t >

√|l| is satisfied by far. In the following
sections we demonstrate that this behavior is a result of more
general restrictions on the number of oscillations at the bright
ring that generalize ω̄	t >

√|l| for isodiffracting UFVs to
general UFVs.

III. GENERAL RESTRICTIONS TO THE PULSE
PROPERTIES AT THE BRIGHT RING

To that purpose we first locate the maximum of the fluence
distribution at each transversal plane. Differentiating with re-
spect to r, the fluence in Eq. (5) with the spectral density
|Ê (r, ω, z)|2 obtained from Eq. (2), we obtain, after some
algebra,

dE
dr

= 2

r

∫ ∞

0
dω|Ê |2

[
|l| − 2r2

s2(ω, z)

]
, (14)
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FIG. 2. Focused pulse shapes and amplitudes at the radius rmax of maximum fluence for a different input optical field of interest. All of
them are evaluated numerically from Eqs. (1), (2), and (10) with f = 20 cm and with the same spectrum Â(ω) of the single-cycle pulse in
Fig. 1 and using the model ZR(ω) = ZR(ω0)(ω/ω0)g0 with ZR(ω0) = 4 m. Pulse shapes are shown at the focus for the fundamental pulsed
Gaussian beam (l = 0) with the three choices (a) g0 = 1, (b) g0 = 0, and (c) g0 = −1. All three are undistorted quasi-Gaussian pulses of the
same duration during the whole propagation with slightly blueshifted (g0 = 1) or redshifted frequencies (g0 = −1) at the focus. Pulse shapes
are shown at the focus in the isodiffracting model with g0 = 0 and (d) |l| = 8, (e) |l| = 16, and (f) |l| = 35. All three propagate undistorted
without any frequency shift but with duration increasing with |l|. Pulse shapes are shown for g0 = 1 and |l| = 30 at different propagation
distances: (g) z = −8zR(ω0), (h) z = −zR(ω0), and (i) z = 0. The pulse is slightly blueshifted, distorted, and broadened during focusing. The
gray curves are always the pulse in Fig. 1(b) with an artificially added phase in each case for a better appreciation of the frequency shifts. In
all figures the peak amplitude is set to unity and shifted to t ′ = 0 for a better comparison.

which equated to zero leads to the implicit equation

|l|
2

= r2
max

(
1

s2(ω, z)

)
(rmax) (15)

for the maxima or minima of the fluence, where we have ex-
plicitly written that the (r, z)-dependent mean value 1/s2(ω, z)
is evaluated at the radius of rmax of the bright ring. Differen-
tiating again with respect to r, the second derivative yields a

cumbersome and long expression, which evaluated again at
rmax yields however the simpler expression

d2E
dr2

∣∣∣∣
rmax

= −8E (rmax)

(
1

s2(ω, z)

)
(rmax)

×
[
|l| + 1 − |l| 1/s4(ω, z)(rmax)

1/s2(ω, z)
2
(rmax)

]
, (16)
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where as above the mean values are explicitly written to
be evaluated at rmax. The condition of maximum fluence in
Eq. (16) then leads to the inequality

1/s4(ω, z)(rmax)

1/s2(ω, z)
2
(rmax)

<
|l| + 1

|l| (17)

or, equivalently, to the inequality

σ 2
1/s2(ω,z)

1/s2(ω, z)
2 = 1/s4(ω, z) − 1/s2(ω, z)

2

1/s2(ω, z)
2 <

1

|l| , (18)

which is satisfied by any UFV at its maximum fluence at any
propagation distance. In the equality (18) we have omitted
again rmax in the mean values and variance to simplify the
notation, but it should be understood from now on that they
are evaluated at this radius. The inequality (18) is the main
mathematical result of this paper, stating that the relative vari-
ance of the function of frequency 1/s2(ω, z) at the radius of
maximum fluence of general UFVs is restricted by the upper
bound on the right-hand side (rhs) of the inequality (18). The
physical interpretation and consequences of this restriction are
the purpose of the remainder of this paper.

Although the inequality (18) holds for arbitrarily short
UFVs, i.e., also for subcycle pulses of arbitrary temporal
shape and ultrabroadband spectrum, from now on we limit our
considerations to pulses with at least one carrier oscillation as
defined in [46], with a relatively narrow spectrum, as in the
example of Fig. 1, and therefore with a physically meaning-
ful carrier frequency. With this limitation the inequality (18)
can be transformed under suitable approximations into useful
inequalities involving the carrier frequency, the bandwidth,
and the duration of the UFVs. This limitation is not a real
limitation in practice, as current femtosecond laser sources do
not go below single-cycle durations and are not expected to
do so in the near future.

