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Control of space-dependent four-wave mixing in a four-level atomic system
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We propose a scheme to demonstrate the manipulation of space-dependent four-wave mixing (FWM) in a four-
level atomic system. By adjusting the detuning of the control field, one can effectively control the FWM output
field transferred from a pump beam carrying orbital angular momentum. More interestingly, by appropriate
choice of the intensity of the control field, the FWM field can be significantly enhanced and phase twist is
almost completely suppressed. Furthermore, the superposition modes created by the interference between the
FWM field and a same-frequency Gaussian beam are also discussed, showing many interesting properties. Our
results may open some possibilities for phase imprinting in Bose-Einstein condensates or atom manipulation
with optical tweezers.
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I. INTRODUCTION

A vortex beam carrying orbital angular momentum (OAM)
[1] is nowadays an interesting resource in classical and quan-
tum optics due to the richness of properties it shows in
light-matter interactions. Unlike the conventional Gaussian
beam, the OAM beam represents a fundamentally different
optical degree of freedom [2] and provides unique opti-
cal properties [3], including the helical phase wavefront,
which has been used in optical manipulation [4], for imag-
ing and sensors [5], or in optical communications [6]. Due
to the unique optical properties, OAM beams have also
been largely used during the four-wave mixing (FWM)
processes. For instance, Marino et al. [7] generated intensity-
difference-squeezed Laguerre-Gaussian (LG) twin beams of
light carrying OAM via FWM. Walker et al. [8] reported
experimentally that the helical phase structure of OAM can
be transferred from pump light to light generated in a FWM
process in 85Rb vapor. Quite recently, Zhang et al. [9] have
also experimentally demonstrated the generation and propaga-
tion of a FWM vortex beam in a rubidium atomic vapor with
a photonic band-gap structure. However, these scenarios do
not fully manipulate the helical phase wavefront of the FWM
field.

In this paper, we propose a scheme to manipulate space-
dependent FWM in a four-level atomic system. The ultraslow
FWM process has been an area of active research for many
years [10–14], yet the FWM field is space independent and
does not carry OAM. Different from those previous studies,
the spatial characteristics of the FWM field carrying OAM are
studied here. The major features of applying our considered
scheme over other studies are as follows. First and foremost,
the FWM field transferred from a pump field, which is a
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unique OAM mode shaped as a double-ring LG beam with
the radial index p = 1 and the azimuthal index l , is equal
but opposite in the inner ring and the outer ring. Second, by
adjusting the detuning of the control field, the FWM field
transferred from the pump beam can be manipulated. Third,
by appropriate choice of the intensity of the control field, the
FWM field can be significantly enhanced and phase twist is
almost completely suppressed. It is well known that the helical
phase wavefront plays a key role in the interactions of light
with a medium, which will be potentially used to engineer
the phase profile, for example, the phase imprinting in Bose-
Einstein condensates. Moreover, we display the superposition
modes created by the interference between the FWM field and
a same-frequency Gaussian beam, which show a more flexible
intensity control or phase control for the superposition modes.
Unlike in solid-state systems [15–17], nonlinear effects are
highly efficient and require only low light intensities in atomic
vapors [18–20]. Therefore, this paper may be exploited for
structured-beam manipulation [21–23], OAM-based quantum
memory [24,25], or high-dimensional data transmission [26].

II. THEORY AND MODEL

We consider a four-level atomic system as shown in
Fig. 1. States |0〉 and |2〉 are coupled by a weak Gaus-
sian pulse field with Rabi frequency �p = �p0 exp[−(x2 +
y2)/ω2

p0] exp(−t2/τ 2) (ωp0 and �p0 are the transverse waist
and the initial amplitude, and τ is the pulse width), while a
continuous-wave control field with Rabi frequency �c drives
the transition |2〉 ↔ |1〉. The transition |3〉 ↔ |1〉 interacts
with a pump field with Rabi frequency �d , and then the FWM
field �m is generated from the transition |3〉 ↔ |0〉. Here, the
pump field is a unique OAM mode and given as [27]

�d =
{

�d0�
l
pe−iφl , inner ring

�d0�
l
peiφl , outer ring

, (1)
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FIG. 1. Diagram of the four-level atomic system.

where �l
p =

√
2p!/π (p+|l|)!

