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Equivalence of Gouy and Courant-Snyder phase
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The generation of electron vortex beams and the conversion of these beams into beams without angular
momentum by means of astigmatic optical systems, or vice versa, has been pursued in the optical and the
electron microscopy community, but also in the accelerator community in the past decades. Despite different
conceptual approaches similar results have been achieved. By adapting the Courant-Snyder theory, which was
originally developed for the description of optical properties of accelerators, to the description of laser modes, it
is shown that identical mode converters have been developed for charged particle and for light beams, and that
the Courant-Snyder phase and the Gouy phase are equivalent.
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I. INTRODUCTION

Electron vortex beams, i.e., electron beams carrying an
angular momentum, have gained interest in the quantum op-
tical and the electron microscopy communities in the past
decade for their intriguing theoretical properties but also
for their potential to enable new applications, ranging from
the manipulation of molecules, clusters, and nanoparticles
or the probing of chiral structures up to the exploration of
fundamental interactions in high-energy collisions [1]. Inde-
pendently, and largely unnoticed by the quantum optical and
electron microscopy communities, vortex beams have also
been studied theoretically and experimentally in the accel-
erator community, where other techniques and applications
have been developed. The apparent lack of communication
and interaction between these communities finds a reason in
the difference of basic concepts and notations, which obscures
the equivalence of the underlying physical effects. Yet an-
other reason is related to the fact that the very fundamental
physical approach in these communities is very different and
apparently exclusive. While one community is bound to wave
mechanics and low quantum numbers the other is strictly
related to pointlike particle mechanics in the classical limit of
very large quantum numbers. Still, similar results have been
obtained in both physical realms and a detailed comparison
leads to new insights relevant to both communities.

One of the techniques discussed in connection with vor-
tex beams is a mode converter which transforms an angular
momentum carrying Laguerre-Gaussian beam into a Hermite-
Gaussian beam, which does not carry angular momentum, or
vice versa. Originally proposed in the context of laser beams
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[2–5], mode conversion of a charged beam in an electron mi-
croscopic is discussed by Schattschneider et al. in Ref. [6] by
adopting the wave mechanical approach developed for photon
beams. This approach is further worked out in Ref. [7]. Over
a decade earlier a similar mode converter or beam adapter
transforming a beam with angular momentum into a beam
without angular momentum has already been introduced by
Derbenev [8] in the context of electron cooling of proton
beams. Besides thorough theoretical studies [9–11] this led
also to the proposal of a so-called flat-beam electron source
[12] and first experimental demonstrations of mode conver-
sion at relativistic electron energies [13–16].

The mode converters proposed in the various publications
share superficial similarities, such as that in all cases cylindri-
cal lenses are involved and that an incoming symmetric beam
is transformed into an asymmetric beam, which is oriented at
an angle of 45◦ with respect to the fundamental axis of the
astigmatic lenses. Photon beam converters are generally made
out of two lenses [5], while electron beam converters require
three quadrupole lenses [7,9–12] for a general mode conver-
sion. However, for the two lens scheme a specific distance
is required between the lenses, while adjustable fields are
conveniently applied in the three quadrupole lens adapter. So
in each case three independent parameters need to be adjusted
[17].

Besides these obvious similarities two striking differences
appear however. While in the context of lasers [2–4] and mi-
croscopy [6,7] the discussion concentrates on the conversion
of pure modes, a detailed mode description is not applied
in the context of accelerators [9–12]. The second, related
difference is that in connection with the mode description
the difference of the Gouy phase[18] in orthogonal planes of
the astigmatic optical system is considered, while Derbenev’s
transformation is based on the difference of the Courant-
Snyder phase advance [19] in the orthogonal planes of the
mode converter. A central point in the discussion of the Der-
benev transformation, yet missing in the discussion of lasers
and microscopes, is however the preservation of the beam
quality through the mode converter.
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Below it will be shown that the Gouy phase and the
Courant-Snyder phase advance are identical despite the fact
that they are derived from very different conceptual ap-
proaches. This discussion requires a set of basic relations
from both the wave mechanical photon and from the charged
particle accelerator physics world, which will be introduced
in the following sections. The presentation is extended at
this point to highlight some general relations of the Courant-
Snyder theory and the description of optical modes. In the last
paragraph it is shown that the conversion of pure modes leads
to the same relations for the preservation of the beam quality
as discussed in the field of accelerators, which demonstrates
that the Derbenev transformation and the pure mode converter
are identical.

