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Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative
couplings in optomechanical systems
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This paper presents a theoretical study of optomechanical systems in which the mechanical resonator
modulates both the resonant frequency (dispersive coupling) and the decay rates (dissipative coupling) of the
optical cavity. The generic dispersive framework is extended to a more general case in which the dissipative
coupling is split between its external and intrinsic contribution. We report a complete analysis of the influence
of both external and intrinsic optical losses on each of the three coupling mechanisms, highlighting the
interest of each optical loss regime. A presentation of the basic model to experimentally identify the three
couplings and their relative influence on the optical response is proposed. We also extend the basic tools by
analyzing the mechanical dynamics and demonstrating the general expression of the optical spring effect and
of optomechanical damping. A comparison between our theoretical model and experimental measurements in
photonic crystal systems from the literature yields good agreement.
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I. INTRODUCTION

Cavity optomechanics explores the mutual interaction of
electromagnetic radiation and mechanical vibrations. In most
optomechanical systems, the mechanical displacement modu-
lates the resonant frequency of an optical cavity. This coupling
of dispersive nature gives rise to several phenomena, such as
the optical spring effect and the amplification or cooling of
the mechanical motion. These have been studied theoretically
[1–3], and have been achieved in various setups such as a
membrane inside a Fabry-Pérot cavity (so-called membrane-
in-the-middle) [4], suspended microdisks [5], and phoxonic
crystal systems [6]. Additionally, dissipative coupling, where
the photon decay rate is modulated by mechanical vibrations,
can also arise in optomechanical systems. This scheme was
first proposed theoretically in the context of optomechanical
cooling as an alternative to dispersive coupling in the so-called
unresolved sideband limit [7], and also for its squeezing abil-
ity [8–10]. This coupling mechanism was implemented exper-
imentally in diverse configurations such as Michelson-Sagnac
interferometers [11–14], whispering gallery mode resonators
coupled to a nanomechanical beam waveguide [15–18], ring
resonators coupled to a micromechanical resonator [19], and
photonic crystal (PhC) systems [20,21].

More recently, it has been experimentally shown for two
different PhC systems [20–22] that dissipative coupling must
be split into its external (κe

om) and intrinsic (κ i
om) contributions.

Wu et al., in their PhC split-beam nanocavity [Fig. 1(a)],
performed measures of dispersive coupling (gom) and κ i

om
in the GHz/nm range and κe

om in the MHz/nm range [20].
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While the external dissipative coupling is weaker in absolute
terms, they observed that it has a larger relative impact in
the undercoupled regime (low optical losses at the input
drive port κ̄e compared to the intracavity losses κ̄i), which
means that the optical loss regime (defined by the ratio κ̄e/κ̄i)
is likely to have a strong influence on the optomechanical
response. In addition to this experimental study, Tsvirkun
et al., in their PhC slab suspended over an input waveguide
[Fig. 1(b)], measured all three contributions gom, κe

om, and κ i
om

in the GHz/nm range [22]. They observed various detuning
behaviors depending on the external decay rate (by changing
the geometrical characteristics of the input waveguide). Addi-
tionally, several coupling configurations have been achieved
by Tsvirkun et al., including a situation where the intrinsic
dissipative contribution is greater than the other two.

The theoretical framework used to describe optomechani-
cal systems usually considers a purely dispersive interaction
(see [1–3]). Dissipative coupling has been discussed in only a
few previous works. Elste et al. have assumed that dissipative
coupling occurs solely through the modulation of the external
optical losses in the particular case of the overcoupled regime
(κ̄e � κ̄i, see erratum of [7]). Weiss et al. have examined
an overall dissipative coupling, i.e., a change in the overall
optical loss rate with the mechanical motion, in their first
study [23]. In their second study, they briefly mentioned the
three couplings without discussing the impact of the optical
loss regime (see the Appendix of [24]). However, the distinc-
tion between the two dissipative couplings and their relative
influence in all optical loss regimes has not been clearly
considered in these studies.

In this paper, we extend the theoretical framework based
on the formalism used to describe purely dispersive op-
tomechanical systems. We give a general description of the
optomechanical interactions in the presence of dispersive,
external, and intrinsic dissipative couplings, in all optical
loss regimes. The proposed extension can be used in various
future applications where the distinction between the two
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FIG. 1. (a) Scanning electron microscope (SEM) image of a PhC
split-beam nanocavity from Wu et al. [20]. (b) SEM image of an
integrated PhC mechanical resonator vertically stacked over a silicon
on insulator waveguide from Tsvirkun et al. [22]. (c) Schematic
illustration of the equivalent Fabry-Pérot optical cavity with one
movable mirror. The important quantities, namely, the normalized
intracavity field amplitude (a), the input and output photon flux (sin

and sout), the external and intrinsic optical decay rates (κe and κi),
the mechanical displacement (um), the mechanical intrinsic damping
(γm), the optical resonance frequency ωc, and the three first-order
optomechanical couplings (gom, κe

om, and κ i
om), are introduced.

dissipative couplings is necessary. We refer throughout to the
PhC systems of Wu et al. [20] and of Tsvirkun et al. [22]
to illustrate our calculations and ascertain their validity in
concrete situations.

This paper is organized as follows. In Sec. II, we de-
velop the optical input-output relation and the mechanical
dynamical equation in order to establish the general coupled
equations of motion. In Sec. III, we analyze the mean output
optical response and highlight the influence of each optome-
chanical contribution on the optical readout of mechanical
motion, in all optical loss regimes. This is of practical impor-
tance, as it will allow us to experimentally identify the cou-
pling strength of each contribution in future optomechanical
systems. In Sec. IV, we derive the impact of each coupling
on the intracavity field fluctuations and use the backaction
force operator to determine the mechanical spectrum and its
associated optomechanical effects (optical spring effect and
optomechanical damping). The impact of optical detuning on
these quantities is finally compared to the measurements of
Tsvirkun et al. [22].

II. COUPLED EQUATIONS OF MOTION

In this section we introduce the coupled equations of
motion in the presence of the three optomechanical couplings.