IV. RED AND BLUE FREQUENCY SHIFTS

To transform the inequality (18) into useful inequalities, we
first investigate the actual carrier frequency of the oscillations
of UFVs at their bright ring. It has been demonstrated in [34]
that the carrier frequency of isodiffracting UFVs is not appre-
ciably shifted from the source frequency ω0, that is, ω̄ � ω0,
in line with what happens to the fundamental isodiffracting
pulsed Gaussian beam [40]. For UFVs with g0 �= 0 there are
significant, but not large, blueshifts or redshifts of the carrier
frequency, which are also similar to those of fundamental
pulsed Gaussian beams of the same value of g0 [44] and are
substantially independent of the topological charge.

In Fig. 3(a) the carrier frequency ω̄ at the bright ring is
represented for UFVs of the same topological charge and
different values of g0 versus propagation distance z about the
focus for a single-cycle, approximately Gaussian source pulse
A(t ) (see the caption for details). Starting in all cases with
a carrier frequency ω̄ � ω0 far from the focus, the carrier
frequency is increasingly redshifted approaching the focus for
negative g0 and increasingly blueshifted approaching the fo-
cus for positive g0. As can be seen in Fig. 3(b) for g0 = 1, the
frequency shift at the focus does not appreciably depend on l
and is approximately equal to that affecting the fundamental

-5 0 5
0.8

0.9

1

1.1

1.2

(a)

-2 -1 0 1 2
0.8

0.9

1

1.1

1.2

(d)

-5 0 5
1

1.04

1.08

(b)

-5 0 5
1

1.04

1.08

(c)

FIG. 3. Frequency shifts of UFVs at their bright ring. They are
evaluated numerically with Eqs. (1), (2), and (10), with ZR(ω) =
ZR(ω0)(ω/ω0)g0 and Â(ω) = (ω/ω0)α−1/2 exp(−αω/ω0) with α =
14.25 (single-cycle pulse), except in (d), where α = 14.25 for the
single-cycle pulse and α = 57.11 for the two-cycle pulse. The fre-
quency shift is shown (a) for several values for g0, (b) for different
values of |l|, and (c) for different pulse durations, all of them as
functions of propagation distance. (d) Frequency shifts at the focus
z = 0 in (a) as a function of g0, fitting approximately a straight line.

Gaussian beam of the same value of g0. Off-focus the depen-
dence of the frequency shift on the topological charge is also
weak. For longer pulses, as for the two-cycle source pulse A(t )
in Fig. 3(c), the frequency shifts are much less pronounced
and vanish in the monochromatic limit, as expected. Thus,
the largest redshifts and blueshifts correspond to single-cycle
input pulses at the focus and they fit the approximate linear
variation with the g0 factor shown in Fig. 3(d). These maxi-
mum frequency shifts are of course relevant in experiments,
but for |g0| � 2 do not exceed a relative variation of 15%
with respect to the source carrier frequency, which justifies
the approximations that will be made in the following section.
Although particular power-exponential source spectra, corre-
sponding to approximately Gaussian-shaped input pulses, are
used in Fig. 3 (see the caption for details), we have observed
in additional numerical simulations with other source spectra
similar relative frequency shifts between 10% and 20%.

V. RESTRICTIONS TO THE BANDWIDTH AND DURATION

For zR(ω) independent of frequency it can readily be seen
from Eq. (4) that the inequality (18) reduces to the previously
known inequality σω/ω̄ < 1/

√|l| for isodiffracting UFVs that
involves physically meaningful properties of the pulse at rmax.
Taking into account that 	ω = 2σω and that 	ω	t � 2, the
number of oscillations of isodiffracting UFVs satisfies ω̄	t �√|l| [30].
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Similar, though approximate, restrictions involving the car-
rier frequency, bandwidth, and duration at rmax of general
UFVs with at least one cycle can be obtained as follows.
Using the approximate equality σ 2

f (ω) � [df (ω)/dω|ω̄]2σ 2
ω for

f (ω) = 1/s2(ω, z) frequently used in statistics [56], evaluat-
ing the derivative as df (ω)/dω = −[1/s4(ω, z)]ds2(ω, z)/dω

for convenience, and approaching f (ω) in the denom-
inator of (18) by the first-order Taylor series f (ω) �
f (ω̄) + df (ω)/dω|ω̄(ω − ω̄) = f (ω̄), we obtain