II. BEAM QUALITY AND ENVELOPE EQUATION
IN A DRIFT

A Cartesian coordinate system is assumed in which the
z direction corresponds to the longitudinal coordinate of
the beam. Unless explicitly mentioned, all equations which
are derived for the transverse x direction are equally valid
for the transverse y direction.

A particle beam consists of an ensemble of pointlike parti-
cles traveling predominantly in the z direction. For a constant
number of particles, i.e., no particle loss, the beam emittance
is a measure of the beam quality and a conserved quantity
of motion in a linear, uncoupled transport system without
chromatic effects, i.e., free space optics consisting of free
propagation sections (drifts) and linear focusing elements
(lenses). The transverse emittance is defined as

εx =
√

〈x2〉〈x′2〉 − 〈xx′〉2, (1)

where the prime indicates the derivative with respect to the
longitudinal coordinate x′ = d

dz x and 〈 〉 defines the second
central moment of a particle distribution. The smaller the
emittance the better a beam can be focused and the smaller
the beam divergence stays. The index x at εx will be omitted
in the following. Assuming for simplicity a normalized
distribution in the transverse phase space ρ = ρ(x, x′),∫

ρ dx dx′ = 1 the second central moments read in integral
form as

〈
x2

〉 =
∫ ∫

ρx2dx dx′ −
(∫ ∫

ρx dx dx′
)2

,

〈
x′2〉 =

∫ ∫
ρx′2dx′dx −

(∫ ∫
ρx′dx′dx

)2

,

〈
xx′〉 =

∫ ∫
ρxx′dx′dx −

∫ ∫
ρx dx dx′

∫ ∫
ρx′dx′dx.

(2)
All integrals range from minus to plus infinity. The square root
of the second central moment defines rms quantities, which
are in general labeled with a σ .

Figure 1 sketches the transverse phase space with an rms
ellipse. It can be shown that the rms quantities of arbitrary
particle distributions form an ellipse in phase space indepen-
dent of all details of the distribution [20]. The emittance is
proportional to the area A of the ellipse A = πε. The orien-
tation of the ellipse is described by the correlation straight,

FIG. 1. Transverse phase space and rms ellipse with correlation
straight (blue) and some relevant quantities.

which follows a least-square fit to the phase space distribution.
Thus it is not a principal axis of the ellipse, but a symmetry
axis in the sense that the distance to the upper and the lower
branch of the ellipse is equal. The slope of the straight is given
by 〈xx′〉/〈x2〉. A negative slope of the correlation straight
describes a converging beam; a positive slope, as in the figure,
corresponds to a divergent beam. At a focus position the prin-
cipal axes of the ellipse are aligned to the coordinate system
and the correlation term 〈xx′〉 is zero. Equation (1) reduces
here to

ε =
√〈

x2
0

〉〈
x′

0
2〉 = σ0σ

′
0, (3)

where the index 0 is introduced to indicate the focus position.
σ ′

0 is called far-field diffraction angle in light optics. The
emittance can be related to the Liouville phase space volume,
but there are important differences.

The Liouville theorem states that the six-dimensional
canonical phase space density along trajectories of the system
is time independent (for a Hamiltonian system and noninter-
acting particles). For a given ensemble of particles one can
define a phase space volume, occupied by the ensemble, by
integrating over all phase space coordinates. This volume is
a constant of motion. The form of this volume is however
unspecified and can change, while the emittance is related to
an ellipse or, in higher dimensions, to a hyperellipsoid. When
the particle ensemble passes for example through a nonlinear
focusing field, the Liouville phase space will change its form
but not its volume. The emittance in contrast will increase.
The emittance is thus more sensitive to detrimental effects
than the Liouville phase space volume and therefore the rele-
vant measure of the beam quality. A nonlinear focusing field
is also an example which leads to a correlated (higher-order)
distortion of the phase space. Since it is not fundamentally
excluded to compensate correlated distortions, i.e., by another
nonlinear field in this example, the emittance can also become
smaller, if a correlated distortion exists in the phase space.
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In general we can split the emittance into a statistical and a
correlated term as

ε2 = ε2
st + ε2

cor. (4)

The statistical emittance is closely related to the Liouville
phase space volume and represents the minimal possible
emittance of the phase space under consideration, while the
correlated emittance contribution—if unequal to zero—might
be compensated in an appropriate optical configuration.