They represent the basis of any model aiming to describe
the mutual interaction between electromagnetic radiations
in an optical cavity and mechanical vibrations. The generic
theory developed here is only valid in the linear case, i.e., for
small mechanical displacements (first-order perturbations).
We consider a generic optomechanical system, constituted by
an optical and a mechanical resonator of respective resonance
frequencies ωc and ωm. The optical input-output relation is
first used to introduce the three optomechanical couplings.
The harmonic oscillator model is then used to describe the
mechanical behavior. Finally, we derive the coupled equation
of motion by means of a linearization of the optical field and
mechanical amplitude around a mean steady-state value.

The optical element is considered to be a one-port cavity in
which the light can be coupled in or out by the same side.
Typical one-port optical systems are a Fabry-Pérot system
with one partially reflective mirror and one perfectly reflective
mirror [see Fig. 1(c)] [25], all-pass ring resonators [19], and
whispering gallery mode resonators coupled to an optical fiber
[18]. The temporal dynamic of the intracavity complex field
amplitude a(t ) is governed by the input-output relation [1,26]

ȧ(t ) = −
{

κ (um)

2
− i[ωL − ωc(um)]

}
a(t ) +

√
κe(um)sin(t )

(1)
where um(t ) is the temporal mechanical amplitude; κe and κi

are, respectively, the external and intrinsic photon decay rates;
κ = κe + κi is the overall cavity decay rate; ωL is the input
laser angular frequency; and sin is the input laser flux. The
field amplitude is normalized such that |a|2 = ncav stands for
the number of intracavity photons. As in most optomechanical
systems the optical frequency ωc depends on the mechanical
amplitude um. In our paper, because of the dissipative interac-
tions, we also consider that the decay rates κe and κi depend
on um. We thus introduce the dispersive coupling gom, external
dissipative coupling κe

om, and intrinsic dissipative coupling
κ i

om which correspond to a shift of, respectively, the cavity
resonance frequency, the external decay rate, and the intrinsic
decay rate due to the mechanical oscillator motion, which are
defined using the first-order Taylor expansion as

ωc(um) = ωc0 + gomum(t ), (2)

κe(um) = κe0 + κe
omum(t ), (3)

κi(um) = κi0 + κ i
omum(t ), (4)

where ωc0, κe0, and κi0 are, respectively, the optical bare
cavity (i.e., without any optomechanical interaction) angular
frequency and the external and intrinsic loss rates. It is impor-
tant to remark that while quadratic coupling can be relevant
in some situations, such as in the “membrane-in-the-middle”
setup where a purely dispersive quadratic coupling could lead
to quantum nondemolition measurement of the mechanical
ground state [4], it is beyond the scope of this paper and we
will focus only on the effects induced by the three first-order
couplings.

The mechanical element is modeled as a harmonic oscil-
lator with intrinsic damping γm = ωm/Qm (with Qm the me-
chanical quality factor) and effective mass meff . The dynam-
ical temporal behavior of the mechanical complex amplitude
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is governed by the equation [1,27]

üm(t ) + γmu̇m(t ) + ω2
mum(t ) = FL(t )

meff
+ Fopt (t )

meff
, (5)

where FL(t ) represents the thermal Langevin force arising
from the thermal fluctuations and responsible for the Brow-
nian motion of the mechanical resonator, and Fopt (t ) is the
optical force induced by the intracavity field.

In order to derive the coupled optomechanical equations
of motion, we expand and linearize the input-output relation
for the intracavity field. Consider the mean steady-state value
of the field amplitude ā and mechanical displacement ūm

and their respective temporal fluctuations δa(t ) and δum(t )
such that a(t ) = [ā + δa(t )]e−iωLt and um(t ) = ūm + δum(t ).
Second-order terms such as δa(t )δum(t ) are neglected. We
consider a continuous input flux sin = s̄ine−iωLt with s̄in con-
stant. We define (1) �̄ = �0 − gomūm the effective optical
detuning (with �0 = ωL − ωc0), (2) κ̄e0 = κe0 + κe

omūm the
effective external photon decay rate, (3) κ̄i0 = κi0 + κ i

omūm the
effective intrinsic photon decay rate, and (4) κ̄ = κ̄e0 + κ̄i0 the
effective overall photon decay rate.

Under the assumption of small mechanical displacement
fluctuations, we can use the first-order expansion

√
κe(um) = √

κ̄e0

(
1 + κe

om

2κ̄e0
δum(t )

)
, (6)

in the optical input-output relation (1). We linearize Eqs. (1)
and (5) by means of all the definitions previously introduced
to obtain Eqs. (7)–(10). The mean intracavity field and dis-
placement amplitudes are given by

ā =
√

κ̄e0

κ̄/2 − i�̄
s̄in, (7)

ūm = F̄opt

meffω2
m

, (8)

where F̄opt represents the mean optical force responsible for
the change in the detuning and the decay rates. Note that a
nonlinear effect named static bistability arises because of the
impact of the mean mechanical displacement on the optical
parameters: under certain conditions, Eqs. (7) and (8) have
multiple solutions, giving rise to several stable behaviors,
which have been studied in dispersive and dissipative optome-
chanical systems [28–30].

In addition, the field and displacement fluctuations obey
the following differential equations:

δ̇a(t ) =
(

− κ̄

2
+ i�̄

)
δa(t ) −

[(
κe

om + κ i
om

2
+ igom

)
ā

− κe
om

2
√

κ̄e0
s̄in

]
δum(t ) + √

κ̄e0 s̄in, (9)

¨δum(t ) + γm ˙δum(t ) + ω2
mδum(t ) = δFL(t )

meff
+ δFopt (t )

meff
.

(10)

While the purely dispersive terms remain unchanged [1–3],
we can observe that the dissipative couplings give rise to
supplementary terms proportional to the mechanical displace-
ment fluctuations. As observed in a previous study on dis-
sipative optomechanical systems [23], and in contrast to the

dispersive case which is a purely cavity assisted coupling pro-
portional to the intracavity steady-state field ā, the dissipative
terms are also proportional to the drive flux sin. In our paper,
because we distinguish the intrinsic and external components,
we trace this effect back to the external dissipative coupling.

