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Spin-selective scattering modes in a disordered anisotropic optical medium
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The geometric and dynamic phases have competing effects as far as the scattering of light from an inho-
mogeneous anisotropic optical medium is concerned. If fine-tuned appropriately, these effects can completely
cancel each other for a chosen spin component while having an additive effect on the orthogonal component.
Here, we show a manifestation of extraordinary spin-selective modes in the Fourier spectrum of a Gaussian
beam transmitted through an anisotropic disordered medium. We realize the concept by using a twisted nematic
liquid-crystal-based spatial light modulator with random gray-level distributions for an incident Gaussian beam.

DOI: 10.1103/PhysRevA.102.033518

I. INTRODUCTION

Spin-orbit coupling refers to the relativistic interaction of
a particle’s spin degree of freedom with its orbital degree of
freedom. The coupling is associated with the breaking of the
spatial inversion symmetry of the system. Spin-orbit-coupled
systems have been observed in diverse fields of physics, and
at different scales, spanning from atomic, condensed-matter
systems to optical systems. In optics, coupling or interconver-
sion of the spin angular momentum of a light beam (related to
the polarization of light) with its orbital angular momentum
(related to a helical or twisted wavefront) goes by the name of
spin-orbit interaction (SOI) of light and is a topic of recent
interest [1–13]. The conservation of the total angular mo-
mentum of a light beam leads to the generation of geometric
phase and its spatial gradient, which is related to all the opti-
cal SOI phenomena in cyclic as well as noncyclic processes
[1,1–16]. Some of the very interesting effects arising from
such ubiquitous interactions are the spin Hall effect (SHE)
of light from a spatially tailored anisotropic medium, the
optical Rashba effect, the spin-dependent scattering of light,
etc. [1–8,10,11]. Moreover, the intriguing phenomenon has a
wide range applications as it can offer a new direction towards
the development of spin-controlled photonic devices ranging
from the spin-controlled directionality to the spin-controlled
orbital-angular-momentum generation [1–3,17–19].

Most of the cases discussed above are of ordered systems.
In this regard, it was recently shown that, for a completely
disordered inhomogeneous anisotropic optical system, one
could get spin-orbit-coupled random scattering modes over
the entire momentum domain, which can be characterized as
the random optical Rashba effect [13]. The origin of such
an effect can be interpreted as the disorder in the spatial
distribution of geometric phase (and hence geometric phase
gradient) or the disordered strength of spin-orbit coupling
across the beam profile. The interplay of disorder and SOI in
a medium aspires to build synthetic electromagnetic materials
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that are capable of hosting the topological states required for
topological photonics.

Here, we report a remarkable effect that can originate from
a perfect synchrony associated with the spatial distribution
of anisotropy of a medium and SOI of light. The disordered
anisotropic systems can demonstrate an input-spin-selective
or spin asymmetric random scattering modes, i.e., the ran-
domly scattered modes are observed for one spin state only.
In contrast, the other spin state follows an entirely different
trajectory with almost no effect of the system’s disorder. This
unprecedented control of the spin-orbit coupling of light in the
disordered medium can significantly impact the exploration
of optical mediums for “topological photonics.” The findings
can also be implicated in various other domains such as op-
tical, quantum, and condensed-matter systems to have vivid
applications.

This paper is organized in the following way: in Sec. II, the
theory behind the spin-orbit interaction of light in a spatially
disordered inhomogeneous anisotropic medium is discussed.
The effect of randomness strength in spatial phase distribution
and incident Gaussian beam width on the transition of the
spin-orbit effect from optical spin Hall to random optical
Rashba effect is studied. Subsequently, we propose a sys-
tem that can be used to obtain the spin-dependent random
scattering modes over the entire momentum domain in a spa-
tially disordered inhomogeneous anisotropic medium with a
uniformly randomized spatial phase gradient. In Sec. III, we
experimentally show the spin-dependent random scattering
modes by using a spatial light modulator that can simultane-
ously tune the dynamical and geometrical phase distribution.
In Sec. IV, we summarize our results with their possible future
implications.