Correlated phase space distortions appear in manifold
forms, besides nonlinearities; correlations between (ideally
uncorrelated) coordinates are to be mentioned. The angular
momentum of a beam is such a contribution since it is a
correlation between angle and space coordinates of orthog-
onal degrees of freedom, i.e., 〈xy′〉 �= 0 and 〈yx′〉 �= 0. As
will be shown below this correlated contribution of the beam
emittance is compensated in a mode converter.

Equation (3) is up to a factor of 4 equal to the beam
parameter product (BPP) usually defined in laser physics. The
so-called M-square value M2 is related to the beam parameter
product and thus to the beam emittance by

BPP = M2 λ

π
= 2M2

k
= 4σ0σ

′
0 = 4ε. (5)

λ is the wavelength of the laser beam and k its wave number.
Note that also for a laser beam the transverse beam size is

defined by the rms size or two times the rms size and not by
the FWHM or the 1/e width. The advantage of the rms size
in comparison to other beam size definitions is that it leads to
simple equations describing the beam envelope independent
of the details of the particle distribution [20] or wave field
under consideration [21].

As a simplification, the square in the notation of the M-
square value is dropped in the following discussion, i.e., M =
M2, so that especially M2 = (M2)2. The variation of the rms
beam size of a particle distribution traveling through a piece
of beam line follows from the spatial derivatives of the second
moment with respect to z as [22]:

σ = 〈
x2

〉 1
2 , (6)

σcor = (σ )′ = d

dz

〈
x2

〉 1
2 = 〈xx′〉

〈x2〉 1
2

, (7)

(σ )′′ = d2

dz2

〈
x2

〉 1
2 =

〈
x′2〉

〈x2〉 1
2

+ 〈xx′′〉
〈x2〉 1

2

− 〈xx′〉2

〈x2〉 3
2

. (8)

Here it is implicitly assumed that the phase space density
is constant d

dz ρ = 0, i.e., that the Liouville theorem holds.
Note the difference of correlated divergence σcor and rms

divergence σ ′ = 〈x′2〉 1
2 ; cf., Fig. 1.

From the definition of the emittance [Eq. (1)] follows

〈
x′2〉 = ε2

〈x2〉 + 〈xx′〉2

〈x2〉 , (9)

which is used to replace 〈x′2〉 in Eq. (8), which leads to the
differential form of the rms envelope equation:

(σ )′′ = ε2

〈x2〉 3
2

+ 〈xx′′〉
〈x2〉 1

2

. (10)

Note that no assumptions about the details of the particle
distribution have been made in deriving Eq. (10). It describes
hence the rms beam size for arbitrary distributions as long as
the emittance stays constant. In a drift x′′ = 0 and a general
solution of the envelope equation reads as

σ 2(z) = σ 2
z=0 + 2σz=0(σz=0)′z +

(
ε2

σ 2
z=0

+ (σz=0)′2
)

z2.

(11)
Note that σz=0(σz=0)′ = 〈xx′〉z=0 represents the linear correla-
tion term in phase space; cf., Fig. 1.

By setting z = 0 at a focus position and thus to a position
where (σz=0)′ = 0 Eq. (11) simplifies to

σ 2(z) = σ 2
0 + ε2

σ 2
0

z2. (12)

Equivalent equations to Eq. (11) and Eq. (12) are derived
in [21] for a general photon beam. Especially the equivalent
formula to Eq. (12) as used in light optics is the well-known
relation

σ 2(z) = σ 2
0

(
1 + z2

Z2
R

)
, (13)

with the Rayleigh length ZR defined as

ZR = 4πσ 2
0

Mλ
= σ 2

0

ε
. (14)

III. OPTICAL SYSTEMS AND COURANT-SNYDER
FORMALISM

So far only a simple drift has been considered. A general
linear optical transport system consists of focusing and de-
focusing lenses and drifts in between. A lens is described to
first order by x′′ = −Kx with the positive focusing or negative
defocusing strength K or inverse focal length 1/ f = K . For an
optical system, K (z) is a discontinuous function combining all
elements, i.e., K (z) �= 0 in lenses and K (z) = 0 in all drifts.
Substituting x′′ = −Kx in Eq. (10) leads to the differential
envelope equation for this case as

(σ )′′ + K (z)σ = ε2

σ 3
. (15)

Equation (15) describes the development of the beam size, i.e.,
the second central moment through a system of lenses and
drifts.

An equivalent relation for the average beam position or the
first moment reads

x̄′′ + K (z)x̄ = 0. (16)

Here the bar is used for the direct average, i.e., x̄ =∫ ∫
ρx dx dx′, while the angle brackets define the central av-

erage [Eq. (2)]. The trajectory of a single particle through the
beam line follows the same equation as the average position of
an ensemble of particles; Eq. (16) is thus valid for both cases.