σω <
1√|l|

∣∣∣∣∣ s2(ω̄, z)
ds2(ω,z)

dω

∣∣
ω̄

∣∣∣∣∣. (19)

Introducing the bandwidth 	ω = 2σω and using that
	ω	t � 2, the inequality (19) yields

	t >
√

|l|
∣∣∣∣∣

ds2(ω,z)
dω

∣∣
ω̄

s2(ω̄, z)

∣∣∣∣∣. (20)

Explicit evaluation of the derivative yields the result

σω

ω̄
<

1√|l|
1∣∣1 + g(ω̄) 1−z2/z2

R (ω̄)
1+z2/z2

R (ω̄)

∣∣ (21)

and

ω̄	t >
√

|l|
∣∣∣∣1 + g(ω̄)

1 − z2/z2
R(ω̄)

1 + z2/z2
R(ω̄)

∣∣∣∣, (22)

where g(ω) = −{[dzR(ω)/dω]/zR(ω)}ω. The rhs of the in-
equality (22) imposes a lower bound on the number of
oscillations of the pulse that is different at each propagation
distance. Its evaluation is however difficult because one needs
to know the functions of frequency zR(ω) and g(ω) and then
evaluate them at the carrier frequency ω̄ at the bright ring at
each propagation distance. Experimentally this would require
a careful characterization of the input source by determining
ZR(ω) as a function of frequency and measuring ω̄ at the bright
ring at each selected distance. In a numerical simulation of
an experiment, one would need to specify models of Â(ω)
and ZR(ω) of the input pulse, use Eqs. (10), compute the
focused optical field with Eqs. (1) and (2), and extract the
values of ω̄. As seen in the preceding section, the carrier
frequency ω̄ at rmax may be redshifted or blueshifted with
respect to the carrier frequency ω0 of the source, but this shift
does not exceed a relative value of 10–20 % for the extreme
case of single-cycle pulses, for |g0| � 2, with any topological
charge, and vanishes as the number of oscillations increases,
regardless the particular choice of Â(ω) and ZR(ω). Thus, we
can transform the upper bound in (21) and the lower bound
in (22) into approximate but much easier to evaluate upper
and lower bounds by replacing ω̄ with the source frequency
ω0 on the rhs of the inequalities (21) and (22) to obtain

σω

ω̄
<

1√|l|
1∣∣1 + g0

1−z2/z2
R (ω0 )

1+z2/z2
R (ω0 )

∣∣ (23)

and

ω̄	t >
√

|l|
∣∣∣∣1 + g0

1 − z2/z2
R(ω0)

1 + z2/z2
R(ω0)

∣∣∣∣, (24)

whose right-hand sides are determined by standard properties
of the source such as its carrier frequency ω0 and Rayleigh
distance zR(ω0) = f 2/ZR(ω0) at the carrier frequency. The ap-
pearance of the g0 factor underlines the need to measure it for
the available laser source. The inequality (24), supplemented
by the inequality (23), is the main practical result of this paper
that imposes a z-dependent lower bound proportional to

√|l|
on the number of oscillations at the bright ring of general
UFVs and generalizes the z-independent lower bound

√|l| in
the isodiffracting case.

It is possible to derive more intuitively the above results by
examining more closely the spectral density

|Ê (r, ω, z)|2 = f 2

z2
R(ω)

s2(ω)

s2(ω, z)
|Â(ω)|2

[
2r2

s2(ω, z)

]|l|
e−2r2/s2(ω,z).

(25)

Using the approximate equality x2me−x2 � e−2(x−√
m)2

(m/e)m,
which becomes more accurate as the positive parameter m
increases, the spectral density can be approximated by

|Ê (r, ω, z)|2 � f 2

z2
R(ω)

s2(ω)

s2(ω, z)
|Â(ω)|2e−2[

√
2r/s(ω,z)−√|l|]2

,

(26)

where we have omitted the irrelevant (m/e)m factor. The first
two factors are present also with l = 0 and induce carrier
frequency shifts but do not significantly alter the bandwidth
of the source spectrum Â(ω) in the same way as for pulsed
Gaussian beams. The last factor is peculiar to UFVs and acts
as a bandpass filter when s(ω, z) depends on frequency that
limits the bandwidth and hence the duration. Approximat-
ing 1/s(ω, z) � 1/s(ω0, z) + d[1/s(ω, z)]/dω|ω̄(ω − ω̄), ex-
pressing for convenience the derivative as d[1/s(ω, z)]/dω =
−[ds2(ω, z)/dω]/2s3(ω, z), and evaluating the spectral den-
sity at r2