II. THEORY

When a circularly polarized Gaussian beam [G(x, y) =
e−(x2+y2 )/w2

o , wo is the beam width] propagates through a
spatially inhomogeneous anisotropic medium, it acquires a
phase distribution φ(x, y) that creates a spatial phase gradi-
ent transverse to the beam propagation direction [1–7,13,17].
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The anisotropic medium also introduces changes in the po-
larization state of the incident light depending on the spatial
distribution of anisotropy elements. Here, we only consider
the anisotropic elements to be a phase anisotropic half-wave
plate (for simplicity) oriented at random angles throughout
the space. The anisotropic medium composed of half-wave
plates projects the incident circularly polarized state to the
orthogonal circularly polarized state. It also imparts a spa-
tially varying geometric phase distribution dependent on the
distribution of orientation angles of the anisotropy axis of the
half-wave plate. Assuming no depolarization and no change
in the electric-field amplitude in the interaction, the electric
field (Et) transmitted from the inhomogeneous medium can
be written as

Et = eiφ(x,y)G(x, y)|+/−〉. (1)

Here, |+/−〉 indicates the transmitted right/left circular
polarized (RCP/LCP) state of light that is orthogonal to the in-
cident circularly polarized state. The phase φ [= ± φg(x, y) +
φd (x, y)] is the spatially varying total phase [sum of the
dynamical (φd ) and the geometrical phases ±φg, +(−) for
RCP (LCP) state of light)] acquired by the light beam. The
breaking of spatial inversion symmetry of the system by the
inhomogeneous distribution of the total phase leads to the SOI
of light [1–7,13,17]. The strength of such an effect depends on
the phase inhomogeneity acquired by the light beam.

In case the total phase is entirely geometrical (φ = ±φg)
and varies randomly in space [13], a complex transverse
momentum (k⊥, kx, and ky) distribution of the field can be
observed with the k⊥ values distributed throughout the mo-
mentum space as

It
(
kx, ky

) =
∣∣∣∣∣∣
+∞∫∫
−∞

e−i(kxx+kyy)Et(x, y)dxdy

∣∣∣∣∣∣
2

. (2)

The above equation corresponds to the intensity of
the spin symmetric random scattering modes [i.e.,
ILCP
t (k) = IRCP

t (−k)] in the momentum space due to
the opposite sign of the geometrical phase φg(x, y)
acquired by the LCP and RCP polarizations [1,2,4–
7,13]. However, the dynamical phase does not follow such
symmetries for the circular polarization states transmitted
through linear retarders [19]. Thus, a spatially varying
geometrical and dynamical phase would give rise to spin
asymmetric random scattering modes [i.e., ILCP

t (k) �=
IRCP
t (−k)] in the momentum space. The spin asymmetricity

Isa of the random scattering modes in such system can be
quantified as

Isa =
〈 ∣∣ILCP

t (kx, ky) − IRCP
t (−kx,−ky )

∣∣
ILCP
t (kx, ky) + IRCP

t (−kx,−ky )

〉
, (3)

where 〈. . .〉 denotes a sum over all the k⊥ values.
The SOIs from such disordered inhomogeneous

anisotropic medium can also be understood in terms of
the spatial autocorrelation function A(x, y) of the electric field
transmitted from the disordered medium. The autocorrelation
A(x, y) of the transmitted field can be related to the
momentum distribution of the field intensity (power spectrum)

through the Wiener-Khinchin Theorem as

It
(
kx, ky

) =
+∞∫∫
−∞

e−i(kxx+kyy)A(x, y)dxdy. (4)

It implies that a complex-valued autocorrelation function that
changes randomly in space has all the spatial frequency com-
ponents with varying amplitude, leading to the generation of
random scattering modes in the Fourier plane.

A RCP Gaussian beam of beam width wo = 80d (d is the
size of the individual anisotropic element or the minimum
length having a constant phase) is passed through the spatially
disordered anisotropic medium. It is worth mentioning that
the findings are independent of the exact value of d as long
as the transmitted field can be described by Eq. (1). The value
of wo/d gives a measure of the effective number of random
elements encountered by the beam while propagation through
the anisotropic medium, which determines the momentum
space intensity distribution. In Fig. 1(a), we have shown a
one-dimensional spatial distribution of geometric phase φg

with randomized phase gradients, which is obtained by the
RCP Gaussian beam (wo = 80d) when it is passed through
the anisotropic medium. The geometric phase φg(x) is chosen
to be a delta correlated uniformly distributed random function
[ f ε (φg) = 1/2πε for −επ � φg(x) < επ otherwise f ε (φg) =
0, 0 � ε � 1 is the amplitude of randomness] of x coordinate
with ε = 1, see Figs. 1(a) and 1(b). Hence, the spin-orbit-
coupled modes are seen along the kx axis in the momentum
space. Completely spin symmetric [ILCP

t (kx ) = IRCP
t (−kx )),

Isa = 0] random scattering modes in the momentum space are
obtained for the LCP and RCP polarization state, as shown
in Fig. 1(c). The momentum scale in the figure and for all
further discussions are normalized with the wave number of
the incident Gaussian beam. It is to be noted that even an
optimally spaced binary distribution is enough to observe the
phenomenon, as shown in Appendix B.