ω0
(
√

2r
ω0

)
|l|

L|l|
p ( 2r2

ω2
0

)e−r2/ω2
0 , �d0 is the

initial Rabi frequency of the pump field, r is the radius, and
the beam waist is ω0. φ is the azimuthal angle and L|l|

p is the
Laguerre polynomial. The radial index and azimuthal index
are defined by p and l , respectively. In this paper, we set the
radial index p = 1 while the azimuthal index l is equal but
opposite in the inner ring [0 � r �

√
0.5(|l| + 1)ω0] and the

outer ring [r �
√

0.5(|l| + 1)ω0].
Under the rotating-wave approximation, the terms in the

Hamiltonian which oscillate rapidly are neglected. Then
the Hamiltonian of the system in the interaction picture is
given by

HI = (�p − �c)|1〉〈1| + �p|2〉〈2| + (�p − �c + �d )

× |3〉〈3| − (�peikp·r̂|2〉〈0| + �ceikc·r̂|2〉〈1|
+�d eikd ·r̂|3〉〈1| + �meikm·r̂|3〉〈0| + H.c.), (2)

where �p = ω20 − ωp, �c = ω21 − ωc, and �d = ω31 − ωd

are the detunings of the three corresponding fields, respec-
tively. k j ( j = p, c, d, m) are the wave vectors of the relevant
fields. r̂ is the position vector. The symbol H.c. stands for
Hermitian conjugate.

Defining the state of the atomic system as |ψ〉 =
A0|0〉 + A1ei(kp−kc )·r̂|1〉 + A2eikp·r̂|2〉 + A3ei(kp−kc+kd )·r̂|3〉, the
evolution equations for the probability amplitudes Aj ( j =
0, 1, 2, 3) can be easily obtained from the Schrödinger equa-
tion [28]:

Ȧ1 = i(�c + iγ1)A1 + i�∗
d A3 + i�∗

cA2, (3a)

Ȧ2 = −γ2A2 + i�cA1 + i�pA0, (3b)

Ȧ3 = i(�c + iγ3)A3 + i�mA0 + i�d A1, (3c)

where γ1,2,3 are the corresponding decay rates of the states
and the system satisfies the phase-matching condition km =
kp − kc + kd . Here, the pump (probe) field is assumed to be
resonant with the transition.

Using the slowly varying envelope approximation, we as-
sume that the envelope of the probe wave pulse varies slowly
in time and space compared to the wavelength. So the prop-
agation equations of the probe and FWM fields are governed

by the Maxwell equation:

∂�p(m)

∂z
+ ∂�p(m)

c∂t
= i

2kp(m)
∇2

⊥�p(m) + ik02(03)A2(3)A
∗
0, (4)

where k02(03) = 2Nωp(m)|D02(03)|2/(ch̄) with N being the
atomic density, and kp(m) is the wave number of the probe
(FWM) field. D02(03) is the electric dipole matrix element
associated with the transition from |0〉 to |2〉 (|3〉).

Assuming that the atoms are initially prepared in the
ground state |0〉, �c and �d 	 �p, and hence |A0|2 ≈ 1 in
the weak probe-field regime. Taking the Fourier transform of
Eqs. (3) and (4), we obtain

(ω + �c + iγ1)ξ1 + �∗
dξ3 + �∗

cξ2 = 0, (5a)

(ω + iγ2)ξ2 + �cξ1 + Up = 0, (5b)

(ω + �c + iγ3)ξ3 + �dξ1 + Um = 0, (5c)

and

∂Up(m)

∂z
− iω

c
Up(m) = i

2kp(m)
∇2

⊥Up(m) + ik02(03)ξ2(3), (6)

where the Fourier variable is defined as ω. ξi=1,2,3, Up, and
Um are the Fourier transforms of Ai=1,2,3, �p, and �m, respec-
tively. The first term on the right-hand side of Eq. (6) accounts
for light diffraction. The diffraction term can be neglected
when the Rayleigh length πω2

0/λ (ω0 is the beam waist) is
much larger than propagation distance L, i.e., πω2

0/λ 	 L.
In our paper, we take the propagation distance L = 1 cm,
the transverse characteristic width ωT = ω0 = 0.2 mm, and
the wavelength of the FWM field λ = 589 nm, obtaining
πω2

T /λ ≈ 21.3 cm 	 L. So we neglect the diffraction term
in Eq. (6).

