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Nonlinear phase estimation enhanced by an actively correlated Mach-Zehnder interferometer
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A nonlinear phase shift is introduced to a Mach-Zehnder interferometer (MZI), and we present a scheme for
enhancing the phase sensitivity. In our scheme, one input port of a standard MZI is injected with a coherent state
and the other input port is injected with one mode of a two-mode squeezed-vacuum state. The final interference
output of the MZI is detected with the method of active correlation output readout. Based on the optimal splitting
ratio of beam splitters, the phase sensitivity can beat the standard quantum limit and approach the quantum
Cramér-Rao bound. The effects of photon loss on phase sensitivity are discussed. Our scheme can also provide
some estimates for units of χ (3), due to the relation between the nonlinear phase shift and the susceptibility χ (3)

of the Kerr medium.
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I. INTRODUCTION

As fundamental devices, interferometers play a very im-
portant role in the field of precision measurement [1–5]. To
date, a number of interferometer configurations have been
proposed for precision measurement. The most widely studied
configuration is the Mach-Zehnder interferometer (MZI). One
of the most important performances of an interferometer is
the sensitivity of the measurement. However, the sensitivity
of interferometer measurements is limited by the shot-noise
limit, or the standard quantum limit (SQL) with respect to
classic resources. Therefore, researchers are generally con-
cerned with how to improve the sensitivity of interferometers
as much as possible.

Considering the vacuum fluctuation entering from the
unused input port, Caves [6] proposed the squeezed-state
technique, which is used to overcome the SQL. Soon after,
various quantum resources [7–9] were used to improve the
measurement precision and offer the possibility of reaching
the Heisenberg limit. Yurke et al. [10] theoretically introduced
the SU(1,1) interferometer using a nonlinear beam splitter
(NBS) in place of a linear beam splitter (BS) for wave split-
ting and recombination, where the NBS was provided by the
optical parameter amplifier process or the four-wave mixing
process. Due to the quantum destructive interference in the
SU(1,1) interferometer, the noise accompanied by the ampli-
fication of the signal can revert to the level of input. Benefiting
from that, the signal-to-noise ratio improves. Because it can be
used to improve measurement accuracy, this type of interfer-
ometers has received extensive attention both experimentally
[11–20] and theoretically [21–31]. However, there exists the
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disadvantage that the number of phase-sensing photons is
too small, which imposes constraints on the enhancement
measurement. More recently, the pumped-up SU(1,1) inter-
ferometer [32] was proposed to mitigate the situation, which
may be implemented in spinor Bose-Einstein condensates or
hybrid atom-light systems. The seeded SU(1,1) interferometer
with a coherent state boost is practical to implement exper-
imentally [33]. Seed light injection can indeed increase the
number of photons in the interferometer. However, due to the
limitation of the four-wave mixing process, the number of
photons increased is limited because of the additional noise
[34–36]. This uncorrelated noise grows as the intensity of the
seed light increases, which imposes constraints on the phase-
sensing light power. Due to the progress made in theory and
experiment on the SU(1,1) interferometers, Caves reframed
the SU(1,1) interferometry and brought a wide variety of
SU(1,1)-based measurement techniques together [37].

Both the employment of exotic quantum states and the
improvement on hardware structures can enhance the phase
sensitivity of an interferometer. Also, nonlinear transforma-
tion can provide better sensitivity than linear transformation
for the phase-encoding process. The nonlinear transformation
of phase shift Û (φ) = eiφ(â†â)k

(k � 2) can be implemented
by propagating in nonlinear crystals. For example, the Kerr
effect provides the case Û (φ) = eiφ(â†â)2

. Beltrán and Luis
proposed that encoding the signal via nonlinear transforma-
tion can improve the precision and robustness of the detection
scheme [38]. Boixo et al. showed that it is possible to achieve
measurement precision that scales better than N−1 by us-
ing the dynamics generated by nonlinear Hamiltonians [39].
Napolitano et al. experimentally realized a system designed to
achieve metrological sensitivity beyond N−1, using nonlinear
interactions among particles [40]. Because this new per-
spective would greatly improve the measurement precision,
recently, nonlinear phase estimation has drawn considerable
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FIG. 1. In the dashed box, a standard MZI is input with a
coherent state in one input port and one mode of a two-mode
squeezed-vacuum state generated by NBS1 in the other input port
and is detected with active correlation readout through NBS2. A
Kerr-type medium is embedded into one path of the MZI to use as a

phase shifter, and the phase transform is Û (φ) = eiφl n̂d1
+iφnn̂2

d1 , where
φl and φn represent the linear and nonlinear phase shift, respectively.
âi, b̂i, ĉi, and d̂i (i = 0, 1, 2, 3) denote light beams in the different
processes. M, mirrors; BS, linear beam splitters; NBS, nonlinear
beam splitters; BHD, balanced homodyne detection.