The scattering field profile from the random anisotropic
system was studied with a varying width (wo) of the input
beam and the amplitude of randomness (ε). The response
was studied for over 100 samples. The cyan-colored region
in Fig. 2 shows the parameters of the system for which the
random modes of sufficiently large amplitude (0.15 times
the maximum intensity or more) are observed in momentum-
space intensity distribution for more than half of the samples.
The curve marks the limits of beam width (wo) and amplitude
of randomness (ε) parameters that lead to a transition from
the usual momentum domain spin Hall effect (green) to spin-
orbit-coupled random modes (cyan) for more than half of the
cases. It is to be noted that the nature of the curve remains
the same for the criterion set to even larger amplitude of the
random modes than the chosen amplitude (�0.15). However,
it shifts towards more randomness in the phase distribution
(larger ε) for the larger chosen amplitude. Nevertheless, it is
clear from the figure that the reduced beam width can be used
to obtain the random modes even for the smaller amplitude of
randomness.

The symmetric nature of spin-orbit-coupled random modes
in the Fourier space is guaranteed if the total phase dis-
tribution has only the geometrical phase contribution. An
additional spatially disordered dynamical phase distribution
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FIG. 1. The spin-symmetric random scattering modes from a uniformly randomized geometric phase distribution. (a) The geometric phase
distribution for RCP polarization state obtained from the anisotropic medium (amplitude of randomness ε = 1) disordered along the x direction.
(b) The two-point autocorrelation of the geometric phase distribution as a of function of the distance between the points Δx/d . (c) The
momentum space intensity distribution for LCP and RCP polarization states along kx , showing the spin-symmetric random scattering modes
[ILCP

t (k) = IRCP
t (−k)] for a Gaussian beam of width wo = 80d [calculated by using Eq. (2) (solid line) and Eq. (4) (dashed line)]. The intensity

of the LCP state is shifted for better visualization.

breaks the spin symmetry of the random scattering modes
and an asymmetric scattering mode (Isa > 0) is observed from
the disordered anisotropic medium. The asymmetric scatter-
ing from the disordered medium can be used to actively
tune the random scattering modes by using an elliptical po-
larization state of light to deferentially excite the LCP and
RCP scattering modes, as shown in Figs. 3(a)–3(d). However,
when the geometrical and dynamical phase acquired from the
disordered system is synchronous (i.e., a perfect zero-order
correlation between the two-phase distribution) and of similar
magnitude [e.g., φd (x) ≈ φg(x) + const.], then the randomly
scattered modes are observed for RCP, while the LCP shows
no effect of the disordered medium, as shown in Fig. 3(a).
This extraordinary spin asymmetric random scattering mode
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FIG. 2. The effect of the beam width of the input Gaussian
beam (wo) and the amplitude of randomness (ε) of the disordered
anisotropic system on the Fourier space intensity distribution is
shown. The curve marks the boundary of the transition from the usual
momentum domain spin Hall effect (green) to spin-orbit-coupled
random scattering modes (cyan) with varying beam width and am-
plitude of randomness.

[Figs. 3(a)–3(c)] arise due to a zero total phase [±φg(x) + φd ]
gradient for LCP polarization state. At the same time, the
RCP gets a phase gradient twice the acquired geometric phase
gradient, as can be noted from the frequency distribution of
the total phase value for RCP and LCP polarization states
[Figs. 3(e), 3(g), 3(i), and 3(k)]. An asynchronous dynamical
and geometrical phase distribution gives rise to the asymmet-
ric random scattered momentum modes for all the elliptical
polarization states of light, as shown in Figs. 3(b) and 3(d).
However, the strength of random modes observed for asyn-
chronous systems depends on the amplitude of randomness of
the phase distribution and the input beam width.

