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Dynamic diffractive resonant radiation in a linearly chirped nonlinear waveguide array
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We theoretically and numerically investigate the evolution of a discrete soliton in a semi-infinite linearly
chirped one-dimensional nonlinear waveguide array (WA). The discrete soliton is self-accelerated inside the
transversely chirped WA and emits a dynamic diffractive resonant radiation (DifRR). The radiation appears when
the soliton wave number is matched with the linear radiation wave. Unlike the uniform WA, the DifRR can be
excited even for zero wave number of the input soliton when the waveguide channels are chirped. The transverse
modulation due to chirp conceptually imposes a linear potential which acts as a perturbation to soliton dynamics
and leads to a monotonous wave-number shift of the propagating wave. Exploiting perturbative variational
analysis we determine the equation of motion of the soliton wave number and use it to establish a modified
phase-matching condition which takes into account the soliton wave-number shift and efficiently predicts the
dynamic DifRR. A startling effect like generation of dual DifRR occurs as a result of the interplay between
the self-accelerated soliton and its initial wave number. We exploit the modified phase-matching relation to
understand this unique phenomenon of dual radiation and find a satisfactory agreement with numerical results in
radiation wave-number calculation.
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I. INTRODUCTION

Waveguide arrays (WAs) since their first inception [1] have
provided a strong platform to study discrete phenomena which
are fundamental in nature. In a WA, a large number (infinite
in principle) of single-mode waveguide channels are placed
periodically such that their individual modes overlap and the
evolution of an optical field can be represented as a discrete
problem. Periodic photonic structures can afford additional
control of light, making it possible to explore new physical
regimes that are forbidden in homogeneous systems. Discrete
diffraction [2], discrete solitons [3,4], and their interaction
with the periodic refractive index lattice are a few examples
of light management studied in great detail in past years [5].
For a discrete soliton, a transverse index array is analogous
to the continuous temporal counterpart of an optical soliton
excited in an optical fiber. The discrete nature of the spa-
tial soliton introduces additional exciting properties to their
characteristics like the Peierls-Nabarro potential [6], Bloch
oscillations [7], and Anderson localization [8]. Modulation
of the periodic structure in a uniform homogeneous WA pro-
vides additional degrees of freedom in terms of a binary WA
which offers richer optical properties. Binary arrays which
are composed of waveguides with different wave numbers
allow us to appreciate an optical approach to study relativistic
phenomena such as Bloch-Zener oscillations [9], Zitterbe-
wegung [10], Dirac solitons [11], and neutrino oscillations
[12], to name a few. In addition, introduction of an ampli-
tude and frequency modulation in the WA has been used to
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implement beam steering or routing [13,14] and formation of
surface solitons [15]. Further extending these phenomena in
the plasmonic regime with beam focusing in a metallic WA
[16], and plasmonic Bloch oscillations in metal-dielectric and
graphene arrays [17,18], proves the versatility of this system.
In homogeneous WAs, discrete solitons arise due to the stable
balance of discrete diffraction and self focusing originating
from Kerr nonlinearity. The evolution of electric fields in
these WAs is given by the coupled-mode equations which
describe the dynamics of the modes in individual waveguides.
These equations take into account the self-propagation of
a field in a waveguide, both linear and nonlinear, as well
as the interwaveguide interactions that take place through
the coupling of the modes by the evanescent electric fields.
Although different properties of these discrete solitons have
been studied over the years, the phenomenon of these solitons
emitting a radiation is a comparatively recent development
[19] in this field. This radiation, aptly named diffractive res-
onant radiation (DifRR)[19], is emitted by a special soliton
propagating in a uniform WA. Such radiation is the spatial
(or wave-number) analog to dispersive radiation emitted from
an ultrashort pulse in an optical fiber [20]. The presence of
higher-order dispersion in fibers leads to a phase-matching
(PM) situation which allows the soliton to transfer energy to
the linear dispersive waves at specific frequencies. Similar to
its temporal counterpart, static DifRR having a specific wave
number is emitted when the soliton wave number matches
with the linear wave propagating in a WA. However, the
Brillouin boundary due to the one-dimensional (1D) lattice
created by the periodic arrangement of waveguides limits the
possible wave numbers to lie within −π and π . Any electric
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field going beyond this boundary undergoes a 2π shift and
emerges from the other side of the boundary. This unusual
effect is termed as anomalous recoil [19]. We will see in
the later sections that an initial wave number is required to
generate the DifRR [19] whereas it can be controlled by some
other parameters like soliton power and coupling coefficient.