By solving Eq. (5), one immediately obtains

ξ1 = − (ω + �c + iγ3)�∗
cUp + (ω + iγ2)�∗

dUm

M
, (7a)

ξ2 = �c�
∗
dUm − MpUp

M
, (7b)

ξ3 = �∗
c�dUp − MmUm

M
, (7c)

where M = |�c|2(ω + �c+iγ3)+|�d |2(ω+iγ2) − (ω+�c+
iγ1)(ω + iγ2)(ω + �c + iγ3), Mp = |�d |2 − (ω + �c + iγ1)
(ω+�c+iγ3), and Mm = |�c|2 − (ω+�c+iγ1)(ω + iγ2).

Substituting Eq. (7) into Eq. (6) with the initial condition of
the FWM field, Um(z = 0, ω) = 0. The analytical expressions
of Up and Um are

Up(z, ω) = Up(0, ω)
F+eizK− − F−eizK+

F+ − F−
, (8a)

Um(z, ω) = Up(0, ω)
F+F−

F+ − F−
(eizK− − eizK+ ), (8b)

where K±=ω/c+[−(k03Mm + k02Mp) ± √
G]/2M and F± =

(k02Mp − k03Mm ± √
G)/2k02�c�

∗
d , with G = [k03Mm −

k02Mp]2 + 4k03k02|�c|2|�d |2. In the present paper we
focus on the adiabatic regime where the power series
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of K± on ω converge rapidly. Specifically, here we take
K± = K±(ω = 0) + O(ω) + O(ω2), which is consistent
with the assumption that a well-behaved adiabatic
process is required for rapid conversion of a power-series
expansion [29].

We can see that there exist two modes described by the
dispersion relations K+ and K− in Eqs. (8a) and (8b). Fol-
lowing Ref. [30], the mode K− will fast decay around the
center frequency, which can be neglected after propagating
for a longer optical depth. Then, the inverse Fourier transform
of Up and Um can be estimated as

�p(z, t ) = F−
F− − F+

�p(η+)eiK+z, (9a)

�m(z, t ) = F+F−
F− − F+

�p(η+)eiK+z, (9b)

where η+ = t − z/Vg+ and Vg+ = 1/Re{[∂K±(ω)]|ω=0} is the
group velocity of the K+ mode.

Finally, the generated FWM field after a propagation dis-
tance L can be given as

�m(L, t ) =
{

�l
me−iφl eiLK+ , inner ring

�l
meiφl eiLK+ , outer ring

, (10)

where �l
m = k03�

l
p�

∗
c�d0�p(η+)/

√
G. From Eq. (10), one

can find the FWM field �m(L, t ) ∼ e±ilφ is generated with
the same vorticity as the pump field carrying OAM �d ∼
e±ilφ , which implies the OAM phase of field �d is entirely
transferred to the FWM field.

Normally, the real part Re(K+) represents the variation of
the phase per unit length while the imaginary part Im(K+) rep-
resents the absorption [31]. Using K+ = Re(K+) + iIm(K+)
we can rewrite Eq. (10) as

�m(L, t ) =
{

�l
me−LIm(K+ )e−i[φl−LRe(K+ )] , inner ring

�l
me−LIm(K+ )ei[φl+LRe(K+ )], outer ring

, (11)

where we can see the intensity of the FWM field in the inner
and outer rings is ∝!|�l

me−LIm(K+ )|2. The factor e−i[φl−LRe(K+ )]

reflects the total phase of the FWM field in the inner ring,
while the factor ei[φl+LRe(K+ )] reflects the total phase of the
FWM field in the outer ring. Obviously, both the phase and
intensity of the FWM field can be modulated via dispersion-
relation term K+.

III. DISCUSSION

Before proceeding, we briefly address the experimental
feasibility of our scheme. For experimental considerations,
this theoretical model can be implemented possibly for typical
transitions of hyperfine-split Na D lines. For example, the
lower states |0〉 and |1〉 can be assigned to |3 2S1/2, F = 1〉 and
|3 2S1/2, F = 2〉, respectively. Two excited states |2〉 and |3〉
can be attributed to |3 2P1/2, F = 2〉 and |3 2P3/2, F = 2〉. The
typical parameters are γ1/2π = 9.8 × 10−4 MHz, γ2/2π =
9.8 MHz, and γ3/2π = 20.42 MHz.