The Courant-Snyder theory describes a general solution
of Eqs. (15) and (16) and the relation between them. In the
following, only those aspects of the theory which are required
to introduce the phase advance are discussed. Only a simple
system without dispersion, coupling, etc. is considered. For a
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detailed discussion of the Courant-Snyder theory the reader is
pointed to Ref. [19] or a textbook on accelerator physics.

Originally developed in the context of ring type accel-
erators, where the focusing function K (z) is periodic, the
Courant-Snyder formalism can also be applied to finite trans-
port lines, which can be viewed as being segments of larger
periodic systems. The main difference between periodic sys-
tems and beam lines is that the periodic case leads to a unique
solution, while the solution for a transport line depends on the
initial conditions.

Rather than describing the beam properties as the trans-
verse beam size directly, the Courant-Snyder theory leads to
solutions in the form of optical functions. Most prominent is
the β function which is related to the beam size by

β(z) = σ 2(z)

ε
. (17)

The other optical functions are defined by α(z) = −β ′/2 and
γ (z) = σ ′2/ε. While β and γ are related to rms beam size
and rms divergence, α is related to the correlation term by
α = −〈xx′〉

ε
. The relation βγ − α2 = 1 holds and the quantity

I = γ x2 + 2αxx′ + βx′2 (18)

is a constant of motion.
Equation (18) is a coordinate representation of an ellipse.

For particle coordinates on the rms ellipse I = ε holds. The
optical functions are normalized to the beam emittance and
are hence valid for beams with arbitrary emittance. Thus they
describe the characteristics of an optical system independent
of the beam quality and allow one to separate the influence
of the optics and of the beam quality on the local beam
properties.

At a focus, the β function, β0, corresponds to the Rayleigh
length, Eq. (14), and near a beam waist it develops as [cf.,
Eq. (12)]

β(z) = β0 + z2

β0
, (19)

where again z0 = 0 is assumed.
Solving Eq. (17) for σ , calculating the derivatives with

respect to z, and introducing all into Eq. (15) transforms
the differential equation for the beam size into a differential
equation for the β function

ββ ′′

2
− β ′2

4
+ Kβ2 = 1. (20)

Also the relation for the first moment, Eq. (16), needs to be
transformed into the system of new variables. Noting that
Eq. (16) has the form of Hills differential equation (a linear
differential equation without first derivative term), motivates
one to seek a solution of the form

x̄ =
√

Iβ eiφ. (21)

While the amplitude
√

I [Eq. (18)] is a constant of motion, the
phase φ is z dependent just as β.

Equations (21) and (20) form a new system of equations
describing the first and second moment of a distribution in
a linear transport system. Still missing is a relation to deter-
mine the phase φ. Introducing the derivatives of Eq. (21) into

Eq. (16) leads to the relation

Re

{
x̄′′ + Kx̄√

I eiφ

}
= ββ ′′

2
− β ′2

4
+ Kβ2 − β2φ′2 = 0, (22)

where only the real part is required at this point.
From Eq. (20) and Eq. (22) follows

φ =
∫

1

β
dz. (23)

Equation (23), which fulfills also the imaginary part of
Eq. (22), defines the Courant-Snyder phase advance. The
equation describes the phase difference between two points
of a beam line. An appropriate initial phase can be added;
however, in practice often only the phase advance between
two points is relevant.

Figure 2 illustrates the phase advance and relations to other
quantities. The Courant-Snyder theory is a versatile and pow-
erful formalism to describe and design optical systems. The
phase advance is, for instance, the key parameter to study and
improve the stability of optical solutions as required to store a
beam in a ring, or to propagate errors through optical systems
or to solve imaging problems. Some illustrative examples are
summarized in the Appendix.

IV. MODE DESCRIPTION AND GOUY PHASE

Modes constitute a complete and orthogonal set of func-
tions describing solutions of the scalar wave equation (in
paraxial approximation). Arbitrary field distributions can be
expanded in terms of these modes. The following discussion
concentrates on Hermite-Gauss modes; the results can how-
ever also be transferred to any other basis as, for example, to
the Laguerre-Gauss basis.

The transverse electric field of a Hermite-Gauss mode
reads in standard notation as

E ∝ 1

w
Hm

(√
2

x

w

)
Hn

(√
2

y

w

)
e
(
− x2+y2

w2

)
eiθ . (24)

Hm and Hn are Hermite polynomials of order m and n and
w = w(z) describes the development of the beam size as a
function of the longitudinal coordinate. Thus a Hermite-Gauss
mode is essentially a product of Hermite polynomials—one
for each transverse degree of freedom—multiplied by a Gaus-
sian density distribution.