In this paper we mainly investigate the dynamics of DifRR
emitted by a discrete soliton in a geometrically modified
nonuniform WA. A modification in WA provides a versatile
platform for controlling light where a propagating optical field
experiences perturbation. An instability can be introduced to
perturb the optical field by providing external irregularities in
the WA by modifying either the refractive index or the waveg-
uide arrangement. A constant difference of the propagation
vector in the adjacent channel arises due to the transverse
index gradient showing exciting dynamics even in the linear
domain where an optical analogy of Bloch oscillations is iden-
tified [21,22]. In another scheme, the coupling coefficients
of the WA are randomly varied by changing their relative
positions of waveguide channels, which offers Anderson lo-
calization [23]. Inspired by these works we make an attempt to
understand the optical field dynamics inside a linearly chirped
1D WA, which is less explored in the context of discrete
soliton propagation. In a linearly chirped WA the separation
between adjacent waveguides increases (or decreases) with a
uniform rate called the chirp parameter which leads to a varia-
tion in the coupling coefficient. DifRR becomes an inevitable
phenomenon in the chirped WA where the soliton moves with
a self-accelerated mode. The DifRR is found to be dynamic in
nature where radiation wave number shifts along propagation
distance. One can appreciate a similarity of this phenomenon
with the dispersive wave generation in tapered fibers during
the supercontinuum process [24–27]. The tapered fiber where
the dispersion profile varies along fiber length exhibits a radia-
tion which drifts away in the frequency domain and is trapped
by the soliton [28]. The phase-matching condition changes
with propagation distance owing to the longitudinal variation
of dispersion and eventually leads to a radiation the frequency
of which shifts along propagation. For the nonuniform WA
the chirp conceptually acts as a linear potential that perturbs
the soliton propagation and leads to dynamic DifRR. The
soliton dynamics under the linear potential is theoretically
estimated exploring perturbative analysis based on variational
theory. Exploring these results we establish a modified PM
expression which predicts the dynamic DifRR accurately for
the chirped WA. Further we extend our investigation to DifRR
formation under nonzero initial soliton wave number (k0 �= 0).
The interplay between the chirp parameter and k0 opens up an
operational domain previously not possible. Here we find an
interesting case for k0 > 0 where dual DifRR appears, which
is analogous to the dual dispersive wave emission occurring in
the temporal domain for two-zero dispersion waveguides [29].
Based on theoretical analysis we try to explain the intriguing
effect of dual DifRR, and the agreement between numerical
and analytical results is satisfactory.

II. THEORY

A semi-infinite array of identical periodic nonlinear waveg-
uides with no losses is considered as ideal WAs. For
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FIG. 1. (a) A uniform WA having interwaveguide separation d.
(b) Schematic representation of nearest-neighbor evanescent mode
coupling. (c) Formation of a discrete soliton in a nonlinear WA.

continuous-wave excitation in such WA, the evolution of
mode amplitude in the nth waveguide with nearest-neighbor
evanescent coupling is described by the discrete nonlinear
Schrödinger equation (DNLSE) [30–32]:

i
dEn

dz
+ C(n+1)

(n) E(n+1) + C(n−1)
(n) E(n−1) + γ |En|2En = 0. (1)

En is the electric-field amplitude of the nth waveguide. If
the total number of waveguides is considered as (2N + 1)
then the index n ranges from −N � n � N . Here, C(n+1)

(n)

and C(n−1)
(n) are, respectively, the coupling coefficients of the

(n + 1)th and (n − 1)th waveguides to the nth waveguide in
units of 1/m. γ = ω0n2/(cAeff ) is the nonlinear coefficient
of a single waveguide in units of 1/W m where n2 is the
Kerr coefficient and Aeff is the effective area of the modes.
In Fig. 1(a) we represent the model of a uniform WA hav-
ing equal separation between the two consecutive waveguide
channels. The coupling coefficients which are a function of
separation become identical throughout the WA (C(n+1)

(n) =
C(n−1)