interest. Joo et al. investigated the phase enhancement of
quantum states subject to nonlinear phase shifts [41]. Berrada
studied the phase estimation of entangled SU(1,1) coherent
states resulting from a generalized nonlinearity of the phase
shifts [42]. Cheng analyzed the quantum uncertainty bounds
for simultaneously detecting linear and nonlinear phase shifts
[43]. Zhang et al. investigated second-order nonlinear phase
estimation using a coherent state and parity measurement [44].

In this paper, we also introduce a nonlinear phase shift in
an MZI and propose a scheme to improve the sensitivity based
on active correlation output readout. The phase sensitivity is
studied theoretically and it can beat the SQL and approach the
quantum Cramér-Rao bound (QCRB). Our scheme can also
be thought of as inserting an MZI into one of the arms of
the SU(1,1) interferometer [45]. Compared to a conventional
SU(1,1) interferometer, the intrinsic problem of a small num-
ber of phase-sensing photons is solved.

Our paper is organized as follows. In Sec. II, we describe
the input-output relation of the MZI with a coherent state in
one input port and one mode of a two-mode squeezed-vacuum
state in the other input port and with active correlation output
readout. In Sec. III, the phase sensitivity is studied with the
method of homodyne detection and the results obtained are
compared with the QCRB. The optimal splitting ratio of beam
splitters for nonlinear phase estimation is given. In Sec. IV,
the phase sensitivity in the presence of loss is presented and
discussed. Finally, we conclude with a summary of our results.

II. MODEL

As shown in Fig. 1, the MZI is in the dashed box, where
one input port is injected with a strong field, and another input
port is sent with one mode of a two-mode entanglement state
generated by NBS1. A Kerr-type medium is embedded into

one path of the MZI to use as a phase shifter and introduce the
nonlinear phase shift. One of the output fields of the MZI and
the other mode of the two-mode squeezed state are combined
to realize active correlation output readout.

The four modes in the scheme are described by the anni-
hilation operators âi, b̂i, ĉi, and d̂i (i = 0, 1, 2, 3). The field
d̂1 passing through the phase shifter will experience both
linear and nonlinear phase shifts. The corresponding phase
transformation is written as

Û (φl , φn) = exp
(
iφl n̂d1 + iφnn̂2

d1

)
, (1)

where φl and φn represent the linear and nonlinear phase shift,
respectively. n̂d1 denotes the photon number operator.

In the Heisenberg picture, after the phase shift the field d̂1

is transformed as

d̂2 = exp
[
iφl + iφn

(
2n̂d1 + 1

)]
d̂1. (2)

The two-port input-output relation of the MZI is given by

b̂2 = M1b̂1 + M0ĉ0, ĉ2 = M2ĉ0 + M0b̂1, (3)

where

M0 =
√

T R[eiφl +iφn (2n̂d1 +1) − 1],

M1 = R + Teiφl +iφn (2n̂d1 +1),

M2 = Reiφl +iφn (2n̂d1 +1) + T . (4)

R and T are the reflectivity and transmissivity of the two BSs,
respectively.

Considering one mode of a two-mode entangled state input
to the MZI, the scheme is transformed into a three-port input-
output interferometer and their relation is described by

â3 = â0A + b̂†
0B + ĉ†

0C, b̂3 = Dâ†
0 + E b̂0 + F ĉ0, (5)

ĉ2 = M2ĉ0 + Hb̂0 + Iâ†
0, (6)

where

A = G2G1 + g2g1ei(θ2−θ1 )M∗
1, B= G2g1eiθ1 + G1g2eiθ2M∗

1,

C = g2eiθ2M∗
0, H =G1M0,

D = G1g2eiθ2 + G2g1eiθ1M1, E = g2g1ei(θ2 − θ1 ) + G2G1M1,

F = G2M0, I =g1eiθ1M0. (7)

Here, G1 and G2 are the gain factors of NBS1 and NBS2,
respectively, for wave splitting and recombination with G2

i −
g2

i = 1 (i = 1, 2). θ1 and θ2 describe the phase shift of the NBS
for wave splitting and recombination, respectively.