In our model, the optical cavity is assumed to be a one-port
system. For multiport optical systems, the model can still be
valid by defining different optical loss rates. We also did not
consider any external modulation of the input field, which may
add additional terms to the previous equations.

In the following, the influence of each coupling on the
mean optical response is studied. The two coupled equations
of motion (9) and (10) are then used as a starting point
to derive the mechanical spectrum and the optomechanical
effects in the presence of dispersive, external, and intrinsic
dissipative couplings.

III. OUTPUT OPTICAL RESPONSE

In order to fully understand the basic optical behavior of
an optomechanical system with the three couplings, the mean
steady-state output optical response is studied. The optical
loss regimes are defined and their influence on the mechan-
ically induced optical power oscillations is analyzed. To this
end, the mean output optical response has to be determined.
As we are considering a one-port optical cavity, there is
a single output photon flux sout [see (1)]. The input-output
relation for this output flux is given by

sout (t ) =
√

κe(um)a(t ) − s̄in. (11)

After linearization of this relation, the mean steady-state
value of the optical flux s̄out is deduced by means of (7):

s̄out = κ̄e0 − κ̄/2 + i�̄

κ̄/2 − i�̄
s̄in. (12)

The mean steady-state output response, defined as Rout =
|s̄out/s̄in|2, reads

Rout = (κ̄e0 − κ̄/2)2 + �̄2

(κ̄/2)2 + �̄2
. (13)

Practically speaking, Rout is similar to the typical reflec-
tion response of a one-port Fabry-Pérot cavity (with one
mirror partially and the other one perfectly reflective). The
mechanically induced optical oscillations are represented by
dRout/dum, which is given by

dRout

dum
= gom

∂Rout

∂�̄
+ κe

om
∂Rout

∂κ̄e
+ κ i

om
∂Rout

∂κ̄i
, (14)

where the derivatives of Rout are given by

∂Rout

∂�̄
= 2�̄(1 − Rout )

(κ̄/2)2 + �̄2
, (15)

∂Rout

∂κ̄e
= (κ̄/2 − κ̄e0) − (κ̄/2)Rout

(κ̄/2)2 + �̄2
, (16)

∂Rout

∂κ̄i
= (κ̄e0 − κ̄/2) − (κ̄/2)Rout

(κ̄/2)2 + �̄2
. (17)

In the following sections, we first present a qualitative
analysis of each derivative term under different values of the
external decay rate κ̄e0, and identify which optomechanical
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FIG. 2. Derivatives of the mean optical response amplitude as a function of the normalized detuning �̄/κ̄ . Influence of the normalized
external cavity decay rate κ̄e0/κ̄ on (a) ∂Rout/∂�̄ (blue curve), (b) ∂Rout/∂κ̄i0 (yellow curve), and (c) ∂Rout/∂κ̄e0 (red curve). Comparison
between the three derivative amplitudes in the (d) undercoupled regime, (e) critically coupled regime (yellow and red curves are overlapping),
and (f) overcoupled regime. For the six plots, the amplitudes are normalized with the maximum value between the three derivatives. The
comparison made here is purely qualitative and is independent of the value of κ̄ .

interaction (namely, dispersive, intrinsic, and external) is en-
hanced depending on the considered optical loss regime. We
then conduct the analysis with a more quantitative approach,
with different values of the optomechanical coupling rates
gom, κe

om, and κ i
om to understand their relative impact on the

amplitude of the mechanically induced mean optical power
oscillations.

A. Influence of the optical loss regime

The variations of the mean optical response, given by
the three derivatives previously calculated, with the three
quantities of interest, namely, the optical detuning �̄, the
external loss rate κ̄e, and the intrinsic loss rate κ̄i, allow us
to identify the optical loss regimes. They are displayed as a
function of the detuning �̄ and the external decay rate κ̄e in
Fig. 2. All the plots have been normalized with the maximum
value between ∂Rout/∂�̄, ∂Rout/∂κ̄e, and ∂Rout/∂κ̄i, and the
detuning �̄ and external decay rate κ̄e0 have been normalized
with the overall decay rate κ̄ , such that the previous analysis
is general and independent of the quality of the optical cavity,
i.e., independent of κ̄ . The influence of the external cavity de-
cay rate κ̄e0 is shown in Figs. 2(a)–2(c), highlighting the most
important discrepancy between the dispersive and dissipative
derivatives: the dispersive behavior is characterized by two
off resonant sidebands whereas the dissipative (both intrinsic
and external) behavior is characterized by a single resonant
maximum. We can thus identify three particular optical loss
regimes and compare the detuning dependency of the three
derivatives within each of them: (1) the undercoupled regime,

κ̄e0 � κ̄ ≈ κ̄i0 [Fig. 2(d)]; (2) the critically coupled regime,
κ̄e0 = κ̄/2 = κ̄i0 [Fig. 2(e)]; and (3) the overcoupled regime,
κ̄e0 ≈ κ̄ � κ̄i0 [Fig. 2(f)].

In the critically coupled regime [see Fig. 2(e)], the disper-
sive variation (blue curve) of the mean optical response is
the predominant mechanism, with the highest impact at off
resonance detunings. It confirms the interest of this regime
in purely dispersive optomechanical systems in which this
interaction is strongly enhanced. It also justifies that the two
dissipative optomechanical couplings are not considered in
the common theoretical model. However, since the dissipative
contribution is not negligible, we will see in the next section
that it also induces various effects on the mean optical power
oscillations.