In Fig. 2, we illustrate the influence of the detuning of
the control field �c on the phase and intensity patterns of
the FWM field. As shown in Figs. 2(a) and 2(d), when the
control field is tuned to the resonant interaction with the

FIG. 2. (a)–(c) Phase patterns of the FWM field for different
detuning of the control field �c: (a) �c/2π = 0 MHz, (b) �c/2π =
8 MHz, and (c) �c/2π = −8 MHz. (d)–(f) Corresponding intensity
patterns of the FWM field. The parameters are �c/2π = 20 MHz,
�d0/2π = 50 MHz, ω0 = 0.2 mm, ωp0 = 4ω0, l = 4, p = 1, τ =
10−6 s, L = 1 cm, �p0/2π = 1 MHz, k02(03) = 2 × 109 cm−1 s−1.

atomic transition |2〉 ↔ |1〉, i.e., �c = 0, it can be seen that
the phase pattern is normal and intensity distribution shows
a double-ring pattern. However, when �c is increased to a
value 8 × 2π MHz, the phase pattern becomes twisted, while
the phase within the inner ring (0 � r �

√
2.5ω0) and the

phase within the outer ring (r >
√

2.5ω0) twist oppositely [see
Fig. 2(b)]. At the same time, the intensity distribution keeps
unchanged but the value of intensity decreases remarkably
[see Fig. 2(e)]. Interestingly, when the detuning �c is adjusted
to a negative value −8 × 2π MHz [see Figs. 2(c) and 2(f)],
the intensity distribution is the same as the case in Fig. 2(e)
but the rotated directions of twisted phases within two rings
are completely opposite compared with the cases in Fig. 2(b).
Clearly, the phase of the FWM field is modulated via the
detuning of the control field.

In order to understand the above phenomena, we plot the
real part and imaginary part of the dispersion relation K+
versus radius r for different detuning �c in Fig. 3. For the
case �c = 0, as shown in Figs. 3(a) and 3(d), the value of

FIG. 3. The real Re(K+) and imaginary Im(K+) parts of the
dispersion relation vs radius r for different detuning of control field
�c: (a), (d) �c/2π = 0 MHz, (b), (e) �c/2π = 8 MHz, and (c), (f)
�c/2π = −8 MHz. Other parameters are the same as in Fig. 2.
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FIG. 4. (a)–(c) Phase patterns of the FWM field for different
intensity of the control field �c: (a) �c/2π = 25 MHz, (b) �c/2π =
35 MHz, and (c) �c/2π = 45 MHz. (d)–(f) Corresponding intensity
patterns of the FWM field. Other parameters are the same as in
Fig. 2(b).

the imaginary part is very small (≈10−5) and the real part is
always equal to zero, so the phase is not twisting in Fig. 2(a).
However, when �c = ±8 × 2π MHz, both the real part and
imaginary part increase remarkably [see Figs. 3(b), 3(c), 3(e),
and 3(f)], which means that the spatial dependencies of the
phase and absorption are increasing. So one can see the phase
is twisted in Figs. 2(b) and 2(c) while the value of the intensity
decreases in Figs. 2(e) and 2(f). Here, note that the value of the
real part in Fig. 3(b) is positive compared with the negative
value of the real part in Fig. 3(c), which gives the reasonable
reason that the rotated directions of the twisted phase are
opposite in Figs. 2(a) and 2(c). Moreover, the imaginary part
in Fig. 3(e) is the same as in Fig. 3(f), which leads to the same
intensity distribution in Figs. 2(e) and 2(f).

In Fig. 4, we study the effect of the intensity of the control
field �c on the FWM field. From this figure, by increasing the
control field, one can see that the FWM field is significantly
enhanced and phase twist is almost completely suppressed in
Fig. 4(c). Actually, states |0〉, |1〉, and |2〉 construct a standard
electromagnetically induced transparency system [32–35]. By
tuning the intensity of the control field �c, the linear and
nonlinear responses of the atomic medium can be easily con-
trolled, which result in the enhancement of FWM and the
suppression of phase twist. Here, it should be emphasized
that the above description may provide a clue for engineering
the helical phase wavefront via adjusting properly intensity
of the control field, which will be potentially used to engineer
the phase profile, such as phase imprinting, phase reconstruct-
ing, and phase puring. Also, we display the real and imaginary
parts of the dispersion relation versus radius r for different
intensity of control field �c in Fig. 5. Evidently, with increas-
ing the control field, both the real part and imaginary part are
suppressed, which have readily verified the findings in Fig. 4.