(n) = C). The nearest-neighbor evanescent mode coupling
is schematically illustrated in Fig. 1(b) where the sketch of
the refractive index in the lattice is shown. At low powers the
nonlinear term can be neglected (γ = 0) and Eq. (1) can be
analytically integrable. A single waveguide excitation leads to
a solution En(z) = En(0)inJn(2Cz) exhibiting discrete diffrac-
tion [4], where Jn is the Bessel function of order n. Physically,
the discrete diffraction is originated due to the varying z-
dependent phase shift for different transverse wave-vector
components. The discrete diffraction can be restricted by the
focusing nonlinearity of the system and one can intuitively
understand the soliton formation as a balance between Kerr
nonlinearity and diffraction. In Fig. 1(c) we demonstrate a
discrete soliton that is originated in the uniform nonlinear WA.
For the uniform WA [Fig. 1(a)] a useful normalized form of
the DNLSE can be realized by making the transformations
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En → √
P0ψn, γ P0z → ξ , and C/(γ P0) → c:

i
dψn

dξ
+ c[ψn+1 + an−1] + |ψn|2ψn = 0, (2)

where P0 is the peak power of the associated beam in units
of W. Note, the total power P = ∑

n |ψn|2 and Hamiltonian
H = ∑

n[c|ψn − ψn−1|2 − γ

2 |ψn|4] remain conserved during
propagation [31]. For a stationary discrete plane-wave solu-
tion ψn(ξ ) = ψ0 exp[i(nkxd + βξ )] of Eq. (2), one can obtain
the dispersion relation between β and kx as [33]

β(κ ) = 2c cos(κ ) + |ψ0|2, (3)

where d is the separation between two adjacent waveguide,
kx is the transverse wave vector, and κ = kxd represents the
phase difference between adjacent waveguides. Note, during
propagation the transverse component (κ) gains a phase φt =
β(κ )ξ which leads to the transverse shift 
n = ∂φt/∂κ of
the propagating beam [34]. The angle θ of beam propaga-
tion follows tan θ = 
n/ξ . Hence κ governs the propagation
direction as θ = tan−1[∂β(κ )/∂κ] = tan−1[−2c sin(κ )] [35].
The Taylor expansion of β(κ ) about the incident wave number
(κ0) gives us an expanded diffraction relation:

β(κ ) = β(κ0) +
∑
m�1

Dm

m!

κm, (4)

where Dm ≡ (dmβ/dκm)|κ0 and 
κ = κ − κ0. The Fourier
transformation to change the domain κ → n is done by replac-
ing 
κ ≡ −i∂n where n is defined as a continuous variable of
an amplitude function (n, ξ ) = ψn,ξ exp(−iκ0n) [2,5].

Defining n as a continuous variable, which is justified as
solitons extend for several waveguides, we have an approxi-
mated standard nonlinear Schrödinger equation (NLSE) [19]:[

i∂ξ − D2

2
∂2

n +
∑
m�3

Dm

m!
(−i∂n)m + |(n, ξ )|2

]
(n, ξ ) = 0.

(5)

The first and second terms of the Taylor expansion are
eliminated by introducing a phase evolution substitution
(n, ξ ) → (n, ξ ) exp[iβ(κ0)ξ ] and using the concept of co-
moving frame n → n + D1ξ . For Dm�3 = 0, Eq. (5) has a
soliton solution given by

sol = 0sech

(
n0√|D2|

)
exp(iksolξ ), (6)

where ksol ≡ 2
0/2 is the longitudinal wave number for the

spatial soliton. Note that for the bright soliton solution
we have the condition |κ0| < π/2. The plane-wave solution
exp [i(klinξ + 
κn)] of the linearized Eq. (5) gives us the
dispersion relation:

klin(
κ ) = β(κ ) − β(κ0) − D1
κ. (7)

A soliton of the form given by Eq. (6) transfers energy to the
linear wave and generates a radiation when ksol = klin(
κ ) is
satisfied. This is the required PM condition for the DifRR as
predicted in the seminal paper [19].

FIG. 2. Discrete soliton propagation in (a) n space and (b) κ

space for ψ0 = 0.8 and κ0 = 0.5. (c) Spatial spectrogram at ξ = 40
where diffractive radiation is evident. The vertical dotted line indi-
cates the location of κRR which is obtained by solving Eq. (8).

Generation of diffractive resonant radiation in a uniform
waveguide array

The generation of DifRR requires the soliton to have an ini-
tial wave number as per the phase-matching equation. The PM
condition ksol = klin(
κ ) leads to a transcendental equation:

[cos(κ ) − cos(κ0) + sin(κ0)
κ] = ̃2
0 , (8)

where ̃0 = 0/2
√

c. The solution of this relation gives the
wave number of the generated DifRR (κRR = κ0 + 
κ) as a
function of initial soliton wave number κ0. Considering the
contribution of the right-hand side is small one can have an
approximate solution of Eq. (8):