max = (|l|/2)[1/1/s2(ω, z)] � (|l|/2)s2(ω̄, z), one
arrives at

|Ê (rmax, ω, z)|2 � f 2

z2
R(ω)

s2(ω)

s2(ω, z)
|Â(ω)|2e−(ω−ω̄)2/2σ 2

G , (27)

with

σG = 1√|l|

∣∣∣∣∣ s2(ω̄, z)
ds2(ω,z)

dω

∣∣
ω̄

∣∣∣∣∣. (28)

As the product of |Â(ω)|2 and the last Gaussian factor in
Eq. (27), the spectral density of the UFV at rmax cannot by
wider than σG, that is, σω < σG, which is the same as the
inequality (19), from which the remainder of the inequalities
are derived.

The z-dependent lower bound to the number of oscilla-
tions at the bright ring of UFVs as given by the rhs of the
inequality (24) is represented in Figs. 4(a) and 4(b) by means
of solid curves for several values of g0. For positive g0 the
lower bound in the focal region [−zR(ω0), zR(ω0)] is above the
bound

√|l| for isodiffracting UFVs, outside the focal region it
is below

√|l|, and at the edges ±zR(ω0) of the focal region it
equals

√|l|. The opposite happens with negative values of g0.
For any |g0| the maximum lower bound is (1 + |g0|)

√|l|,
reached at the focus for positive g0 and far from the focus for
negative g0.
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(a)

(b)

FIG. 4. Lower bound to the number of oscillations of UFVs
as a function of propagation distance for several (a) positive and
(b) negative values of the g0 factor. The solid curves show the lower
bound given by the rhs of the inequality (24). The symbols show
the lower bound evaluated from the rhs of the inequality (22) using
numerical simulations of the propagation with the source model
ZR(ω) = ZR(ω0)(ω/ω0)g0 and spectra Â(ω) of single-cycle pulses
of shapes A(t ) = [−iα/(ω0t − iα)]α+1/2, α = 14.25, and ω0 = 2.5
rad/fs (open circles) and A(t ) = sinc2t/T e−iω0t , T = 3.9 fs, and
ω0 = 2.5 rad/fs (crosses).

Remarkably, for |g0| � 1 there exist isolated axial
positions

zb = ±
√

g0 + 1

g0 − 1
zR(ω0), (29)

located outside the focal region for g0 � 1 and within the
focal region for g0 � −1, where the lower bound van-
ishes and therefore there is no restriction on the minimum
duration of the UFV. At zb the lower bound disappears be-
cause ds2(ω, zb)/dω|ω0 = 0, i.e., the Gaussian width of the
monochromatic LG constituents is constant about the carrier
frequency, which means, according to Eq. (27) with σG = ∞,
that the spectral density is substantially the same as |Â(ω)|2
of the source, except for small changes associated with the
frequency shifts. The absence of a lower bound when the
Gaussian width is independent of frequency follows directly
from the inequality (18) and therefore this conclusion is not
limited to UFVs with at least one cycle. Indeed, if s(ω, z) is
independent of ω at some axial location, the variance σ 2

1/s2(ω,z)
vanishes and the inequality (18) is automatically satisfied
with any UFV bandwidth, duration, and topological charge.
In practice, the absence of a lower bound means that the
minimum duration of the UFV is only limited by the source
spectrum Â(ω) to the duration of A(t ). This finding general-
izes, to different positions zb for different values of |g0| � 1,
the introductory example in Figs. 2(g)–2(i) with zb = ±∞,
i.e., at the focusing system in the Debye approximation, with
g0 = 1.

Figures 4(a) and 4(b) also serve to support the validity
of (24) to approximate (22). The symbols in these figures
represent the more precise lower bound provided by the rhs

of the inequality (22), which requires specifying particular
models of ZR(ω) and Â(ω), as detailed in the caption, comput-
ing the focused optical field and its actual carrier frequency
ω̄ at the bright ring at each distance. In these figures circles
and crosses correspond to source pulses of different shapes
(Gaussian-like and sinc squared), all containing a single oscil-
lation, in which case the frequency shifts are larger and then
the discrepancies between (24) and (22) may be more pro-
nounced. The deviations are however small and would indeed
be inappreciable if, for instance, the symbols were evaluated
using multiple-cycle input pulses. These simulations support
that the rhs of (22) depends weakly on these fine details of
the source, and therefore the lower bound on the number of
oscillations can be accurately determined by the analytical
formula of the rhs of (24), which is exclusively determined
by the three parameters ω0, zR(ω0), and g0 pertaining to the
source.