The phase θ will be discussed below. First we concentrate
on the beam size, which is determined by the real part of
Eq. (24).

In general w is just named beam size but without specify-
ing how this beam size is defined. It is indeed the beam size
of the fundamental Gaussian mode (m = n = 0), but not the
beam size of the higher modes. Calculating the rms beam sizes
from Eq. (24) yields

σx = √
2m + 1

w

2
,

σy = √
2n + 1

w

2
.

(25)

Since the beam size scales everywhere with
√

2m + 1 and√
2n + 1, respectively, also the far-field diffraction angle σ ′

0
scales with this factor and thus the beam quality factors follow
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(a) (b)

(c)

(e)

(d)

FIG. 2. Graphical illustration of the phase advance in a periodical optical system. At the top a number of particle trajectories or optical
rays are shown in gray together with the rms beam envelope (black) and three lenses. A single trajectory is highlighted in red. Below this beam
line the corresponding development of the phase space is plotted, starting right at the exit of lens I with plot (a). The basic motions in phase
space are shearing operations. In a drift the trajectory angle stays constant and the position of each particle develops as xend = xinitial + x′z. The
convergent beam of plot (a) develops thus into a focused beam (not shown) and further into a divergent beam in (b). In the ideal thin lens, the
position is constant and the angle develops as x′

end = x′
initial − Kx, which transforms the phase space into the state shown in (c). After passing

another drift and the third lens the phase space is in the same orientation as in the beginning, just rotated by 360◦. The red line follows the
highlighted particle in phase space. It is seen that the particle stays on its own ellipse which has the same orientation and eccentricity as the
rms ellipse. This is the case for each particle and thus implies that the number of particles or the total energy encircled by such an ellipse is
constant. Note that the particle does not, however, reach its starting position in plot (e). The difference is described by the phase advance which
is 322◦ in this example. For the subpanel in the lower left the Courant-Snyder parameters have been used to transform the rms ellipse to a circle
with a radius corresponding to the square root of the emittance. Here the radius and the rotation angle of individual particles correspond to the
action-phase variables of the Hamiltonian.

as

Mx = 2m + 1,

My = 2n + 1.
(26)

Equation (25) suggests interpreting w in terms of the β func-

tion and setting w = 2
√

β

2k , so that the field acquires the form
(constants have been dropped)

E ∝
√

1

β
Hm

(√
k

β
x

)
Hn

(√
k

β
y

)
e

(
− k

β

(x2+y2 )
2

)
eiθ . (27)

The rms beam sizes read now as

σx =
√

2m + 1

2k
β =

√
εxβ,

σy =
√

2n + 1

2k
β = √

εyβ.

in accordance with Eq. (17).
The standard notation of modes describes the modes thus

not with a mode number independent beam size, but with a

mode number independent β function. Or, in other words, the
Rayleigh length (= β function at the focus) and the Courant-
Snyder phase advance is independent of the mode number. It
has to be noted that the orthogonality of the modes requires
that the arguments of the polynomials and of the exponen-
tial term in each transverse degree of freedom are identical
for all modes. The decomposition of a field distribution into
orthogonal modes requires thus a description in accordance
with Eq. (27).

The phase term reads in explicit form

θ = kz + ς
(
x2 + y2

)
w2

0 (1 + ς2)
− ωt − (m + n + 1)ϕG, (28)

with ς = z
ZR

= z
β0

and z0 = 0. ϕG is an additional phase
advance which a wave going through a focus obeys in com-
parison to an unfocused wave. It was first observed by Gouy
in 1890 with a light beam and later explained by him on the
basis of Huygens principle. It follows thus from basic physics
principles and should not be viewed as an anomaly. The Gouy
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phase is given by

ϕG = arctan ς, (29)

where a round beam focus is assumed. For ς ranging from
minus infinity to infinity the Gouy phase is equal to π .

To show that the Courant-Snyder phase Eq. (23) is a gen-
eralized form of the Gouy phase the arc tangent needs to be
written in integral form as

ϕG = arctan ς =
∫

1

1 + ς2
dς, (30)

with dς = dz
β0

. Using Eq. (19) to replace ς = z
β0

leads to

ϕG =
∫

1

β
dz. (31)

The integral term is the Courant-Snyder phase advance,
Eq. (23).