In the undercoupled regime [see Fig. 2(d)], intrinsic losses
(κ̄i0) are higher and the external dissipative variation (red
curve) is the predominant mechanism. As a result, on reso-
nance (�̄ = 0), a small variation of the intrinsic cavity decay
rate κ̄i will not have a strong influence on the optical output
response Rout, in contrast to a small variation of external
cavity decay rate κ̄e which can have a significant impact. In
[20], the system is in this undercoupled regime (κ̄ = 31 GHz
and κ̄e0 = 1 GHz, i.e., κ̄e0 = 0.03κ̄), and the authors indeed
observed a strong dependence of the mean optical response
on the external decay rate.

In the overcoupled regime, the detuning dependency of the
intrinsic (respectively, external) dissipative variations is iden-
tical to the detuning dependency of the external (respectively,
intrinsic) dissipative variations in the undercoupled regime,
due to the mathematical symmetry between Eqs. (16) and
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FIG. 3. Absolute maximum of the derivatives of the mean optical
response as a function of the normalized external cavity decay rate
κ̄e/κ̄ . The y axis is normalized such that y values are independent
of κ̄ .

(17). Note that for the last two regimes the dispersive variation
is negligible.

The dispersive derivative of the mean optical response
(∂Rout/∂�̄) is always an off resonance effect associated with
two sidebands. These sidebands correspond to dynamical
effects (cooling or amplification of the mechanical oscilla-
tions [1–3]). Conversely the maximum of each dissipative
derivative (∂Rout/∂κ̄e and ∂Rout/∂κ̄i) always occurs on reso-
nance. However, depending on the optical loss regime, two
off resonance local maxima appear [close to the critically
coupled regime, see red and yellow curves in Fig. 2(e)], giving
rise to new working sidebands. These are related to new
optical detunings for which cooling or amplification of the
mechanical motion can occur [23]. Figure 3 represents the
maximum amplitude of the derivatives of Rout as a function
of the external cavity decay rate. These maximum amplitudes
are given by

∂Rout

∂�̄

∣∣∣∣
max

=
∣∣∣∣2[1 − Rout (�̄ = ±�̄max)]

κ̄

∣∣∣∣ (18)

κ̄e0=κ̄/2= 3
√

3

4κ̄
,

∂Rout

∂κ̄e

∣∣∣∣
max

=
∣∣∣∣ (κ̄/2 − κ̄e0) − (κ̄/2)Rout (�̄ = 0)

(κ̄/2)2

∣∣∣∣ (19)

κ̄e0�κ̄= 4

κ̄
,

∂Rout

∂κ̄i

∣∣∣∣
max

=
∣∣∣∣ (κ̄e0 − κ̄/2) − (κ̄/2)Rout (�̄ = 0)

(κ̄/2)2

∣∣∣∣ (20)

κ̄e0=κ̄= 4

κ̄
,

where �̄max = κ̄/
√

12 is the detuning of maximum slope of
the mean optical response, which is determined by making
∂2Rout/∂�̄2 equal to zero. The maximum of each variation
of the mean optical response is consequently inversely pro-
portional to the overall cavity decay rate κ̄ , which high-
lights the interest of working in the resolved sideband regime
(κ̄ � ωm) to increase optical sensibility towards mechanical

TABLE I. Optomechanical coupling absolute values and side-
band factor measured by Wu et al. [20] and Tsvirkun et al. [22].

Wu et al. [20] Tsvirkun et al. [22]

gom (GHz/nm) 1.1–1.8 0.62–1.52
κe

om (GHz/nm) 0.002–0.003 0.13–0.33
κ i

om (GHz/nm) 0.3–0.5 0.01–5.64
κ̄/ωm 103 103–104

displacement. We see that no matter the value of the optical
cavity decay rate the dissipative variations (both external and
intrinsic) of the output response in the corresponding optical
loss regime (respectively, undercoupled and overcoupled) are
always more than three times higher (16/3

√
3 ≈ 3.1) than

the dispersive one in the critically coupled regime. It em-
phasizes the interest of dissipative coupling optical readout
of the mechanical motion (for classical applications), in the
corresponding optical loss regime.

Our paper helps to clearly identify these three regimes. The
plots of Fig. 2 qualitatively summarize the steady-state optical
behavior, common to all optomechanical systems with the
three couplings. In practice, however, we measure the optical
power and have access to the total variation of the optical
power response. It is at this point that a quantitative study,
taking into account the coupling values gom, κe

om, and κ i
om, is

necessary.

B. Mean optical power oscillations

The dependence of the mean optical power oscillations
of our generic system on the optical detuning and external
cavity decay rate is thus quantitatively studied based on
different optomechanical coupling configurations. To this end,
we define the output power as Pout = RoutPin with Pin the input
power. Based on Eq. (14), the total derivative of the optical
response is the sum of each partial derivative weighted by
the optomechanical coupling values. Therefore the mechan-
ically induced mean optical power oscillations are given by
dPout/dum = PindRout/dum in W/m. Note that we actually
use an input power of 1 mW and thus the μ W/pm unit of
measurement for convenience.

Table I summarizes the typical absolute coupling values
and corresponding sideband parameter κ̄/ωm measured by Wu
and coworkers in one of their PhC split-beam nanocavities
[20,21] and by Tsvirkun et al. in their PhC slab suspended
over an input waveguide [22,31]. The best optomechanical
systems are designed for dispersive optomechanical cooling
applications in the resolved sideband regime and achieved
κ̄ = 0.02 ωm [1]. However, based on both the measurements
of Wu and coworkers [20,21] and Tsvirkun et al. [22], we
notice that the sideband factor κ̄/ωm has no impact on the
achievable dispersive and dissipative coupling values. The
amplitude of mechanically induced mean optical power os-
cillations is not influenced by this parameter, but only by the
value of κ̄ itself, i.e., by the quality of the optical cavity. It
is also independent of the mechanical resonator properties
(resonant frequency ωm, quality factor Qm, and effective mass
meff ). However, the sideband regime influences the optically
induced effects on the mechanical properties (see last section).
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FIG. 4. Mechanically induced mean optical power oscillations
as a function of the normalized detuning �̄/κ̄ and the normalized
external cavity decay rate κ̄e/κ̄ for different optomechanical coupling
configurations, in the unresolved sideband limit κ̄ = 103ωm with
ωm = 1 MHz.