III. EXPERIMENT AND RESULTS

In this section, we experimentally demonstrate the spin-
selective or spin asymmetric random scattering modes in an
optical system. It can be done in a twisted nematic-liquid-
crystal-based transmissive spatial light modulator (SLM,
Holoeye LC 2002). In this particular type of SLM, the
effective retardance value (the dynamical phase) and the ori-
entation angle (i.e., the Panchratanam-Berry geometric phase)
of each equivalent retarder can be simultaneously tuned in
a synchronous manner by varying the voltage applied (pro-
jected gray-level value n on the SLM) across the pixels of
the SLM. The maximum amplitude of randomness that can
be reached in such a system is significantly less, as the phase
retardance of SLM can be varied from π/7 to ≈3π/4 rad and
the effective orientation can be simultaneously tuned from 0
to 2π/5 rad (see Appendix C) [6]. It is worth mentioning that
the SLM also introduces a small depolarization effect (≈0.1)
on the light transmitted from the system that leads to a small
amount of unpolarized light transmitted from the SLM [20].
Despite this, the randomly scattered modes from the SLM can
be observed with a beam of sufficiently small effective beam
width and the remaining (≈90%) of transmitted light carries
the signature of the polarized interaction from the SLM. The
8 × 8 pixel bins (pixel pitch ≈32 μm) were assigned a single
value of the gray level to reduce the effective beam width
[wo/(size of the bin)]. The gray-level values [n = 60 f (εslm ) +
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FIG. 3. The polarization-controlled tuning of momentum-space intensity distribution in synchronous and asynchronous systems.
(a)–(d) The elliptical polarization states ([1, eiδ]T , ellipticity δ/2 is mentioned in legends] were used to actively tune the momentum-space
intensity distribution from the asymmetric random scattering system for an input Gaussian beam of width 80d (the intensities are shifted for
better visualization). The spatially disordered system was taken such that the geometric phase [±φg(x), + (−) for RCP (LCP) polarization
of light] of the transmitted light is uniformly distributed between (a), (b) −π/2 to π/2 and (c), (d) π to π . The momentum-space intensity
distribution for (a), (c) synchronous [φd (x) = φg(x)], and (b), (d) asynchronous [φd (x) is distributed in same manner as φg(x)] systems. The
extraordinary spin-selective modes are observed for the synchronous systems. (e)–(l) The total phase-frequency distributions for LCP and RCP
states are given below the corresponding normalized intensity distributions of the disordered medium.

80, where f (εslm ) is a uniformly random distribution between
−εslm and +εslm, here 0 � εslm � 1] were given on the SLM’s
pixel bins to generate a synchronous disordered anisotropic
medium with a random magnitude of the phase retardance and
a random orientation angle of the equivalent retarder.

A linearly polarized Gaussian beam [wavelength λ ≈
633 nm, wo = 2.25 mm or 9 effective units (wo/d) with re-
spect to the 8 × 8 bin size] was incident on the SLM with
a random phase distribution [random local phase gradient
across each bin, a sample image with εslm = 1 is shown in
Fig. 4(b)], and the transmitted light was analyzed by using
LCP and RCP polarization projections. The projected beam
was focused by using a lens to observe the momentum space
distribution at the focal plane. A small disorder was intro-
duced in the gray-level distribution of the SLM to observe
the spin Hall effect of light [Fig. 4(c)]. An increase in the
amplitude of randomness gives rise to the random scattering
modes in the momentum-space distribution for RCP polariza-
tion, as shown in Fig. 4(d) for εslm = 1. The LCP projection

gives no such random scattering modes for the same distribu-
tion [see inset of Fig. 4(d)]. It shows the extraordinary spin
selectivity and asymmetricity of the scattered random modes
from the SLM. The spin selectivity is observed due to nearly
the same magnitude and synchronous nature of the dynamical
and geometrical phases acquired in the SLM. Moreover, as
expected, the reduced effective beam width gives rise to more
dominant random scattering modes in momentum space [see
Fig. 4(e)].