For the general astigmatic case the Gouy phase needs to be
separated into a horizontal and a vertical part. With

m + n + 1 = Mx

2
+ My

2
(32)

we can write

(m + n + 1)ϕG = Mx

2
φx + My

2
φy, (33)

where φx and φy denote the Courant-Snyder phase advance in
the horizontal and the vertical plane. Note that the β function
and the focus position may differ for both planes in this rep-
resentation. Equation (33) displays the well-known result that
the Gouy phase of an astigmatic focus (from minus infinity to
infinity) is only π

2 .

The second term of interest in Eq. (28), ς (x2+y2 )
w2

0 (1+ς2 )
, defines

parabolas of constant phase in the transverse coordinates. The
apex curvature radius R of the constant phase lines or phase
front is given by R = z(1 + ς−2). The phase curvature term
can thus also be written in the form

ς
(
x2 + y2

)
w2

0 (1 + ς2)
= k

(
x2 + y2

)
2R

. (34)

Equation (34) describes the development of the phase curva-
ture in a drift; here α = − β ′

2 = − z
β0

= −ς holds. With this
relation and the substitution as described above the term can
also be written as

ς
(
x2 + y2

)
w2

0 (1 + ς2)
= k

(
x2 + y2

)
2R

= −k
α

β

x2 + y2

2
. (35)

A quadratic phase term corresponds to a linear correlation of
transverse angles and positions. [A phase can be written as a
product of wave number and position; thus x2 ∝ kx(x)x, where
kx depends linearly on x. Since x′ = kx

kz
holds the divergence

depends linearly on x.] The radius of curvature is thus related
to the correlation straight of the phase space; cf., Fig. 1 and
[21]:

〈xx′〉
〈x2〉 = −α

β
= 1

R
. (36)

Also this term can now be separated into the contributions of
the two orthogonal planes and thus Eq. (24) can be written as

a product of two functions, each of which depends only on
parameters of one transverse coordinate:

E ∝ Fx(x, βx, αx, m)Fy
(
y, βy, αy, n

)
,

Fx = 1

β
1
4

x

Hm

(√
k

βx
x

)
e
(
− kx2

2βx

)
ei 1

2 (k
[
z− αx

βx
x2

]−ωt−Mxφx ),

Fy = 1

β
1
4

y

Hn

(√
k

βy
y

)
e
(
− ky2

2βy

)
e

i 1
2

(
k
[
z− αy

βy
y2

]
−ωt−Myφy

)
. (37)

Equation (37) is the fully astigmatic description of Hermite-
Gaussian modes. Just like Eq. (27), which requires equal
optical functions in orthogonal planes, it is an exact solution
of the paraxial Helmholtz equation.

V. MODE CONVERSION

In the flat-beam electron source [12], the initial beam is
generated by immersing the cathode in a solenoid field. As
stated by the Busch theorem [23] this leads to a free vortex
beam in which the electrons have intrinsic angular momenta
ranging from zero up to a large absolute value related to
the conditions at the cathode. Details including the quantum-
mechanical treatment of the Busch theorem are discussed
in a parallel paper to this publication [24]. This Laguerre-
Gaussian-like beam is converted into a Hermite-Gaussian-like
beam which is characterized by a large asymmetry in the
beam quality and the cancellation of the coupling terms in
the transport matrices. Fundamental for the treatment is the
beam quality in the two transverse planes before and after the
converter. A detailed discussion in terms of the electron beam
emittance is presented by Kim in Ref. [11]. In the following
it will be shown that the mode description leads to the same
results.

The mode converter is conveniently discussed by compar-
ing the angular spectrum of Hermite-Gauss modes with that
of Laguerre modes. The angular spectrum of Hermite-Gauss
modes is given by [25]

Ẽ ∝
∞∫

−∞
dkx

∞∫
−∞

dky km
x kn

y e− β0
2k (k2

x +k2
y )eiθ̃ . (38)

The phase θ̃ is not required for the following considerations.
It differs from Eq. (28) but is identical in Eqs. (38) and (39).
Executing the integrals in Eq. (38) leads to a field description
similar to Eq. (24). [The result of Eq. (38) contains complex
amplitudes. The conversion to real amplitudes and a detailed
comparison of different mode representations can be found in
[25]]. The equivalent relation for the Laguerre-Gaussian beam
reads as [25]

Ẽ ∝
∞∫

−∞
dkx

∞∫
−∞

dky

× (
kx + iky

)n(
kx − iky

)l+n
e− β0

2k (k2
x +k2

y )eiθ̃ . (39)

Executing the integrals leads to a Laguerre-Gauss mode con-
taining the Laguerre polynomial Ll

n, with the azimuthal mode
number l , which describes the angular momentum of the
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beam, and the radial mode number n. The beam quality factor
of a Laguerre-Gauss mode is given by

Mx = My = ML = 2n + |l| + 1. (40)

Equation (39) contains imaginary wave components (iky),
which means that these components are shifted relative to
real part components by π

2 (i eix = ei(x− π
2 ) ). This phase shift

between orthogonal planes is characteristic for a spiral pattern
of the wave front.