Figure 4 represents the mechanically induced mean optical
power oscillations dPout/dum as a function of the optical
detuning and the external loss rate for five optomechani-
cal coupling configurations (the coupling values are given
in the figure). These are related to five different coupling
regimes with strong physical behavior discrepancies both on
the mean optical behavior and on the dynamical effects that
we will analyze in the last section. We set κ̄ = 103 ωm =

TABLE II. Mechanical and optical parameters used to describe
the PhC devices of Tsvirkun et al. All parameters have been retrieved
from [22,31] (mechanical mode labeled M1), except for κ̄ and κ̄e,
which have been deduced for each configuration.

Mechanical properties

ωm 2.22 MHz
Qm 2000
meff 117.2 pg

Optical properties

Pin 6.8 mW
λcav 1563.42 nm
κ̄ 0.09 nm, i.e., 11 GHz (Fig. 5)

0.18 nm, i.e., 22 GHz [Figs. 6(a) and 6(b)]
1.55 nm, i.e., 190 GHz [Figs. 6(c) and 6(d)]
0.72 nm, i.e., 88 GHz [Figs. 6(e) and 6(f)]

κ̄e 0.16 κ̄ (Fig. 5)
0.08 κ̄ [Figs. 6(a) and 6(b)]
0.21 κ̄ [Figs. 6(c) and 6(d)]
0.10 κ̄ [Figs. 6(e) and 6(f)]

1 GHz (based on one of the devices of Tsvirkun et al.
[22,31]). Figure 4 shows that in this case the maximum
absolute power oscillations are around 4 μ W/pm, for gom,
κe

om, and κ i
om at 1 GHz/nm, and that this value increases

linearly when decreasing κ̄ (0.4 mW/pm for κ̄ = 10, ωm =
10 MHz). In the absence of optomechanical effects, we can
easily calculate the corresponding thermal optical spectrum.
For instance, consider a mechanical resonator with meff =
117.2 pg and Qm = 2000 (from Tsvirkun et al., see Table II).
The associated resonant Brownian motion at room tempera-
ture (T = 294K) is given by

√
Sth = √

4kBT Qm/meffω3
m [27]

where kB = 1.38 × 10−23m2 kg/s2 K is the Boltzmann con-
stant. Thus we have

√
Sth ∼ 0.16 pm/

√
Hz, and the associated

maximum optical power spectral density (PSD) is
√

Sopt,th ∼
0.6 μ W/

√
Hz for κ̄ = 1GHz (and

√
Sopt,th ∼ 60μ W/

√
Hz

for κ̄ = 10 MHz). As a remark, we point out that the previous
calculation is based on values from Tsvirkun et al. [22,31],
which, although typical, may vary according to the relative
strength of the optomechanical couplings. Nevertheless, the
calculation remains relevant because it gives an order of
magnitude of the quantity effectively measured.

Figure 4(a) illustrates a mostly dispersive case where the
strongest mean optical power oscillations arise at critical cou-
pling and off resonant detuning. We consider relatively low
dissipative couplings in comparison to gom, which explains the
low power oscillations in the undercoupled and overcoupled
regime. However, we observe an asymmetry in the amplitude
of the dispersive sidebands due to the nonzero dissipative
couplings. Indeed, the comparison with Fig. 2 reveals that the
dissipative mechanisms induce, on resonance, a negative (or
positive, depending of the sign of the couplings) amplification
of the power oscillations which are added to or subtracted
from the dispersive sidebands. This effect is responsible for
the strong asymmetry of the five plots. Figures 4(b) and 4(d)
show the influence of a stronger, respectively, external and
intrinsic dissipative coupling, with the same dispersive cou-
pling value. We observe an amplification of the asymmetry
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in the critically coupled regime. The highest power oscil-
lations in these two cases are achievable on resonance in
the undercoupled (for higher external dissipative coupling) or
overcoupled (for higher intrinsic dissipative coupling) regime.
Figure 4(c) illustrates the case where the three optomechanical
couplings are at the same level (Tsvirkun et al. were close to
this situation in one of their devices, see Fig. 3(d) in [22]).
Finally, Fig. 4(e) shows the dissipative case in which disper-
sive optomechanical coupling is negligible in comparison to
the two other couplings, almost completely extinguishing the
dispersive detuning sidebands in the critically coupled regime.
In the last two situations, working in the undercoupled or
overcoupled regime will induce the same strong optical power
oscillations on optical resonance. The sign of each coupling
can also induce other discrepancies, but the behavior does not
drastically change. The absolute mean optical power oscilla-
tions remain in the same order of magnitude, but maximum
absolute values can arise at different detuning values in the
critically coupled regime.

The five plots of Fig. 4 summarize all the physical situ-
ations it is possible to encounter when measuring the mean
optical response of an optomechanical setup. Our analysis
reveals that the optical loss regime and the optomechanical
coupling configuration have a strong influence on the optical
behavior. As pointed out in [20], the tools introduced here
can be used to identify the magnitudes of each coupling in
practical optomechanical experiments. To achieve this, one
must fit the optical power oscillations at mechanical reso-
nance by means of Eqs. (14)–(17) to estimate the relative
contribution (i.e., the coupling strengths gom, κ i

om, and κ i
om)

of each optomechanical coupling process. These tools have
been used by Wu et al. [20] and Tsvirkun et al. [22] in
their own systems, the observed detuning behaviors of which
correspond to specific cases in our analysis. As this basic
model uses the general expression of the mean output optical
response, it is very general and can thus be applied to a large
variety of systems. However, to fully understand the physical
phenomena induced by the three types of coupling in an
optomechanical device, we need to analyze the mechanical
dynamic and determine the optically induced effects on the
mechanical properties.

IV. MECHANICAL SPECTRUM

In the following, we investigate the dynamical properties
of the mechanical resonator. We first use the input-output
relation [see Eq. (9)] in order to obtain the Fourier trans-
form of the intracavity field fluctuations. After calculating
the optical force in the presence of dispersive and dissipa-
tive couplings, the mechanical response is determined, from
which the general expressions of the optical spring effect and
optomechanical damping are extracted. Finally, the theoretical
optical spectrum in a concrete case is compared with previous
measurements from Tsvirkun et al. [22].