III. ESTIMATION OF NONLINEAR PHASE SHIFT

The Kerr effect in media is usually interpreted as modula-
tion of the refractive index due to the application of a strong
drive field. For many materials, the refractive index in the
presence of a drive field can be described by [46]

n = n0 + n2〈Î〉, (8)

where n0 is the refractive index, n2 is a nonlinear coefficient
which is proportional to the third-order susceptibility χ (3) and
can be written as n2 = 3χ (3)/4n2

0ε0c, and 〈Î〉 is the intensity
of the drive field. In our model, the expression of nonlinear

033520-2



NONLINEAR PHASE ESTIMATION ENHANCED BY AN … PHYSICAL REVIEW A 102, 033520 (2020)

phase shift is φn = 3χ (3)〈Îd1〉kd1L/4n2
0ε0c with L Kerr media

width.
Here, we mainly study the nonlinear phase shift φn caused

by nonlinear susceptibility χ (3) changes, since the linear phase
shift φl is constant. The conceptual understanding of nonlinear
optics is often based on the use of the nonlinear susceptibility
χ (3) [47]. Our scheme can give the magnitude of nonlinear
susceptibility through the measurement of nonlinear phase
shift. The accuracy of nonlinear susceptibility χ (3) of the Kerr
medium is given by phase sensitivity �φn measurement, that
is,

�χ (3) = 4n2
0ε0c

3
〈
Îd1

〉
kd1L

�φn. (9)

High sensitivity phase measurement will result in high-
precision nonlinear susceptibility measurement. Next, we give
the sensitivity of the nonlinear phase shift.

A. Homodyne detection

Here, we consider the homodyne detection as our measur-
ing method. The phase sensitivity is described by the relation

�2φ = 〈�2Ô〉
|∂〈Ô〉/∂φ|2

, (10)

where 〈�2Ô〉 is the fluctuation of the observable Ô, and
∂〈Ô〉/∂φ is the slope with respect to the corresponding
phase shift. The detected variable can be phase quadrature or
the photon number. In our scheme, the observable is phase
quadrature Ŷa3 = −i(â3 − â†

3). For convenience, the follow-
ing φ all represent nonlinear phase shifts, and we omit the
subscript n.

The slope of the quadrature Ŷ is given by∣∣∂ 〈
Ŷa3

〉/
∂φ

∣∣ = ∣∣〈g2[â0g1Tei[θ2−θ1−φ(2n̂d1 +1)] + (b̂†
0G1T

+ ĉ†
0

√
T R)ei[θ2−φ(2n̂d1 +1)]]

(
2n̂d1 + 1

)
+ H.c.

〉∣∣. (11)

For convenience, we analyze the phase sensitivity at φ = 0.
When the two input ports of the SU(1,1) interferometer have
no injection, i.e., â0 and b̂0 are in vacuum states, and the pump
light is in a coherent state |α〉 with α = |α|eiθα where α is a
complex number and θα is the initial phase, then the slope of
the quadrature Ŷ is reduced to∣∣∂ 〈

Ŷa3

〉/
∂φ

∣∣ = 2g2

√
T RN1/2

α

(
1 + 2RNα + 4T g2

1

)
× | cos(θ2 − θα )|, (12)

where Nα = |α|2. The increase in the slope of the output signal
is due to the amplification of the second nonlinear process
and the increase in phase-sensitive photons due to the strong
pumping field when | cos(θ2 − θα )| = 1. The corresponding
fluctuation is given by〈

�2Ŷa3

〉 = G2
2G2

1 + g2
1g2

2 + G2
2g2

1 + G2
1g2

2

+ 4G2G1g1g2 cos(θ2 − θ1). (13)

From Eqs. (12) and (13), R and T are only related to the
slope and are independent of noise. The optimal R/T is given

by

R

T
= 1/(2Nα + 1)

[
3Nα − 6g2

1

+
√

9N2
α − 28Nαg2

1 + 2Nα + 36g4
1 + 4g2

1 + 1
]
, (14)

which is independent of g2. When the intensity of the input
coherent state is strong enough, we obtain the optimal