κRR ≈ κ0 + 3 cot(κ0)
[
1 − 1

4 (1 −
√

1 + 
2)
]
, (9)

where 
 = 4̃0
3

tan κ0√
cos κ0

. The approximated solution is valid
under a certain range of parameters and consistent with the
result given in [19] if we neglect 
. In Fig. 2 we demonstrate
the dynamics of the soliton and the formation of DifRR in a
uniform WA. The evolution of the input beam with the form
sol = 0sech(n0/

√|D2|)eiksolξ is shown in Fig. 2(a). The
soliton emits radiation around ξ = 5 as demonstrated in the
Fourier spectrum of (n) in Fig. 2(b). The spatial spectrogram
in (n-κ) space is shown in Fig. 2(c) where the location of
the DifRR (κRR) is indicated by the vertical dotted line. The
spectrogram is a well-known technique through which we
can plot the position and its spatial counterpart wave number
together.

Mathematically it is defined as S (n, κ, ξ ) =
| ∫ ∞

∞ (n′, ξ )ref(n − n′)eiκn′
dn′|2 where ref is the reference

window function normally taken as the input. Equation (8)
is exploited to estimate the location of κRR in κ space. Note,
the limit of the κ domain lies within the first Brillouin zone
(−π < κ < π ) and if any part of the soliton or DifRR crosses
this limit an additional wave number of −2π gets added. The
Brillouin boundary appears due to the 1D lattice formed by
the periodic arrangement of waveguides. This confines the
value of the wave number to this limit, and the phenomenon
is termed as anomalous recoil [19,36].

From the phase-matching equation Eq. (8), it is evident that
DifRR can be tunable under various parameters like initial
soliton wave number or momentum (κ0), coupling coefficient
(c), and beam amplitude (0). In the previous studies [19,36]
the dominant role of input wave number (κ0) is mainly inves-
tigated in the context of DifRR formation. The approximate
closed-form expression κRR = κ0 + 3/ tan κ0 is proposed to
deduce the wave number of DifRR. In this paper, however, we
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FIG. 3. (a) Location of DifRR (κRR) as a function of input soliton
wave number κ0 for two different amplitudes. Numerically obtained
κRR are presented by solid dots and squares. The solid lines based
on the solution of Eq. (8) theoretically predict κRR. (b) Variation
of κRR as a function of coupling constant (c). The solid dots are
numerical data where the solid line represents the PM solution of
Eq. (8). The dashed line corresponds to the closed-form expression
shown in Eq. (9). The horizontal dot-dashed line appears when we
neglect 
 in Eq. (9). In the inset we show the formation of DifRR
for two different coupling constants.

try to generalize the study by capturing the role of two other
parameters 0 and c in the evolution of DifRR. In Fig. 3(a)
we plot the DifRR wave number as a function of κ0 for two
different beam amplitudes. We find there is a difference in
κRR values when we change beam amplitude. The full PM
expression Eq. (8) (solid lines) nicely predicts the DifRR
wave number in both cases. Next we examine the role of the
coupling coefficient in DifRR generation. Note, the coupling
coefficient can be easily varied by changing the separation
between waveguide channels. In Fig. 3(b) we illustrate the
variation of DifRR wave number (κRR) with coupling coef-
ficient c. The solid dots represent the values of κRR which
are obtained numerically by solving Eq. (2) whereas the solid
line corresponds to the PM solution of Eq. (8). The dashed
line represents the approximated closed expression derived in
Eq. (9). For a comparison we also plot (horizontal dot-dashed
line) the closed-form expression κRR = κ0 + 3/ tan κ0 derived
in [19]. In the inset we show the field distribution |0|2 in k
space for two different c values where the shift of the radiation
is evident. It is also noticed that a stronger but wide radiation
emerges for low values of coupling coefficient c whereas a
sharp but weak radiation appears when c is comparatively
large. We find for low coupling coefficients that numerically
it is tricky to determine the exact value of κRR as the radiation
spreads over a region. This anomaly in measurement causes a
slight deviation in numerical and analytical results especially
for low c values.

III. DISCRETE SOLITON IN A CHIRPED
WAVEGUIDE ARRAY

The propagation dynamics of the discrete soliton becomes
more intriguing and practically useful if some nonuniformity
is introduced in the WA. Depending on the application, a few
standard strategies are implemented to bring nonuniformity in
WAs, such as changing the waveguide width [8] or changing
the separation between adjacent waveguides [23]. Such WAs

are used to describe the Anderson localization in nonlinear
optics. In another scheme, optical Bloch oscillations can be
realized in WAs with linear refractive index modulation in the
transverse direction [21]. The linear refractive index variation
is mathematically adjusted by incorporating a linear poten-
tial term in the NLSE. In this paper, we have introduced a
chirped WA where the separation between adjacent waveg-
uides changes linearly. The coordinate of the nth waveguide is
defined as xn = nd0 + δ