VI. PULSE SHAPE CHANGES UPON PROPAGATION AND
WITH THE TOPOLOGICAL CHARGE, AND LOCALLY

COMPRESSED STATES OF ORBITAL ANGULAR
MOMENTUM

The change in the number of oscillations of the UFV upon
propagation, as in the introductory example in Figs. 2(g)–2(i),
can be explained as a consequence of the existence of the z-
varying lower bound in the inequality (24).

The solid black and gray curves in Fig. 5(a) repre-
sent ω̄	t at the bright ring of the UFV as a function
of propagation distance for the input UFVs EL(r, t )eilϕ =
A(t )[

√
2r/S(ω0)]|l|e−r2/S(ω0 )2

eilϕ with g0 = 1 because ZR(ω)
is such that S(ω) = S(ω0) is independent of frequency. The
source spectra Â(ω) are chosen to represent Gaussian-like
pulses A(t ) of one, two, and three oscillations, whose values of
ω0	t are represented as dash-dotted blue lines for reference.
As can be seen, the number of oscillations of the respective
UFVs (black, dark gray, and light gray) remains at any prop-
agation distance above the lower bound, represented as a red
curve. The lower bound acts as a kind of effective barrier that
requires a significant broadening of the input single-cycle and
two-cycle UFVs. A similar situation, but reversing the focal
region and far field, is given with g0 = −1, as illustrated in
Fig. 5(b). The input UFV is given by Eqs. (6) and (7) with
ZR(ω) such that �(ω) = �(ω0), and hence s(ω) = s(ω0) at
the focus, is independent of frequency and with Â(ω) such
that A(t ) comprises one, two, and three oscillations, as above.
Regardless of how low ω0	t of the source pulse is (dash-
dotted lines), the number of oscillations of the synthesized
UFV on the focusing system and as it is directed towards
the focus (black, dark gray, and light gray curves) is above
the lower bound (red curve), and it is only when the lower
bound diminishes in the focal region that this particular UFV
compresses to a duration also allowed by the lower bound in
this region and always above or equal to the duration of A(t ).
For longer input durations, such as the three-cycle UFV in
both examples, these pulse shape changes during propagation
are less and less pronounced.

The proportionality of the lower bound to
√|l| entails an

increase of the number of oscillations with |l| at any particular
location z, in the same way as for isodiffracting UFVs [30].
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FIG. 5. (a) and (b) Black and gray solid curves show the change
of the number of oscillations ω̄	t at the bright ring of UFVs during
propagation evaluated numerically with Eqs. (1), (2), and (10), with
ZR(ω) = ZR(ω0)(ω/ω0)g0 and Â(ω) = (ω/ω0)α−1/2 exp(−αω/ω0)
with α = 14.25 (single-cycle pulse), α = 57.11 (two-cycle pulse),
and α = 128.30 (three cycle pulse) and |l| = 45. In (a) g0 = 1 and
in (b) g0 = −1. The solid red curve shows the lower bound in the
inequality (24). The dashed curves show the number of oscillations
ω̄	t evaluated with transform-limited durations 	t = 2/	ω. The
dash-dotted horizontal blue lines show ω̄	t for the source pulses.
The dashed horizontal line shows the isodiffracting lower bound√|l|. (c) and (d) Pulse shapes at the bright ring at the indicated dis-
tances (black curves) of the source single-cycle pulse (gray curves).