Next, we further show the superposition modes created by
the interference between the FWM field and a same-frequency
Gaussian beam in Figs. 6 and 7. Note that the superposition
intensity (or phase) pattern appears as a result of the interfer-
ence between the FWM field and the Gaussian beam in a beam
splitter.

FIG. 5. The real Re(K+) and imaginary Im(K+) parts of the
dispersion relation vs radius r for different intensity of the control
field �c: (a), (d) �c/2π = 25 MHz, (b), (e) �c/2π = 35 MHz, and
(c), (f) �c/2π = 45 MHz. Other parameters are the same as in Fig. 2.

Figure 6 displays the superposition modes created by the
interference between the FWM field and a same-frequency
Gaussian beam for different detuning of the control field �c.
Clearly, in the condition of �c = 0, it can be found from
Figs. 6(a) and 6(d) that both the superposition phase and
superposition intensity do not twist. When we increase �c

to 8 × 2π MHz [see Figs. 6(b) and 6(e)], both superposi-
tion phase and superposition intensity become twisted, and
the rotation directions of superposition patterns are opposite
within the inner ring (0 � r �

√
2.5ω0) and the outer ring

(r >
√

2.5ω0). Interestingly, for the case that �c = −8 ×
2π MHz [see Figs. 6(c) and 6(f)], the twisted directions of
superposition patterns are modulated and rotation directions
are completely opposite compared with the situation that the
value of �c is positive. In such a case, the OAM mode with
opposite sign of azimuthal number l shows a more flexible
intensity control or phase control for the superposition mode,
which may be very useful for high-dimensional light storage
[36] and OAM multiplexed entanglement [37,38].

FIG. 6. (a)–(c) Superposition phase patterns created by the in-
terference between the FWM field and a same-frequency Gaussian
beam �G = exp(−r2/16ω2

0 ) for different detuning of the con-
trol field �c: (a) �c/2π = 0 MHz, (b) �c/2π = 8 MHz, and
(c) �c/2π = −8 MHz. (d)–(f) Corresponding superposition inten-
sity patterns. Other parameters are the same as in Fig. 2.
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FIG. 7. (a)–(c) Superposition phase patterns created by the in-
terference between the FWM field and a same-frequency Gaussian
beam �G = exp(−r2/16ω2

0 ) for different intensity of the con-
trol field �c: (a) �c/2π = 25 MHz, (b) �c/2π = 35 MHz, and
(c) �c/2π = 45 MHz. (d)–(f) Corresponding superposition intensity
patterns. Other parameters are the same as in Fig. 4.

Finally, we present the superposition modes created by the
interference between the FWM field and a same-frequency
Gaussian beam for different intensity of the control field �c

in Fig. 7. As we expected, different from Fig. 6, the twists
of superposition patterns are suppressed by increasing the
intensity of the control field. The reason is that the intensity of
the control field �c modifies the azimuthal phase difference
between the vortex FWM field and Gaussian beam, causing
the suppression of twisted superposition patterns. In fact, the
results confirm that one can effectively manipulate the OAM
superposition via the intensity of the control field �c.

IV. CONCLUSION

In conclusion, we propose a scheme to investigate space-
dependent four-wave mixing in a four-level atomic system.
Different from previous works, both the intensity and phase of
the FWM field can be manipulated by adjusting the detuning
of the control field. Interestingly, the enhancement of FWM
and suppression of phase twist can be achieved by appropriate
choice of the intensity of the control field. Moreover, we
perform the superposition modes created by the interference
between the FWM field and a same-frequency Gaussian ref-
erence beam. The results show that the OAM superposition
modes are also manipulated via the detuning and intensity
of the control field. As it is known, any light beam can be
decomposed as a linear combination of the LG beams, and
we can expand the pump field to the case of an arbitrary order
LG mode. Thus, the method and theoretical analyses proposed
here may be useful in phase imprinting of Bose-Einstein con-
densates [39–41], atom manipulation with optical tweezers
[42], slow light [43], spatial transparency [44], structured
beam generation [45], OAM energy conversion [46], vortex
four-wave mixing [47–51], and quantum information science
[52–56].
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