From now on, we work in the Fourier space and choose
the convention a(ω) = ∫ +∞

−∞ a(t )e−iωt . The Fourier transform
of Eq. (9) allows us to write the fluctuations of the intracavity
field as

δa(ω) = δadisp(ω) + δae
diss(ω) + δai

diss(ω), (21)

with δadisp(ω), δae
diss(ω), and δai

diss(ω) the fluctuations in-
duced by, respectively, the dispersive, the external dissipative,
and the intrinsic dissipative coupling given by

δadisp(ω) = −igom χ eff
cav(ω) ā δum(ω), (22)

δae
diss(ω) = κe

om(κ̄/2 − κ̄e0 − i�̄)

2κ̄e0
χ eff

cav(ω)āδum(ω),

(23)

δai
diss(ω) = −κ i

om

2
χ eff

cav(ω) ā δum(ω). (24)

Here we recognize in each term the effective cav-
ity response in the presence of optomechanical interaction
χ eff

cav(ω) = [κ̄/2 − i(�̄ + ω)]−1 which is due to the filtering
role of the resonant optical cavity [1]. The three couplings
lead to an optical force Fopt (t ) the fluctuations of which can
be described by the backaction force operator [7,15], which in
the case of a constant input flux [i.e., s̄in(t ) = s̄in] is written

δFopt (t ) = −h̄gom[ā∗δa(t ) + āδa∗(t )]

−ih̄
κe

om + κ i
om

2

sin√
κ̄e0

[δa∗(t ) − δa(t )]. (25)

The first term corresponds to the dispersive optical force
and is linked to the intracavity photon energy, which varies
with mechanical displacement. The second term is the dissi-
pative optical force, analogous to a viscous force and origi-
nating from the photons leaking out of the cavity via external
or intrinsic dissipation mechanisms. This general expression
leads to a linear relation between the Fourier transforms of
the optical force and displacement fluctuations. The effec-
tive mechanical susceptibility χ eff

m defined by δum(ω, �̄) =
χ eff

m (ω, �̄)FL(ω) is thus determined by

χ eff
m (ω, �̄) = 1

meff
(
ω2

m − ω2 − iωγm
) + 
(ω, �̄)

(26)

where


(ω, �̄) = −δFopt

δum
(27)

is the optomechanical self-energy [1]. We can introduce the
optical spring effect δωm and optomechanical damping γopt

with the relation 
 = meff (2ωδωm − iωγopt ). These two quan-
tities are then expressed as

δωm(ω, �̄) = − 1

2ωmeff
Re

[
δFopt

δum

]
, (28)

γopt (ω, �̄) = 1

ωmeff
Im

[
δFopt

δum

]
, (29)

where Re and Im, respectively, stand for real and imaginary
parts. Because the optical force is composed of three forces
induced by each coupling, the optically induced effects are
composed of three terms proportional to g2

om, (κe
om )2, and

(κ i
om )2 corresponding, respectively, to the purely dispersive,

external dissipative, and intrinsic dissipative situation. How-
ever, as the intracavity field fluctuations depend on the three
couplings at the same time [see Eqs. (22)–(24)], there are
also “interferences” between them which lead to intertwined
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terms proportional to gomκe
om, gomκ i

om, and κe
omκ i

om (see the
Appendix).

The sum of the contributions of the purely dispersive,
external and intrinsic dissipative, and crossing terms leads to
the overall optical spring effect and optomechanical damping
in the presence of the three couplings:

δωm = δωdisp
m + δωdiss,e

m (ω) + δωdiss,i
m

+ δωdisp,diss,e
m + δωdisp,diss,i

m + δωdiss,e,diss,i
m (30)

γopt = γ
disp
opt + γ diss,e

opt + γ diss,i
opt + γ

disp,diss,e
opt

+ γ
disp,diss,i
opt + γ diss,e,diss,i

opt . (31)

In practical experiments, we have access to the optical
PSD Sopt (ω, �̄) in W2/Hz, related to the mechanical PSD
Sm(ω, �̄) in m2/Hz by

Sopt (ω, �̄) = P2
in

∣∣∣∣dRout

dum

∣∣∣∣
2

Sm(ω, �̄), (32)

with dRout/dum given by Eq. (14). The mechanical PSD is
given by the fluctuation dissipation theorem [1,27]:

Sm(ω, �̄) = 4kBT ωm

Qm

∣∣χ eff
m (ω)

∣∣2
. (33)

The full expressions of the optomechanical effects (given
in the Appendix) are complex to analyze. Depending on the
optical and mechanical characteristics of the system under
study, some terms will predominate over others and the full
expressions can be simplified. More precisely there are three
major properties to consider: (1) the sideband regime defined
by the relative difference between the overall optical loss
κ̄ and the mechanical resonance frequency ωm; (2) the loss
regime defined by the relative difference between the intrinsic
and external decay rates, respectively, κ̄i and κ̄e; and (3)
the optomechanical coupling configuration defined by the
relative difference between the dispersive, the intrinsic, and
the external dissipative couplings, respectively, gom, κ i

om, and
κe

om.
All the possible limit cases are represented in Fig. 5.

There are 45 limit case situations, characterized by a sideband
regime, an optical loss regime, and a coupling configuration,
with various impacts on the optical and mechanical dynamics.
Each case is accessible experimentally in principle. However,
few practical studies have studied the three optomechanical
couplings [20–22], and no empirical study on the effects
of optical loss and sideband regimes on the optomechanical
response has confirmed the possibility of experimentally ac-
cessing these regimes. For this reason, and in order to give a
physical insight of our model, we choose to analyze one of the
practical systems. To this end, we examine several optome-
chanical configurations in the undercoupled and unresolved
sideband regimes and consider the measurements of Tsvirkun
et al. on their PhC mechanical resonator suspended over an
optical waveguide [22].