2 n(n − 1), where d0 is the separation
between central (n = 0) and first (n = 1) waveguides and δ

defines the increment of waveguide separation in real units.
We introduce a normalized chirp parameter defined by gc =
δ/d0 that denotes the strength of chirping where the relative
separation between adjacent waveguides is defined by dn =
d0(1 + ngc). Note, for a linearly chirped WA the upper limit
of the waveguide number (2Nmax + 1) can be estimated by
simply setting the geometric restriction that the lowest separa-
tion between two adjacent waveguides is zero (dn = 0). This
condition allows us to estimate Nmax = g−1

c . For a linearly
chirped WA, the propagation constant remains the same for all
waveguide channels while the coupling coefficient (c) varies
along transverse distance. A linearly chirped WA is con-
ceptually realized by a linear potential [37]. Exploiting this
concept we may configure a perturbed NLSE as [i∂ξ + 1

2∂2
n +

|(n, ξ )|2](n, ξ ) = i
2ε, where ε = iχn accounts for the

linear potential term as a perturbation and χ is related to the
potential strength. A standard perturbative variational analysis
[38] with a regular ansatz,  = ηsech[η(n − n0)]ei[φ−κ (n−n0 )],
can be exploited to estimate the evolution of the soliton
wave number (κ) and position (n0) under linear potential. The
variational treatment ensures the conservation of total energy
∂E
∂ξ

= 0, (E = ∫ ||2dn) and leads to the equation of motions,
∂κ
∂ξ

= −χ and ∂n0
∂ξ

= κ . While propagating through a uniform
WA (ε = 0), the soliton maintains its wave number. However,
an evolution in the wave number is implemented when the
soliton propagates under perturbation like a linear potential
appearing transversely along the n coordinate which takes into
account the chirping. The variational result predicts that the
soliton wave number starting at κ0 experiences a continuous
linear shift κ (ξ ) = κ0 − χξ . The corresponding evolution in
the position of the soliton is n0(ξ ) = n0(0) − 1

2χξ 2 when
starting with κ0 = 0. A similar evolution of the soliton is
observed in a WA with quasiperiodic lattice arrangement [39],
which suggests the idea of DifRR generation in such systems.

A. Waveguide design

Before going into a detailed analysis of soliton dynamics it
is important to define a physically realizable waveguide struc-
ture that supports DifRR. Strategically, a chirped WA can be
formed by modulating either the refractive index of waveguide
channels or their relative separation. Modulation of the refrac-
tive index introduces a position dependent propagation vector,
while modification of the waveguide separation results in a po-
sition dependent coupling coefficient. The facility of fs laser
based writing in a transparent bulk medium [40,41] allows us
to design a WA of cores suspended in its cladding as modeled
in Fig. 4(a). We propose GeO2 doped silica cores suspended
in a silica cladding, to have an equivalent refractive index
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FIG. 4. (a) Pictorial model of the proposed chirped WA where
the cylindrical channels are placed nonuniformly with increasing
separation. The separation between adjacent waveguide channels is
dn = (d0 + nδ), where −N � n � N . (b) Schematic representation
of the waveguide arrangement where the central channel (n = 0) is
illuminated by the input electric field. (c) Spatial variation of the
coupling coefficient in real units.

difference 
n, between the core and cladding. At operating
wavelength λ0 = 1.55 μm, the core and cladding refractive
indices are n1 ≈ 1.4477 and n2 ≈ 1.4446, respectively. We
consider the radius of the cylindrical core a = 5 μm. For
the given geometry of the WA the nonlinear coefficient is
calculated as γ = 0.79 W−1 km−1. As schematically shown
in Fig. 4(b), a chirped WA is designed by taking an initial sep-
aration d0= 20 μm between the central reference waveguide
(n = 0) and n = 1 waveguide, then applying a progressive
change in separation (δ) in the nm range to keep the resulting
perturbation small. Since the separation between waveguides
is a function of position, we calculate the coupling coefficients
as a function of the respective separation (dn) using [42]

C(dn) = λ0

2πn1

U 2

a2V 2

K0(W dn/a)

K2
1 (W )

. (10)

Here dn = d0(1 + ngc); λ0 is the wavelength in free space
(1.55 μm in this case); n1 and n2 are the core and cladding
refractive indices, respectively; a is the core radius; and Kv are
the modified Bessel functions of the second kind of order v.
U and V are the mode parameters that satisfy U 2 + W 2 = V 2,
where the V parameter is defined by V = 2πa

λ0

√
n2

1 − n2
2 . U is

given approximately as U ∼= 2.405e−(1−ν/2)/V , with ν = 1 −
(n2/n1)2 [43]. In Fig. 4(c) we depict the variation of the coupl-
ing coefficient (C) in real units for the proposed chirped WA.