(
R

T

)
optimal

≈ 3, (15)

which is because the nonlinear term 4R
√

T RN3/2
α in Eq. (12)

dominates in phase sensitivity. Different forms of nonlin-
ear phase shifts produce different R/T optimal ratios. If the
nonlinear phase shift is not considered, Eq. (12) can be rewrit-
ten as |∂〈Ŷa3〉/∂φ| = 2g2

√
T RN1/2

α | cos(θ2 − θα )|. Under this
condition, the optimum value of R/T is 1, which is the com-
monly used ratio in the MZI for linear phase-shift estimation.

Our scheme can also be thought of as inserting an MZI into
one of the arms of the SU(1,1) interferometer. To illustrate the
quantum correlation enhancement effects, we first consider
a balanced case G1 = G2, θα = 0, θ1 = 0, and θ2 = π . The
phase sensitivity of our scheme is

�φbalance = 1

g(TLin + TNonlin + TNonlin&Corr )
, (16)

where TLin = 2
√

T RN1/2
α , TNonlin = 4R

√
T RN3/2

α , and
TNonlin&Corr = 4T

√
T RN1/2

α Ng. Ng = 2g2 is the spontaneous
photon number emitted from the NBS, which is related to
parametric strength. Additionally, the second NBS further
enhances the phase sensitivity by introducing an overall
prefactor g to the slope.

If we only consider the MZI in the dashed box, Eq. (16) is
simplified to �φMZI = 1/(TLin + TNonlin). Furthermore, when
the nonlinear phase shift is replaced by the linear phase shift,
�φMZI is reduced to 1/TLin. Compared to the usual MZI of
linear phase shift, TNonlin&Corre results from the combined ac-
tion of nonlinear phase shift and quantum correlation created
by the first NBS.

Next, we compare the optimal phase sensitivity of our
scheme with the SQL. The number of phase-sensing photons
of the scheme is

NPS = Ng1 + Nα, (17)

where Ng1 = 2g2
1. For a conventional SU(1,1) interferometer

with vacuum state input, NPS is Ng1. The MZI can tolerate
a large number of photons Nα , and the output light does not
affect the quantum correlation when the small phase shift
around φ = 0 is considered. Therefore, the intrinsic problem
of a small number of phase-sensing photons is solved. The
SQL for the nonlinear phase shift is 1/N3/2

PS [39]. The phase
sensitivity as a function of g2/g1 is shown in Fig. 2 at φ = 0.
When g1 and Nα are given, the value of g2/g1 is 2 or greater,
and the phase sensitivity reaches a stable optimal value. The
phase sensitivity obtained by the homodyne detection can beat
the SQL.
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FIG. 2. The phase sensitivity as a function of g2/g1 with different
R/T where |α| = 10 and g1 = 2.

B. Quantum Cramér-Rao bound

The quantum Fisher information (QFI) is the intrinsic in-
formation in the quantum state and is not related to the actual
measurement procedure. The QFI is at least as great as the
classic Fisher information for the optimal observable, which
gives an upper limit to the precision of quantum parameter
estimation. The QCRB according to the QFI is given by

�φF = 1√
mF

, (18)

where m is the number of independent repeats of the experi-
ment.

The QFI F is defined as F = Tr[ρ(φ)L2
φ] [48,49], where

the Hermitian operator Lφ , called the symmetric logarithmic
derivative, is defined as the solution of the equation ∂φρ(φ) =
[ρ(φ)Lφ + Lφρ(φ)]/2. In terms of the complete basis {|k〉}
such that ρ(φ) = ∑

k pk|k〉〈k| with pk � 0 and
∑

k pk = 1,
the QFI can be written as F = ∑

k,k′
2

pk+pk′ |〈k|∂φρ(φ)|k′〉|2
[48–50]. Under the lossless condition, for a pure state, the
QFI is reduced to F = 4(〈� ′

φ|� ′
φ〉 − |〈� ′

φ|�φ〉|2), where the
state after the phase shift is represented as |�φ〉 and |� ′

φ〉 =
∂|�φ〉/∂φ.