The parameters associated with their devices are given in
Table II. The mechanical quality factor is chosen in the range
Qm ∼ 2000–3000 (see Tsvirkun et al. [22,31]). The optical
decay rates are adjusted according to their measurements.
Tsvirkun et al. studied the same mechanical mode (labeled

FIG. 5. Schematic representation of limit cases in optomechan-
ical systems with the three types of couplings. There are three
properties to consider: the sideband regime, the optical loss regime,
and the optomechanical coupling configuration. This leads to 45 limit
case situations.

M1) in various configurations depending of the width wwg of
the input waveguide. In order to remain coherent with their
measurements, we take into account a proportionality factor in
our theoretical optical spectrum and define a corrected optical
spectrum Sp in W/Hz as

Sp(ωm, �̄) = (ηβ2gtiA)2

R
Sopt (ωm, �̄). (34)

Tsvirkun et al. [22] explain that “η = 0.8 is the coupling
efficiency between the laser output and the lens focusing the
beam onto the grating coupler, β = 0.035 is the coupling ef-
ficiency into (and out of) the access waveguide, A = 25 is the
signal amplification, gti = 1400 V/W is the transimpedance
gain of the photodetector and R = 50 ” (see [22] for more
details). In the following, Sp is considered as the optical PSD
for the sake of clarity. We apply our model to these systems
and compare it to the measurements in Figs. 6 and 7. The as-
sociated dispersive and dissipative optomechanical couplings
(from their measurements) are indicated in the figures for each
configuration.

The optical spring effect, i.e., the variation of the me-
chanical resonance frequency with the optical detuning, is
compared in Figs. 6(a) (from [22]) and 6(c) (analytical expres-
sion). Good agreement is found between our model and the
experimental results with a similar detuning dependency and
the same order of magnitude of 5 kHz for δωm. This maximum
variation of the mechanical resonance frequency occurs close
to optical resonance, which is the signature of an important
dissipative behavior.
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FIG. 6. Optical spring effect [(a) from [22] and (c) from theory]
and optical PSD at mechanical resonance frequency Sp(ωm, �̄) with
ωm depending on �̄ [(b) from [22] and (d) from theory] as a function
of the normalized optical detuning �̄/κ̄ for an input waveguide width
wwg = 450 nm. The colorbar of figure (a) is not considered as we are
only comparing the variation of the mechanical resonance frequency.
The insets show the contribution of each coupling on dRout/dum

(gom∂Rout/∂�̄ in blue, κ i
om∂Rout/∂κ̄i in red, and κe

om∂Rout/∂κ̄e in
yellow). Tsvirkun et al. [22] determined it experimentally by fitting
the optical spectrum on mechanical resonance with Eq. (14), which
allows them to identify the coupling strengths.

The optical PSD at mechanical resonance frequency
Sp(ωm, �̄) (with ωm depending on �̄) as a function of
the normalized optical detuning is compared in Figs. 6(b)
(from [22]) and 6(d) (analytical expression). The insets show
the contribution of each optomechanical coupling on the
mechanically induced optical response oscillations [i.e., the
three terms gom∂Rout/∂�̄, κ i

om∂Rout/∂κ̄i, and κe
om∂Rout/∂κ̄e,

see Eqs. (14)–(16)]. The discrepancy on optical resonance
between the insets of measurements and theory for the ex-
ternal dissipative contribution (i.e., κe

om∂Rout/∂κ̄e) is due to a
Fano modification of the optical response in the experiments.
We do not consider this effect as it has no impact on the
optomechanical effects [20]. The detuning dependency is
governed by the external decay rate regime, i.e., the value
of κ̄e, and the order of magnitude is mostly governed by the
decay rates, the input power, and the mechanical properties.
As the last two are fixed, the decay rates are adjusted (see
Table II). The overall optical loss rate κ̄ is kept close to
0.1–1 nm [31]. The external loss rate κ̄e is determined by
looking at the contribution of each coupling on dRout/dum and
by comparing it to the measurements of Tsvirkun et al. [22,31]
[see insets of Figs. 6(b) and 6(d)]. Good agreement is found
in the detuning dependency of the optical PSD on mechanical
resonance between measurements and theory, with a single,
slightly optically detuned sideband due to the comparable
dispersive and external dissipative optomechanical coupling

values in the undercoupled regime. The orders of magnitude
of the optical PSD are comparable with a maximum close to
150 fW/Hz.

In order to study situations with various optomechanical
configurations, we compare multiple optical spectra on me-
chanical resonance in Fig. 7. Each measurement corresponds
to a different input waveguide width. For each situation, we
follow the same procedure as before, and find the best κ̄ and
κ̄e by comparing the contribution of each coupling on mechan-
ically induced optical response oscillations in theory and in
practice. For each optomechanical coupling configuration, the
system is in the undercoupled regime, and the corresponding
decay rates are given in Table II. Once again, the orders of
magnitude of the optical spectra are in good agreement with
the measurements, and the detuning dependencies follow the
same behaviors, which validates our analytical model.

V. CONCLUSION

In this paper, we have extended the theoretical framework
used to describe optomechanical systems to the general case
of a simultaneously dispersive, external dissipative, and in-
ternal dissipative coupling scheme. While the previous the-
oretical studies did not consider clearly the effect induced
by the presence of the three couplings [7,23,24], we have
highlighted, by means of a complete description of the mean
optical output response, the interest of the three optical loss
regimes and the detuning dependency of the mechanically
induced optical power oscillations in various optomechanical
coupling configurations. The mechanical spectrum and the
usual optomechanical effects (optical spring effect and op-
tomechanical damping) have been investigated. In particular,
we have revealed the existence of intertwined terms due to
“interferences” between the couplings. The optical spectrum
has been calculated in a concrete example and comparisons
with previous measurements have shown excellent agree-
ment. The study made in this paper can be used in future
optomechanical experiments to quantify the three couplings
and understand their relative influence on the optical and
mechanical responses.