For the same input UFVs as in Figs. 5(a) and 5(b), the number
of oscillations and the lower bound

√
l|(1 + |g0|) are repre-

sented in Fig. 6(a) as functions of |l| at the focal plane for g0 =
1 and at the far field for g0 = −1. The existence of a lower
bound monotonically increasing with |l| at each particular
location z imposes the increase of the number of oscillations
with increasing magnitude of the imprinted topological charge
with respect to those of A(t ). As the frequency shifts are small,
the envelopes shown in Fig. 6(b) are increasingly broadened
at the focus for g0 = 1 and at the far field for g0 = −1 (they
are identical) when increasing |l| compared to the envelope
of A(t ). Interestingly, this effect at an important location such
as the focal plane is more pronounced than for isodiffracting
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FIG. 6. (a) Number of oscillations ω̄	t at the bright ring at the
focal plane for g0 = 1 and at the far field for g0 = −1 with the same
input conditions as in Fig. 5 as a function of the imprinted topological
charge. The red curve is the lower bound in the inequality (24) and
the dashed black curve the lower bound for isodiffracting UFVs.
(b) Broadened amplitudes for various values of |l| at the focal plane
for g0 = 1 and at the far field for g0 = −1, compared to the source
amplitude.

UFVs. Figure 6(a) also evidences that the effect of broadening
with the magnitude of the topological charge is particularly
enhanced and observable with current sources emitting pulses
of duration between one and two cycles and with imprinted
topological charges below ten, e.g., a single-cycle source
pulse with g0 = 1 would acquire an additional half a cycle at
the focus if it is forced to carry topological charge |l| = 10.
On the contrary, the slope of the black curves in Fig. 6(a)
decreases with increasing number of cycles, meaning that
broadening with increasing topological charge is gradually
less pronounced in the multicycle regime and vanishes in the
monochromatic limit.

The above two examples also illustrate what we will refer
to as locally compressed states of OAM or UFVs, understood
as UFVs whose number of oscillations is locally below the
lower bound

√|l| for isodiffracting UFVs, represented in
Figs. 5(a) and 5(b) as dashed black lines. Indeed, the bound√|l| for isodiffracting UFVs continues to play a prominent
role for general UFVs with g0 �= 0 with axially varying pulse
shape. Note that for 0 < |g0| � 1, the mean value of the mini-
mum and maximum values of the lower bound,

√|l|(1 − |g0|)
and

√|l|(1 + |g0|), respectively, along the propagation is just
the isodiffracting value

√|l|. Thus, as in Fig. 5(a) for a source
with g0 = 1 and single-cycle A(t ), the UFV at the far field
with ω̄	t <

√|l| (black dashed line) can be regarded as such
a compressed UFV because it necessarily increases its number
of oscillations to a value ω̄	t >

√|l|. Conversely, for the
source with g0 = −1 and single-cycle A(t ), it is possible to
create, as in Fig. 5(b), an UFV with ω̄	t <

√|l| in the focal
region, but it immediately broadens to ω̄	t >

√|l|. These
locally compressed UFVs are located about the minimum of
the lower bound in each case, but can only be implemented in
practice, as justified below, when the minimum lower bound√|l|(1 − |g0|) is either in the far field (focusing system) or
at the focus i.e., with sources with |g0| � 1, and can be
optimally implemented with g0 = ±1 because the minimum
lower bounds vanish. In these two cases, the value of ω̄	t at
the far field or at the focus can reach its minimum practical
value for the given source spectrum, as in Figs. 5(a) and 5(b),
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FIG. 7. From (a) to (d) the black solid and dashed curves rep-
resent the spectral phase and density of the pulses in the respective
pulses in Figs. 5(c), 5(d), 8(b), and 8(c). The gray solid and dashed
curves are the same quantities for the single-cycle source pulse A(t ).
All spectral densities are normalized to unity and the absolute value
of the spectral phase is arbitrary; only its variation is relevant.

where the pulse shape at the bright ring is almost identical to
A(t ), except for the small redshift at the focus, as observed in
Fig. 5(c).

In principle, these compressed states of OAM could sur-
vive, as allowed by the lower bound, the whole far field
|z| > zR(ω0) or the whole focal region |z| < zR(ω0). How-
ever, as a general feature, they are much more localized
axially, e.g., they exist only in a fraction of the far field in
Fig. 5(a) or in a fraction of the focal region in Fig. 5(b).
This limitation originates from the nonlinear spectral phases
acquired during propagation when the Rayleigh range de-
pends on frequency, which have therefore a dispersive effect
that broadens and distort the pulse shape. These nonlinear
spectral phases are introduced by the ω-dependent Gouy
phase −(|l| + 1) tan−1[z/zR(ω)], which is strongly enhanced
for large |l|, and by the phases ωr2