It is important to note that, even for maximum possible
spatial randomness in the distribution of the gray level of
the SLM, the range of geometric phase distribution is small
because of the limited range of the retardance value and
the orientation angle of the spatially tunable retarders in the
SLM. Hence the need to reduce the effective beam width of
the incident beam. The reduced effective beam width of the
incident beam leads to a smaller number of random scattering
modes observed in momentum space (see Appendix A). How-
ever, the range of the retardance value can be enhanced, and
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FIG. 4. The experimental demonstration of the spin Hall effect of light and the spin-selective random scattering modes using the spatial
light modulator. (a) The experimental setup: a spatially filtered (SF) Gaussian beam (helium-neon) was passed through a polarization-state
generator (PSG) consisting of a polarizer (P1) and a quarter-wave plate (QWP1) to generate linearly polarized light. The linearly polarized
light was incident on a transmissive SLM whose phase distribution was controlled by using a gray-level image [as shown in panel (b)].
The transmitted light was projected on the LCP and RCP polarization states by using a polarization-state analyzer (PSA). The momentum
distribution of LCP and RCP states was measured by using a photodetector (CCD) kept at the focal plane of lens L. (c) The difference between
the intensity distribution for LCP and RCP polarization projection for εslm = 0.1 shows the usual momentum-domain spin Hall effect of light,
for 8 × 8 bins. The momentum-space intensity distribution for the RCP polarization projection showing the spin-selective random scattering
modes for (d) 8 × 8 bins (the inset shows no effect of the disorder on the LCP polarization projection) and (e) 15 × 15 bins, in the SLM.

the depolarizing interactions can be reduced by an appropri-
ately designed liquid-crystal device [21,22]. Additionally, the
incident-beam polarization or spatial profile can be tailored to
modulate such effects [4,23].

IV. CONCLUSION

It is evident from the above discussion and the experiment
that the spin-selective or spin asymmetric random scatter-
ing modes can be observed from a disordered anisotropic

FIG. 5. The momentum-space intensity distribution is shown of
the random scattering modes with a varying width of the input Gaus-
sian beam (the momentum scale is normalized by the wave number
of the incident beam) for (a) ε = 1 and (b) ε = 0.8. The intensities
are shifted for better visualization.

medium with synchronous dynamical and geometrical phase
distributions. The extraordinary spin selectivity of the inter-
play between the SOI effect and disorder will significantly
impact the field of topological photonics. In addition, the
controlled active tuning of the randomly scattered modes us-
ing the polarization of light may have potential applications
in trapping microparticles in a disordered potential [24] and
dynamic speckle illumination microscopy [25], with useful
implications in the localization of ultracold atoms [26] and
super-resolution imaging techniques [27].
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APPENDIX A: THE ROLE OF BEAM WIDTH IN THE
AUTOCORRELATION FUNCTION AND

MOMENTUM-SPACE INTENSITY DISTRIBUTION

The momentum-space intensity distribution for the RCP
input Gaussian beams with various beam width wo is shown in
Fig. 5 for a random geometric phase distribution with ε = 0.8
and ε = 1. The characteristics of the Fourier space intensity
distribution for a system with ε = 1 is independent of the

033518-5



SINGH, DAS, DAS, AND GHOSH PHYSICAL REVIEW A 102, 033518 (2020)

FIG. 6. The autocorrelation of the light transmitted from the in-
homogeneous anisotropic medium corresponding to the momentum
distribution shown in Fig. 5 for (a), (b) ε = 1, and (c), (d) ε = 0.8
and input Gaussian beam of width (a), (c) 5d and (b), (d) 400d .

beam width, i.e., the random scattering modes are observed
for all values of wo. However, two different limits of the
effect are obtained from the same distribution of geometric
phase (ε = 0.8) by varying the beam width of the Gaussian
input beam, as shown in Fig. 5(b). In the case of ε = 0.8,
the smaller beam widths show the spin-symmetric random
scattering modes (dominated by randomly scattered modes,
for wo = 5d and 10d). In contrast, the larger beam width
shows the usual spin Hall effect of light (dominated by a single
Gaussian peak, for wo = 400d) due to the broken inversion
symmetry of the inhomogeneous anisotropic structure media
from the same system [see Fig. 5(b)]. It gives clear evidence
of the role of the beam width of the incident light beam
on the effect observed in momentum space for ε < 1, i.e.,

the usual momentum-domain spin Hall effect of light or the
spin-symmetric random scattering modes.

It can also be seen from Fig. 5, with the reducing beam
width of the Gaussian beam, the density or number of the
random scattering modes observed in Fourier space decreases
significantly. Such dependence of the number of scatter-
ing modes on beam width leads to a small number of the
randomly scattered modes observed from the SLM in our ex-
periment, as the effective beam width wo/d for our system is
9 units.