B. Generation of dynamic DifRR in a linearly chirped
waveguide array

In this section we numerically investigate the evolution
of a discrete soliton Eq. (6) in a linearly chirped WA and
formation of dynamics DifRR. We can construct a normalized
set of DNLSEs from Eq. (1) by taking the transformations
ηn±1

n → C(n±1)
(n) /C0, ξ → C0z, En → √

P0an, and ψn → ψ0an,

FIG. 5. Discrete soliton propagation in the (a), (d) (n-ξ ) and (b),
(e) (κ-ξ ) plane for ψ0 = 0.8, κ0 = 0, and δ=30 nm [for (a) and (b)]
and δ=50 nm [for (d) and (e)]. Dynamic DifRR is evident in κ space.
(c), (f) Spatial spectrogram at ξ = 40 where DifRR is indicated by
arrows.

where ψ0 → √
γ P0/C0:

i
dψn

dξ
(ξ ) + η

(n+1)
(n) ψn+1(ξ ) + η

(n−1)
(n) ψn−1(ξ )

+ |ψn(ξ )|2ψn(ξ ) = 0. (11)

Here C0 is the coupling coefficient between the central (n =
0) and first (n = 1) waveguide channel the value of which
is calculated to be ≈1 cm−1. Equation (11) mathematically
describes the soliton evolution in the chirped WA. In a prelim-
inary analysis, we numerically investigate the dynamics of the
soliton inside the proposed WA, which is schematically shown
in Fig. 4(a). We launch Eq. (6), which is the approximate
soliton-solution in the continuous limit, in a discrete photonic
system where the coupling coefficient varies along the direc-
tion transverse to the propagation direction. The value of gc

determines the rate at which the coupling coefficient changes.
It is apparent from Eq. (10) that the value of the coupling
coefficient (C) will decrease as the separation increases owing
to the decaying nature of the modified Bessel function of
second kind Kj (x). The value of δ is considered small (≈nm)
compared to the separation (≈μm) between waveguides. The
power scale P0 ∼ 125 kW makes the scaling factor ψ0 to unity
and length scale become ≈1 cm. In Fig. 5 we demonstrate
the propagation of the discrete soliton for two different values
of δ by numerically solving the governing equation Eq. (11).
In the simulation, the total number of waveguide channels is
considered to be (2N + 1 = 701) with the range of n index as
−350 � n � 350. We observe that for nonzero δ the soliton
changes its wave number linearly along its propagation [see
Figs. 5(a) and 5(d)] and experiences an accelerated motion in
the spatial (n) domain [see Figs. 5(b) and 5(e)] which is quite
different from what we observed in the uniform WA. The rate
of wave-number shift and spatial acceleration is increased as
the value of δ is increased. In Figs. 5(b) and 5(e) the arrows
indicate the linear shift of soliton wave number κ due to the
chirping of the waveguide which conceptually introduces a
linear potential. From Figs. 5(a) and 5(d) we can see that the
soliton changes its spatial position from the central waveg-
uide (n = 0) and leaves behind a plane-wave-like radiation
propagating in the opposite direction. The dynamic nature of
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FIG. 6. Position of the soliton and DifRR in the wave-number
domain as a function of propagation distance for different values of
δ. (b) Evolution of DifRR for different chirp parameters δ. The dotted
lines are obtained using the modified PM relation (13).

DifRR is prominent in the (κ, ξ ) plane where it shifts along the
propagation distance as indicated by the tilted dashed line in
Figs. 5(b) and 5(e). The intensity of the generated DifRR and
its position (at the κ plane) can be controlled by δ. For higher
values of δ, stronger DifRR is generated at relatively shorter
propagation distance. The XFROG diagrams in Figs. 5(c)
and 5(f) clearly represent the formation of a discrete soliton
and DifRR (indicated by arrows). Due to anomalous recoil
[19], a part of the DifRR falls on the other side of the Brillouin
boundary when the chirp is strong enough (e.g., δ > 40 nm).
The variation of the coupling coefficient due to the irregular-
ities in the WA can be approximated as an external potential.
However, an equivalent strength of the potential is difficult to
extract from the governing equation [Eq. (11)]. In an attempt,
numerically we try to extract the relationship between the
potential strength (χ ) and chirp parameter (gc = δ/d0). In
Fig. 6(a) we illustrate the variation of soliton wave number (κ)
along propagation distance (ξ ), which clearly shows a linear
relationship. The slope of the linear variation depends on δ