max/2cR(ω, z) due to ω-
dependent wave fronts, or wave-front mismatch, as the UFV
approaches the focal region from the outside or is immedi-
ately off-focus. Figures 7(a) and 7(b) showing the spectral
phases and densities of the pulses in Fig. 5(c) at the focus
and Fig. 5(d) at one-half the Rayleigh distance evidences that
the spectral densities are similar but the latter is broadened
and distorted because of the nonlinear spectral phases. The
limiting effect of these dispersions on the axial length of
the compressed state is also clear by comparing the pulse
durations, depicted as the black curves and the dashed curves
in Figs. 5(a) and 5(b). These dashed curves represent the num-
ber of oscillations that the pulse would have without Gouy’s
phase and wave-front mismatch dispersions, evaluated as if
the pulse would remain almost Gaussian shaped with uniform
spectral phases from the relation ω̄	t � ω̄2/	ω, where 	ω

is the computed bandwidth. This comparison evidences that
the length of the compressed states is reduced from almost
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FIG. 8. (a) The black curve shows the change of the number
of oscillations ω̄	t at the bright ring of UFVs during propagation
evaluated numerically with Eqs. (1), (2), and (10), with ZR(ω) =
ZR(ω0)(ω/ω0)g0 , g0 = −2, Â(ω) = (ω/ω0)α−1/2 exp(−αω/ω0), α =
14.25 (single-cycle pulse), and |l| = 45. The solid red curve shows
the lower bound in the inequality (24). The dashed gray curve
shows the number of oscillations ω̄	t evaluated with transform-
limited durations 	t = 2/	ω. The dash-dotted horizontal blue line
shows ω̄	t for the source pulse. The dashed horizontal line shows
the isodiffracting lower bound

√|l|. (b) and (c) Pulse shapes at
the bright ring at the indicated distances (black curves) of the
source single-cycle pulse (gray curves). (d) Gouy’s phases of the
monochromatic LG beams of the source carrier frequency ω0 and
of frequencies ω0 + 	ω and ω0 − 	ω at the edge of the source
spectrum.

the entire far field and almost the entire focal region to small
fractions of them by the effect of these dispersions in the
respective cases of g0 = 1 and g0 = −1.

With sources characterized by |g0| > 1, such as that used
in [47], the situation is worse for the purpose of focusing
to an as short as possible pulse in a compressed UFV. First,
the mean value of the maximum and minimum numbers of
oscillations along the propagation is

√|l|(1 + |g0|)/2, above
the isodiffracting lower bound

√|l|. Second, the points zb

where the lower bound vanishes are not at infinity but some-
where outside the focal region for g0 > 1 and not at the
focus but somewhere in the focal region for g0 < −1, as
illustrated in Fig. 8. The possible compressed states located

033522-10



GENERAL LAWS OF THE PROPAGATION OF FEW-CYCLE … PHYSICAL REVIEW A 102, 033522 (2020)

about zb are not so because of the nonlinear spectral phases
introduced by Gouy’s phase and wave-front mismatch dis-
persions, which make the pulses broaden and distort. With
the same input conditions as in Fig. 5(a) except that g0 =
−2, the number of oscillations of the UFV (black curve) is
seen in Fig. 8(a) to be enormously increased in the focus-
ing system while it is directed towards the focus compared
to the source single-cycle pulse (dash-dotted blue line), as
imposed by the lower bound (red curve). Removing artifi-
cially Gouy’s phase and wave-front mismatch dispersions, the
UFV would focus about zb = 0.577zR(ω0) into a compressed
state (dashed gray curve) with the number of oscillations
below

√|l| (dashed horizontal line). The pulse at the focus
in Fig. 8(b) is significantly broadened compared to A(t ), as
imposed by the lower bound; the pulse shape at zb in Fig. 8(c)
is even more broadened and distorted as a result of disper-
sion. The spectral phases and densities of these two pulses
are depicted in Figs. 7(c) and 7(d) to evidence that with
similar bandwidths the latter is substantially longer than the
former because of the nonuniform spectral phases. Figure 8(d)
helps to visualize Gouy’s phase dispersion, i.e., the different
values of Gouy’s phase for different spectral components,
which is the main origin of the distortion for high topological
charges.

To conclude, it should be clear that reaching the minimum
number of oscillations of the source pulse A(t ), i.e., the blue
dash-dotted line in Fig. 8(a), is not impossible, because the
lower bound actually vanishes at zb, but only very difficult
in practice. It would require measuring the nonuniform spec-
tral phases of the UFV at (rmax, zb) and precompensating for
them prior to the focusing system, namely, and introducing
spectral phases (|l| + 1) tan−1[zb/zR(ω)] opposite to Gouy’s
phase and −ωr2

max/2cR(ω, zb) opposite to the front mis-
match for each particular frequency. This precompensation
is however specific to the particular point (rmax, zb) and the
resulting UFV would be a locally compressed state of OAM
about zb.