Under the condition of g1 = g and θ1 = 0, and considering
the nonlinear phase shift d̂2 = eiφ(2n̂d1 +1)d̂1, compared to the
linear phase shift, the QFI F is given by

F = 4
[〈

n̂4
d1

〉 − 〈
n̂2

d1

〉2] = N3
αs1 + N2

α s2 + Nαs3 + s4, (19)

where

s1 = 16R4 + 16R3T (Ng + 1),

s2 = 24R4 + R3T (88Ng + 48) + R2T 2
(
52N2

g + 88Ng + 24
)
,

s3 = 4R4 + R3T (52Ng + 12) + R2T 2
(
96N2

g + 104Ng + 12
)

+ RT 3
(
40N3

g + 96N2
g + 52Ng + 4

)
,

s4 = T 4
(
5N4

g + 16N3
g + 13N2

g + 2Ng
) + T 3R

(
16N3

g

+ 26N2
g + 6Ng

) + T 2R2
(
13N2

g + 6Ng
) + 2T R3Ng. (20)

BS1 BS2

(a)

NBS1 NBS2

MZI
(b)

FIG. 3. A lossy interferometer model; the losses in the interfer-
ometer are modeled by adding fictitious beam splitters. (a) Internal
losses. (b) External losses.

If only considering the linear phase shift, the above QFI F can
be reduced to

F = 4
〈
�2n̂d1

〉 = Nα[4R2 + 4RT (Ng + 1)]

+ Ng[T 2Ng + 2T R] + 2T 2Ng. (21)

Under the condition of Nα = 0 and T = R = 1/2, F is given
by F = 1

4 [Ng(Ng + 2) + 2Ng]. Compared to the form Ng(Ng +
2) in an SU(1,1) interferometer [28], the prefactor 1/4 results
from the introduction of a BS in one arm of the SU(1,1)
interferometer, and the extra term 2Ng is due to the vacuum
fluctuation despite Nα = 0.

Next, we compare the QCRB with the SQL, and the phase
sensitivity obtained by the homodyne detection. As shown in
Fig. 2, the optimal phase sensitivity obtained by homodyne
detection can beat the SQL and can approach the QCRB.

IV. LOSSES

In the presence of realistic imperfections, the ultimate pre-
cision limit in noisy quantum-enhanced metrology was also
studied. In this section, we investigate the effects of losses on
phase sensitivities.

A. Internal and external losses of MZI

Losses can be modeled by adding fictitious beam splitters,
as shown in Fig. 3. Considering both arms of the MZI have
different internal transmission rates ηc and ηd , and outside
transmission rates ηa and ηb, the mode transforms of the fields
are given by

ĉ′
1 = √

ηcĉ1 +
√

1 − ηcv̂c, d̂ ′
2 = √

ηd d̂2 +
√

1 − ηd v̂d ,

(22)

â′
1 = √

ηaâ1 +
√

1 − ηav̂a, b̂′
2 = √

ηbb̂2 +
√

1 − ηbv̂b,

(23)
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where v̂a, v̂b, v̂c, and v̂d represent the vacuum. Considering
the losses, the input-output relation of â3 is

â3l = â0Al + b̂†
0Bl + ĉ†

0Cl + v̂aV1 + v̂
†
bV2 + v̂†

cV3 + v̂
†
dV4,

(24)

with

Al = √
ηaG2G1 + √

ηbg2g1ei(θ2−θ1 )(
√

ηd Te−iφ(2n̂d1 +1) + √
ηcR),

Bl = √
ηaG2g1eiθ1 + √

ηbG1g2eiθ2 (
√

ηd Te−iφ(2n̂d1 +1) + √
ηcR),

Cl = √
ηbg2eiθ2

√
T R(

√
ηd e−iφ(2n̂d1 +1) − √

ηc ),

V1 = G2

√
1 − ηa, V2 = g2eiθ2

√
1 − ηb,

V3 = −g2eiθ2
√

R
√

ηb(1 − ηc ),

V4 = g2eiθ2
√

T
√

ηb(1 − ηd ), (25)

where subscript l indicates the loss. Similar to the lossless
case, we analyze the phase sensitivity at φ = 0. At this phase
point, the slope is