(or gc).
Inspired by the the variational results, we can propose an

approximate equation to describe the evolution of the soliton
wave number as

κ (gc, ξ ) = κ0 − χ (gc)ξ, (12)

where χ (gc) is related to the effective potential arising due
to the chirp parameter gc. The wave-number shift (
κ) of
the propagating soliton is noted for several gc, which follows
a linear relation. Based on the numerical fit as shown in
Fig. 6(b) we establish an empirical relation between potential
strength (χ ) and chirp parameter (gc): χ (gc) = mcgc where
the slope is calculated to be mc ≈ 30. With this information
we can take into account the variation of κ and its dependency

on gc when the soliton propagates through the chirped WA.
The change of wave vector leads to a modification of the
existing PM equation Eq. (8) where we have to impose the
linear variation of the wave number as a function of gc and
propagation distance (ξ ). The modified PM equation reads

{cos(κRR) − cos[κ (gc, ξ )] + sin[κ (gc, ξ )]
κ} = ̃2
0 (13)

where 
κ ≡ κRR − κ (gc, ξ ). For a simplified analysis, we
consider only the evolution of the soliton wave number and
compare the position of DifRR obtained from the modified
PM equation through Eq. (13) with numerical results. In
Fig. 6(c) we demonstrate the evolution of the dynamic DifRR
for several δ. The locations of κRR are obtained numerically
by solving the governing equation Eq. (11) and are in good
agreement with the modified PM equation Eq. (13). Finally in
Fig. 6(c) we demonstrate the variation of κRR with the chirp
parameter gc at a fixed output (ξ = 25). The dotted line is ob-
tained from the modified PM expression Eq. (13), which is in
good agreement with numerically simulated data (solid dots).

C. Solitons with an initial nonzero wave number (κ0 �= 0)

In this section, we theoretically and numerically analyze
the evolution of a soliton having nonzero initial wave number
(κ0 �= 0) in the linearly chirped WA. The interplay between
κ0 and chirping parameter brings versatility in the soliton
dynamics and allows us to investigate the operating domain.
The wave vector of the propagating field shifts linearly due
to the perturbation imposed by the waveguide chirping. As
a consequence, the propagating solitons get self-accelerated,
which is also theoretically predicted by variational method.
For numerical analysis, we consider a soliton propagation for
a fixed chirp value δ = 30 nm. Here we can have two cases,
κ0 < 0 and κ0 > 0. For positive initial wave number (κ > 0)
we observe a striking feature where the soliton emits twice
during its propagation.

In Fig. 7(a) we illustrate the soliton dynamics in n space
where the accelerated soliton emits two consecutive radiations
marked by numbers 1 and 2. Note Eq. (6), which is not an
exact solution for the chirped WA, emits some low-amplitude
damped-oscillatory radiation in the form of Airy tails during
its acceleration [20,44,45]. The amplitudes of such radiations
are weak in comparison with the phase-matched DifRR. In
κ space, as shown in Fig. 7(b), the DifRR is prominent
and shows its dynamic nature. The first radiation appears
at around ξ ≈ 5 whereas the second begins at ξ ≈ 50. Fig-
ure 7(b) helps us to understand qualitatively the possible
reason for dual DifRR. The transverse wave number (κ) of
the propagating soliton shifts linearly with a negative slope
due to waveguide chirping. For initial positive wave num-
ber (κ0 > 0) there will be a crossover when κ shifts from
positive to negative value due to continuous wave-number
shift. In Fig. 7(b) we can observe this crossover of wave
number which occurs around ξ ∼ 30. With suitable choice
of parameter it is possible that the PM equation [Eq. (13)]
can be satisfied for κ > 0 as well as κ < 0, which leads
to two independent radiations. In Fig. 7(c) we capture the
spatial spectrogram of the entire dynamics at a fixed distance
ξ = 15 where the first radiation is evident and the second

033512-6



DYNAMIC DIFFRACTIVE RESONANT RADIATION IN A … PHYSICAL REVIEW A 102, 033512 (2020)

FIG. 7. Discrete soliton propagation in the (a), (d) (n-ξ ) and (b),
(e) (κ-ξ ) plane for ψ0 = 0.8, δ = 30 nm, and κ0 = 0.5 (for (a),
(b)) and κ0 = −0.5 (for (d), (e)). (b) Dual and (e) single DifRR
are evident in κ space. A tiny part of the radiation experiences a
boundary reflection in κ space and emerges on the other side as a
part of anomalous recoil. (c) Spatial spectrogram at ξ = 20 where
the first DifRR is indicated by the arrow. (f) Spatial spectrogram at
ξ = 40; the location of the DifRR is indicated by the vertical dotted
line.

radiation is yet to appear. To visualize the complete picture see
Supplemental Material [46].