If we shift the phase of the imaginary amplitude component
of Eq. (39) by π

2 , so that the imaginary part becomes real, and
transform into a coordinate system which is rotated around
the z axis by 45◦ in comparison to the original system, the
Laguerre-Gauss mode Eq. (39) is transformed into a Hermite-
Gauss mode Eq. (38). In the rotated system, the relations

k̃x = 1√
2

(
kx + ky

)
,

k̃y = 1√
2

(
kx − ky

)
(41)

hold; thus the mode numbers l , m, and n are related by m =
l + n.

Knowing the relation of the mode numbers the beam qual-
ity factors before and after the mode converter can now be
compared. Here we are interested in the projected 4D beam
quality, which yields for the Laguerre-Gauss mode

M2
L = (2n + |l| + 1)2

= (2n + 1)2 + 2|l|(2n + 1) + l2

= M2
st + l2. (42)

As previously discussed the angular momentum is a correlated
motion which contributes to the emittance, but it is not a
fundamentally conserved quantity as a statistical emittance.
In the last step of Eq. (42) the statistical beam quality factor
M2

st = (2n + 1)2 + 2|l|(2n + 1) is introduced. It represents
the conserved quantity of motion. (Mst is the equivalent to the
thermal emittance εth in Kim’s paper [11]).

Using m = l + n the mode numbers of the Hermite-Gauss
mode can be written as

Mx = 2m + 1 = ML + |l|,
My = 2n + 1 = ML − |l|, (43)

and the 4D emittance follows as

MxMy = M2
st. (44)

The angular momentum of the beam is thus compensated and
only the statistical emittance is preserved. Relations (43) and
(44) correspond to the relations derived by Kim [11] for the
beam emittance in the case of the Derbenev transformation
without making use of any mode description. The equivalence
of these relations and of the Gouy phase with the Courant-
Snyder phase found in the previous section shows that the pure
mode converter and the Derbenev transformation are indeed
identical.

The redistribution of the beam emittance is directly linked
to the existence of an intrinsic angular momentum on one
side and the absence on the opposite side of the mode
converter. The successful experimental demonstration (e.g.,

Refs. [13,14,16]) of the emittance redistribution and the tests
of relevant properties of the converter optics proves not only
the existence, but it is also a qualitative measurement of the
angular momentum. Independent measurements of the angu-
lar momentum, based on basic beam dynamics considerations
(e.g., Ref. [15]), confirm these measurements.

VI. CONCLUDING REMARKS

Derbenev’s invention has led to numerous theoretical and
experimental studies and a large number of proposals for its
application. Besides control of the angular rotation, i.e., the
kinetic angular momentum, in long solenoid sections, which
is relevant for cooling applications [9], the implementation of
the beam adapter in electron storage rings and the generation
of beams with a large emittance ratio are being studied. Beams
in electron storage rings develop typically a Hermite-Gaussian
character, i.e., a large ratio of the emittance in the horizontal
to the vertical direction due to differences in the damping
rate related to synchrotron radiation. Round beam conditions
can be generated in between two mode converters, which was
proposed, e.g., to counteract beam-beam effects in an inter-
action region [10,26] or for improved properties of radiation
sources [27]. The generation of charged beams—electrons
but also ions—with large emittance ratio can be used, for
example, to adapt beam properties to planar structures for the
generation of radiation [28], for advanced accelerators [29], or
for improving the injection efficiency into a synchrotron [30].
This list of examples is by no means complete. Moreover, a
general discussion on limitations and options for phase space
manipulations was stimulated [31], also in conjunction with
an emittance exchange concept in which one transverse and
the longitudinal degree of freedom are involved [32]. Here
x − pz and z − px correlations are introduced by means of a
transverse deflecting RF structure in combination with disper-
sive sections. An interpretation of this beam adapter in terms
of modes is, however, not yet possible.