∣∣∂ 〈
Ŷa3l

〉/
∂φ

∣∣ = 2g2

√
ηbηd T RN1/2

α

× (1 + 2RNα + 2T Ng)| cos(θ2 − θα )|, (26)

and the fluctuation of the quadrature Ŷa3l
is

〈
�2Ŷa3l

〉 = ηaG2
2G2

1 + ηbg2
2g2

1(
√

ηd T + √
ηcR)2

+ ηaG2
2g2

1 + ηbg2
2G2

1(
√

ηd T + √
ηcR)2

+ ηbg2
2T R(

√
ηd − √

ηc)2

+ [
(1 − ηa)G2

2

] + [
(1 − ηb)g2

2

]
+ [

ηb(1 − ηc)g2
2R

] + [
ηb(1 − ηd )g2

2T
]

+ 4
√

ηaηbG2G1g1g2(
√

ηd T

+ √
ηcR) cos(θ2 − θ1). (27)

From the above two equations, the condition for obtaining
the optimal phase sensitivity is θα = 0, θ1 = 0, and θ2 = π .
We can study the effects of internal losses by setting
ηa = ηb = 1, or study the effects of the external losses by
setting ηc = ηd = 1.

For convenience, we first consider g2 = 2g1. The phase
sensitivity as a function of photon losses in both arms ηc and
ηd when ηa = ηb = 1 is shown in Fig. 4(a), where the dashed
line denotes 1/N3/2

PS . The phase sensitivities in the upper right
corner and within the dashed line area can overcome 1/N3/2

PS .
Since the strong pump field injection and the unbalanced BS
make the intensity of the upper arm of the MZI larger than that
of the lower arm, it is more tolerant with loss of light field ηd .
It is shown that the interferometer can tolerate approximately
70% of the photon losses when ηc = 1. Similarly, considering
external photon losses, the phase sensitivity as a function of
photon losses in both arms ηa and ηb when ηc = ηd = 1 is
shown in Fig. 4(b). It is demonstrated that the phase sensitivity
can still overcome 1/N3/2

PS with 40% of the photon losses.
Large photon loss affects quantum correlation, which reduces
the sensitivity of measurement.

(a)

0 0.2 0.4 0.6 0.8 1

ηc

0

0.2

0.4

0.6

0.8

1

η d

(b)

0 0.2 0.4 0.6 0.8 1

ηa

0

0.2

0.4

0.6

0.8

1

η b

FIG. 4. Phase sensitivity vs photon loss coefficient η, where
|α| = 10, g1 = 2, and R/T = 3. (a) Internal losses. (b) External
losses. The dashed lines denote 1/N3/2

PS . The phase sensitivities in
the upper right corner and within the dashed line area can overcome
1/N3/2

PS .

B. Detection losses

Finally, we study the detection loss, and the field undergo-
ing the detection losses is â′

3 = √
ηâ3 + √

1 − ηv̂, where v̂ is
the vacuum. The corresponding slope and variance are

|∂〈Ŷ ′〉/∂φn| = 2g2

√
T RηN1/2

α

(
1 + 2RNα + 4T g2

1

)
, (28)

and

〈�2Ŷ ′〉 = η[(G2G1 − g2g1)2 + (G2g1 − G1g2)2] + 1 − η,

(29)

respectively. For a balanced configuration (G1 = G2, θα = 0,
θ1 = 0, and θ2 = π ), this type of loss only introduces a prefac-
tor 1/

√
η to the sensitivity, i.e., �φ′ = (�φ)balance/

√
η, which

is the same as the result by intensity detection [23].

V. CONCLUSION

In conclusion, we have proposed a scheme to enhance the
nonlinear phase estimation of an MZI with a coherent state
in one input port and one mode of a two-mode squeezed-
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vacuum state in the other input port and with active correlation
readout. The phase sensitivity is improved compared to the
traditional MZI for the same input phase sensing field because
of active correlation output readout. Due to introduction of
nonlinear phase estimation, the optimal R/T ratio is about
3 instead of 1 usually used under the condition of strong
coherent-state input. The phase sensitivity can beat the SQL
and approach the QCRB using the method of homodyne de-
tection under the condition of the optimal R/T ratio. The
internal and external losses of the optical field degraded the
measurement precision, and we have given their critical values
where the phase sensitivity is below the SQL in the presence
of photon losses. The detection loss only introduces a pref-
actor 1/

√
η to the sensitivity for the balanced configuration.

Due to the relation between the nonlinear phase shift and the
susceptibility χ (3) of the Kerr medium, our scheme can also
provide the estimation of nonlinear susceptibility χ (3).
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