In Figs. 6(a)–6(d), we have shown the real and imaginary
parts of the two-point autocorrelation function (with the dis-
tance between the points Δx/d) of the transmitted beam from
the inhomogeneous anisotropic media for various input beam
widths. It can be seen that the random medium modifies the
spatial autocorrelation function of the input Gaussian beam
from a perfect Gaussian function to a random function with
various spatial frequency components. The random geometric
phase distribution for Figs. 6(a)–6(d) is chosen to be the same
as in Fig. 5. Thus, the autocorrelation shown in Fig. 6 is
directly related to the momentum space intensity distribution
shown in Fig. 5 by a Fourier transform [see Eq. (4)]. The
strength of fluctuations in the autocorrelation function dictates
the nature of the intensity distribution in Fourier (momentum)
space for the random medium. First, when the fluctuations in
the autocorrelation are large, we observe the “random modes”
in the Fourier space intensity distribution due to a large num-
ber of frequency components present in the autocorrelation
function; see Figs. 6(a)–6(c) and Fig. 5. Second, when such
fluctuations are small and the Gaussian nature of the auto-
correlation function takes over, and we observe a dominantly
Gaussian nature of the Fourier space intensity distribution,
see Figs. 6(d) and 5(b). However, the intensity distribution
is usually not centered at the origin of the transverse mo-
mentum space due to the other frequency components present
in the autocorrelation function of the transmitted beam lead-
ing to the usual spin Hall effect of light (dominated by a
single Gaussian peak for a given spin state); see Figs. 6(d)
and 5.

Thus, the spatial autocorrelation function is modulated by
the beam width of the Gaussian beam incident on the system.

FIG. 7. The momentum distribution of the RCP polarization state (along kx) obtained for a Gaussian beam transmitted from a disordered
medium, where the individual anisotropic element gives a phase of (a) either 0 or −π and (b) −π , −π/3, or π/3. (c) The momentum-space
intensity distribution for the RCP polarization projection shows the random scattering modes for a binary distribution of gray level in 8 × 8
bins of the SLM.
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FIG. 8. The dependence of (a) polarization parameters and
(b) the total phase (φd ± φg) occupied by the light transmitted for
input LCP and RCP polarization states of light on the gray level
projected onto the SLM (adapted from Ref. [6]).

It can also be used to get a physical understanding of the crit-
ical range of the randomized phase value needed to observe
the random optical Rashba effect.

APPENDIX B: MINIMUM NUMBER OF INDEPENDENT
ELEMENTS REQUIRED FOR OBSERVING RANDOM

SCATTERING MODES

Here, we show that completely random scattering modes
in Fourier space by constructing the disordered system by
randomly distributing the two optimum anisotropic units
instead of various units with different geometric phases. Fig-
ure 7 shows the momentum space intensity distribution of
the beam transmitted from a spatially disordered anisotropic
medium consisting of only two orientations [−π/2 and 0, as
shown in the inset Fig. 7(a)] of the half-wave-plate retarder
(or geometric phases of −π and 0) distributed randomly

throughout space. In addition, we also show the momentum
intensity distribution obtained by using only three opti-
mum unit cells with different orientations of half-wave-plate
retarders. The random scattering modes were also experi-
mentally observed in scattering from the SLM for a given
random binary distribution of gray levels for 8 × 8 bins of
the SLM pixels, as shown in Fig. 7(c). The findings could
be beneficial for making such random material by using ex-
perimental techniques such as focused ion beam lithography,
electron-beam lithography, or any other material fabrication
method.

APPENDIX C: THE POLARIZATION PARAMETERS
OF THE SPATIAL LIGHT MODULATOR

Figure 8 shows the phase retardance and the orientation
of a retarder formed at a given value of the gray level in the
SLM. The value of the effective retardance and the effective
orientation angle of the equivalent retarder is determined by
the SLM’s gray value, which regulates the voltage applied
across the pixels of SLM. It is seen that, for a gray value in the
range of 20 to 140, the retardance and the orientation angle are
approximately linear and have the same slope with the SLM’s
gray level. The total phase occupied for the incident LCP and
RCP polarization states of light with varying gray levels is
shown in Fig. 8(b). The total phase occupied for the input
RCP polarization state of light shows a significant dependence
on the gray level of the SLM pixel compared with the LCP
polarization state of light for which not much deviation is
found with varying gray levels.
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