As a conclusion, we want to point out the interest of
our model for practical devices. Optomechanical coupling
implies a reciprocal dependence of the mechanical response
on the optical properties. This effect can be exploited in a
sensor, which is even more interesting in the presence of the
three couplings. If, for example, a disturbance (a perturbation)
of interest induces optical losses, the mechanical properties
(effective frequency and effective quality factor) as well as
the dissipative coupling values will be affected accordingly.
Our model (including the mean optical power oscillations and
the description of the mechanical dynamics) can thus allow a
better understanding of the mechanisms involved and a proper
assessment of the sensitivity of every parameter to such dis-
turbance. We believe all the theoretical tools introduced in this
paper will benefit future studies and also serve as modeling
tools for designing practical optomechanical devices, such as
accelerometers, force sensors, gas spectroscopic and biopho-
tonic sensors, and optical signal processing devices [32].
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FIG. 7. Optical PSD at mechanical resonance frequency [Sp(ωm, �̄) with ωm depending on �̄] as a function of the normalized optical
detuning �̄/κ̄ for different input waveguide widths: wwg = 350 nm [(a) from [22] and (b) from theory], wwg = 450 nm [(c) from [22] and
(d) from theory], and wwg = 500 nm [(e) from [22] and (f) from theory]. The insets show the contribution of each coupling on dRout/dum

(gom∂Rout/∂�̄ in blue, κ i
om∂Rout/∂κ̄i in red, and κe

om∂Rout/∂κ̄e in yellow). Note that the discrepancy on optical resonance between the insets of
measurements and theory for the external dissipative contribution (i.e., κe

om∂Rout/∂κ̄e) is due to a Fano modification of the optical response in
practice [20].

APPENDIX: GENERAL EXPRESSIONS OF OPTOMECHANICAL EFFECTS

The general expressions of each term of the optical spring effect δωm and optomechanical damping γopt given, respectively,
by Eqs. (30) and (31) are calculated here thanks to the method described in the main paper. The terms due to purely dispersive,
external, and intrinsic dissipative situations are given in the following:

δωdisp
m (ω, �̄) = h̄g2

om

2meff

n̄cav

ω
Q(ω), (A1)

δωdiss,e
m (ω, �̄) = h̄(κe

om )2

16meff

n̄cav

ωκ̄e0

[
κ̄ (κ̄/2 − κ̄e0) + 2�̄2

κ̄e0
Q(ω) − κ̄�̄ P(ω)

]
, (A2)

δωdiss,i
m (ω, �̄) = − h̄(κ i

om )2

16meff

n̄cavκ̄

ωκ̄e0
[ Q(ω) + �̄ P(ω)], (A3)

and

γ
disp
opt (ω, �̄) = h̄g2

om

meff

n̄cav

ω

κ̄

2
S(ω), (A4)

γ diss,e
opt (ω, �̄) = h̄(κe

om )2

4meff

n̄cav

ωκ̄e0

[
κ̄2(κ̄/2 − κ̄e0) + 2κ̄�̄2

4κ̄e0
S(ω) + �̄ R(ω)

]
, (A5)

γ diss,i
opt (ω, �̄) = h̄(κ i

om )2

4meff

n̄cav

ωκ̄e0

[
− κ̄2

4
S(ω) + �̄ R(ω)

]
, (A6)
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where

n̄cav = κ̄e0

(κ̄/2)2 + �̄2

Pin

h̄ωL

represents the steady-state intracavity photon number and P, Q, R, and S correspond to sums or differences of the Lorentzian
shape effective cavity responses |χ eff

cav(±ω)|2, with χ eff
cav(ω) = [κ̄/2 − i(�̄ + ω)]−1, weighted or not with detuning terms � ± ω

according to

P(ω) = ∣∣χ eff
cav(ω)

∣∣2 + ∣∣χ eff
cav(−ω)

∣∣2
,

Q(ω) = (�̄ + ω)
∣∣χ eff

cav(ω)
∣∣2 + (�̄ − ω)

∣∣χ eff
cav(−ω)

∣∣2
,

R(ω) = (�̄ + ω)
∣∣χ eff

cav(ω)
∣∣2 − (�̄ − ω)

∣∣χ eff
cav(−ω)

∣∣2
,

S(ω) = ∣∣χ eff
cav(ω)

∣∣2 − ∣∣χ eff
cav(−ω)

∣∣2
.

Finally, the intertwined terms linked to “interference” between the couplings are given in the following:

δωdisp,diss,e
m (ω, �̄) = h̄gomκe

om

2meff

n̄cav

ωκ̄e0

[
− κ̄ κ̄e0

4
P(ω) + �̄ Q(ω)

]
, (A7)

δωdisp,diss,i
m (ω, �̄) = h̄gomκ i

om

4meff

n̄cav

ωκ̄e0

[
− κ̄ (κ̄/2 + κ̄e0)

2
P(ω) + �̄ Q(ω)

]
, (A8)

δωdiss,e,diss,i
m (ω, �̄) = h̄κe

omκ i
om

8meff

n̄cav

ωκ̄e0

[
κ̄ (κ̄/2 − 2κ̄e0) + 2�̄2

2κ̄e0
Q(ω) − �̄κ̄ P(ω)

]
, (A9)

and

γ disp,diss,e
om (ω, �̄) = h̄gomκe

om

2meff

n̄cav

ωκ̄e0
[κ̄�̄ S(ω) + κ̄e0 R(ω)], (A10)

γ disp,diss,i
om (ω, �̄) = h̄gomκ i

om

4meff

n̄cav

ωκ̄e0
[κ̄�̄ S(ω) + (2κ̄e0 + κ̄ ) R(ω)], (A11)

γ diss,e,diss,i
om (ω, �̄) = h̄κe

omκ i
om

4meff

n̄cav

ωκ̄e0

[
[κ̄ (κ̄/2 − 2κ̄e0) + 2�̄2]κ̄

4κ̄e0
S(ω) + 2�̄ R(ω)

]
. (A12)
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