The Courant-Snyder theory is a cornerstone of modern
accelerator physics and it appears to be beneficial to apply it
also to problems in laser physics. The optical functions lead to
a consistent interpretation of the beam quality factors and the
beam size of optical modes and it offers a simple approach
for the description of light fields in transport lines. It has
to be noted that, at this point, only the very basic concept
of the theory has been introduced. Many aspects, such as,
for example, the stability analysis of periodic systems, were
not even touched. The general applicability of the Courant-
Snyder theory to light beams was of course known, as it was
to be expected that advantages emerge from its application.
The equivalence of the Gouy and the Courant-Snyder phase,
however, is somewhat surprising and establishes yet another
connection between ray optics and wave optics.
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APPENDIX A: ILLUSTRATIVE EXAMPLES

Consider an arbitrary beam line of elements each of which
is described by a linear transport matrix. The matrix trans-
forms an incoming vector of particle coordinates (xi, x′

i ) into
an outgoing vector (x, x′):(

x
x′

)
=

(
a b
c d

)(
xi

x′
i

)
. (A1)

The coefficients of the matrix are in general z dependent, so
that the matrix represents a continuous function, i.e., it is
a solution of Eq. (16). Multiplication of the matrices of all
elements allows for description of the complete beam line.

Based on Eq. (A1) 〈x2〉, 〈x′2〉, and 〈xx′〉 can be calculated,
which leads together with the relations to the optical func-
tions to a corresponding matrix transforming the initial optical
functions (βi, αi, γi ) through the system⎛

⎝β

α

γ

⎞
⎠ =

⎛
⎝ a2 −2ab b2

−ac ad + bc −bd
c2 −2cd d2

⎞
⎠

⎛
⎝βi

αi

γi

⎞
⎠. (A2)

With this matrix also the phase advance through the system is
determined.

The real part solution of Eq. (21) reads as

x =
√

Iβ(cos φi cos �φ − sin φi sin �φ), (A3)

with the initial phase angle φi and the phase advance through
the system �φ. Note that Eq. (A3) is valid for individual
particle coordinates and for the average of a particle ensemble.
The initial conditions are (cf., Fig. 2)

cos φi = xi√
Iβi

,

sin φi =
(

x′
i + αi

βi
xi

)√
βi

I
,

(A4)

which leads to

x = xi

√
β

βi
(cos �φ − αi sin �φ) − x′

i

√
ββi sin �φ. (A5)

1. Propagation of an incoming angle or offset

An incoming angle of the beam leads to trajectory ex-
cursions with local extrema at �φ = (n − 1

2 ) × 180◦, n =
1, 2, 3 . . .. The value of the local extreme is modulated with
the local β function. At these locations the incoming an-
gle can be measured, while it can be corrected at locations
where �φ = n × 180◦. For an incoming offset the condi-
tion for an extreme is αi = tan �φ, while zeros are found at
αi = − cot �φ. Thus extrema and zeros are also in this case
separated by 90◦ phase advance.

2. Simple imaging problem

Assume the beam clips at an aperture which is represented
by a vertical line in phase space, Fig. 3. The condition for
imaging the aperture is that all points forming the line AB are
again at the same transverse position. Take two points on the
line, e.g., P1 = (xL, x′) and P2 = (xL,−x′). The condition for

x

x’
A

B

xL

FIG. 3. Phase space with clipping aperture.

aligning them is

x′
L

√
ββi sin �φ = −x′

L

√
ββi sin �φ, (A6)

which requires that sin �φ = 0. The imaging condition is
thus a phase advance of �φ = n × 180◦. Note that the optical
functions are derived for the undisturbed beam.

3. Imaging of the reciprocal space

A diffracting element generates additional structures in the
momentum or angle coordinate of the phase space. Figure 4
shows an example, where the replica of the initial phase space
in plot (a) represents one diffraction order generated by a
diffracting element at position (a). After traversing a section
of a beam line the situation may look like that displayed in
(b). In the projection onto the x axis two separated peaks are
now visible. The condition for optimal imaging is that the
distance of the diffraction peak to the central beam xD is large
compared to the size of the central beam (or the diffraction
peak). Thus the ratio

xD

σ
= x′

i

√
ββi sin �φ√

βε
= σix

′
i sin �φ (A7)

has to be maximized, which leads to the condition �φ =
(n − 1

2 ) × 180◦ for imaging of the reciprocal space. A large
initial beam size (small uncorrelated divergence) increases the
resolution power.

x

x’ x’

x0 xD

(a) (b)

xi’

FIG. 4. Diffraction imaging (schematic).
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