VII. CONCLUSION

We have conducted an analytical and numerical study of
the free-space propagation features of general Laguerre-Gauss
ultrafast vortices similar to those generated in experiments
from femtosecond laser sources, whose Rayleigh distance is
generally spectrally varying, as characterized by the g0 factor.
The first conclusion to keep in mind is that the simple view
of an approximately invariable pulse envelope modulated in
space by a diffracting Laguerre-Gauss beam, which is widely
taken for granted but is only acceptable for few-cycle Gaus-
sian beams with any reasonable g0 factor [40,44], is far from
describing the actual propagation characteristics of ultrafast
vortices. Ultrafast vortices experience similar small frequency
shifts at their bright ring as ultrafast Gaussian beams of the
same value of g0 at their center, but additionally they ex-
perience nontrivial changes in the pulse shape that depend
on |l| and g0 during propagation, these changes being more
pronounced as |l| and |g0| are higher and as the ultrafast vortex
is shorter.

Instead of studying in detail the characteristics of particular
models of ultrafast vortices, we have extracted general laws

underlying the behavior of all of them that explain the above
phenomena. We have found an upper bound to the bandwidth
relative to the carrier frequency and a lower bound to the
duration relative to the carrier period, i.e., to the number of
oscillations, of the pulse at the most energetic ring, bounds
that are satisfied by all synthesizable ultrafast vortices in ex-
periments and that generalize the bounds recently described
for isodiffracting ultrafast vortices [30]. The lower bound on
the number of oscillations, as given by the right-hand side of
the inequality (24), remains proportional to the lower bound√|l| for isodiffracting ultrafast vortices, with axial modula-
tions whose locations depend on g0 and whose maximum and
minimum average value is

√|l| for |g0| � 1 or the higher
average value

√|l|(1 + |g0|) for |g0| > 1.
The existence of this lower bound explains the increase

of the duration with increasing |l| of the synthesized ultra-
fast vortex from the duration expected with the available
bandwidth, this broadening being similar to that already de-
scribed for isodiffracting ultrafast vortices [31], and the axial
modulation of the lower bound explains the changes in the
duration of the vortex upon propagation. With current fem-
tosecond laser sources emitting pulses of duration between
one and two cycles, these effects are very pronounced with
topological charges of several tens and still clearly observable
below ten.

The lower bound
√|l| for isodiffracting ultrafast vortices

can be violated locally in what we have called locally com-
pressed states of orbital angular momentum about the axial
minima of the lower bound, but these states can be imple-
mented in practice only with sources with 0 < g0 � 1 at the
far field or with sources with −1 � g0 < 0 at the focal plane.
The optimum condition to create a compressed state of or-
bital angular momentum in the focal plane is a source with
g0 = −1 because the minimum lower bound vanishes at this
plane. The term “locally” stresses here that these states can
only survive a small fraction of the Rayleigh distance because
of Gouy’s phase and wave-front mismatch dispersions with
g0 �= 0 that strongly broaden and distort the pulse immediately
off-focus.

We have focused our interest on the effects of orbital an-
gular momentum on pulse shape at the radius where the pulse
energy is maximum because of its relevance in experiments
and applications. Similar effects are expected at the radius of
maximum pulse peak intensity because it is usually close to
or coincides with the former, as described in [33]. Also, in the
vicinity of the vortex center, a pronounced blueshift increasing
with topological charge is expected, as described in [34]. A
detailed description of these other coupling effects deserves a
separate study.

Recent research has revealed the dependence on the g0

factor, characterizing the variation with frequency of the beam
parameters, of a variety of carrier-envelope-phase sensitive
phenomena of interaction of few-cycle pulses with matter,
such as electron acceleration with radially polarized pulses,
high-harmonic and attosecond pulse generation, and electron
photoemission from few-cycle pulses without orbital angular
momentum [47–49]. Given the nontrivial dependence of the
propagation features of ultrafast vortices with the topologi-
cal charge l and the g0 factor, this work stresses further the
importance of measuring the g0 factor of the femtosecond
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laser source in use for an adequate design and interpretation
of experiments involving few-cycle pulses with orbital an-
gular momentum and for improvement and control of their
applications.
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