In Figs. 7(d)–7(f) we demonstrate the complete dynam-
ics of the discrete soliton with negative initial wave number
(κ0 < 0). Note that, in case of κ0 < 0, there is no crossover
of the soliton wave number and its value remains negative
throughout the propagation. The Airy tail emitted from the
soliton as a pedestal is weak and diminishes during propa-
gation. Under such condition only one solution appears from
Eq. (13) and we observe a single strong DifRR. The soliton
and the detuned wave number of the generated DifRR are
well separated in the κ space exhibiting a dynamic evolution
[see Fig. 7(e)]. The generated DifRR is moving away from the
soliton owing to the effective linear potential induced by the
chirp. However, due to the boundary of −π to π set by the
one-dimensional lattice, the DifRR emerges from the other
side due to anomalous recoil by undergoing a phase shift of
2π . In Fig. 7(f) we demonstrate the spatial spectrogram where
DifRR is evident and indicated by a vertical dotted line. A
weak Airy tail is visible in the spectrogram the wave number
of which overlaps with the soliton. From Fig. 7(f) we also have
the hint of anomalous recoil which appears at the Brillouin
boundary. Finally in Fig. 8 we demonstrated the evolution of
DifRR theoretically supported by Eq. (13) (solid lines). The
dual radiation is evident in Fig. 8(a) for κ0 > 0 where the
soliton emits twice. Two distinct solutions appear when we
take into account the crossover of the wave number (κ) in
the PM equation [Eq. (13)]. The shaded region indicates no
radiation zone. The solid dots in Fig. 8(a) represent the values
of κRR extracted from the numerical solution of Eq. (11). In
Fig. 8(b) we depict the case for κ < 0 where a single strong
radiation is emitted from the moving soliton. The soliton wave
number (κ) remains negative throughout the propagation and
leads to a single solution of Eq. (13). The analytical solution
(solid line) based on the PM equation [Eq. (13)] quantitatively
determines the radiation wave numbers and corroborates well

FIG. 8. (a) κRR as a function of ξ for dual radiation with the
parameters κ0 = 0.5, ψ0 = 0.8, and δ = 30 nm. The two branches in-
dicate two radiations that appear at two different ranges of distances.
(b) κRR as a function of ξ for single radiation for the parameters
κ0 = −0.5, ψ0 = 0.8, and δ = 30 nm. In the figures, the solid lines
represent the analytical prediction obtained from Eq. (13) where dots
are numerical data.

with the numerical values of κRR indicated by solid dots in
Fig. 8.

IV. CONCLUSION

We demonstrate that a linearly chirped waveguide array
exhibits discrete-soliton mediated dynamic diffractive reso-
nance radiation where the wave number of the radiation field
shifts along propagation distance. Perturbation due to irreg-
ularities of waveguide arrangements is modeled as a linear
potential in a nonlinear Schrödinger equation which governs
the soliton dynamics. We propose realistic waveguide design
where diffractive resonance radiation can be excited naturally
from a discrete soliton. To gain intuitive insight into soli-
ton evolution inside a transversely chirped WA we exploit
perturbative variational analysis. The variational treatment
leads to the equations of motion of soliton parameters which
predict self-acceleration of discrete solitons and linear wave-
number shift. Using this information we model the discrete
nonlinear Schrödinger equation and theoretically modify the
phase-matching equation, which capture the dynamic nature
of wave-number shift of diffractive radiation. Evolution of
the soliton is investigated for zero and nonzero initial wave
numbers. An intriguing effect of dual diffractive resonance
radiation is observed when a soliton with positive wave num-
ber is launched in the WA. The theoretical underpinning of
dual radiation lies with the fact that the soliton wave number
experiences a crossover by shifting its value from positive
to negative owing to the chirping in the WA. This crossover
results in two distinct solutions of the PM equation at two
different propagation distances and leads to dual radiation. We
theoretically confirm this phenomenon by solving the modi-
fied PM equation. This paper could pave the way for designing
waveguide-array based optical devices that are capable of
generating a controllable spatial supercontinuum.
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