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Spin-orbit and orbit-spin conversion in the sharp focus of laser light: Theory and experiment
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Based on the Richards-Wolf theory, it is strictly shown that in the sharp focus of a linearly polarized laser
beam, the flux of a spin vector has only transverse components (the effect of photonic wheels or a photonic
helicopter). For a linearly polarized optical vortex, the orbit-spin conversion leads to the appearance of both
longitudinal and transverse components of the spin angular momentum (SAM) vector in the focus. We show that
in the strong focus of a circularly polarized Gaussian beam, the longitudinal component of the SAM is maximal
on the optical axis, with the longitudinal component of the orbital angular momentum (OAM) being maximal
on a ring. In this way, the effect of SAM and OAM on the motion of a trapped microparticle can be evaluated
separately. Spin-orbit conversion is experimentally demonstrated for a circularly polarized Gaussian beam when
transverse energy flux (orbital angular momentum) arises in the focus, which is transmitted to a microparticle and
causes it to rotate. Switching the handedness of circular polarization (from left to right) switches the direction of
microparticle rotation. It is also shown here that an azimuthally polarized vortex beam with an arbitrary integer
topological charge generates in the focus a SAM vector with only an axial component (pure magnetization),
whereas there is no transverse spin flux.

DOI: 10.1103/PhysRevA.102.033502

I. INTRODUCTION

Strong focusing of laser light, where a focal spot of sub-
wavelength size is achieved, has been a focus of optical re-
search for some time. By way of illustration, the newly discov-
ered optical phenomena in the subwavelength focus include
optical needles [1–4], dark focal spots [5], light tunnels [6,7],
chains of foci [8,9], and foci with a flat apex [10–12]. This list
is not complete, and other nontrivial effects that occur in the
strong focus and may have interesting and diverse applications
have also been reported. On the optical axis near the focus, re-
verse energy flux has been discovered [13], while in the focal
plane we have revealed a toroidal energy flux around the “dark
rings” where the flux is zero [14]. In addition, an “angular
tractor” phenomenon has been discovered when the transverse
energy flux on adjacent light rings in the focal plane is directed
in opposite directions (clockwise and counterclockwise) [15].
It has also been rigorously theoretically shown that in the
sharp focus of a circularly polarized Gaussian beam, a spiral
energy flow appears due to the spin-orbital conversion [16].
Spin-orbital conversion, and related to it the optical Hall
effect and rotation of microparticles along a circular path, has
also been studied in [17–20]. In recent years, a number of
other novel and interesting phenomena have been discovered
in studies of sharply focused vortex laser beams and beams
with inhomogeneous polarization: the formation of tangles
and knots from points of phase and polarization singulari-
ties [21–23], photonic wheels [24], the formation of Möbius
polarization strips [25,26], and pure magnetization [27,28].
All these effects have been demonstrated numerically, and
some also experimentally, but there is no rigorous analytical

theory to describe them. In this work, with a unified approach,
we obtain simple analytical expressions for the light-field
components in the sharp focus, as well as for the spin an-
gular momentum, Poynting vector, and orbital energy flow.
These expressions clearly lead to the following phenomena:
spin-orbit conversion, optical wheels, Möbius polarization
topology, and pure magnetization. It is experimentally demon-
strated that the orbital angular momentum, appearing in the
focus of a circularly polarized Gaussian beam, causes a di-
electric nonabsorbing particle to rotate around its own center
of mass, located on the optical axis of the beam.

The Richards-Wolf theory [29] adequately describes all six
components of the electric and magnetic vectors of an elec-
tromagnetic field near the focus. In this paper, based on this
theory, we give a rigorous description of some of the above
interesting phenomena. We also demonstrate experimentally
the spin-orbit conversion predicted in [16], which generates
the orbital angular momentum in the sharp focus of a simple
Gaussian beam with circular polarization. This orbital angular
momentum is transmitted to a microparticle trapped in the
focus and rotates it around the optical axis (and around its
center of mass). A Gaussian beam has already been used to
rotate a microparticle [18,20], but along a circular path rather
than around its center of mass.

Rotation of an absorbing (CuO) microparticle around its
center of mass, when the particle is trapped in a light ring
in the focus of a circularly polarized optical vortex with a
topological charge of 3, was demonstrated in [30,31]. In con-
trast to [30,31], we study here a dielectric (almost nonabsorb-
ing) microparticle, rotating around its center of mass in the
intensity maximum of a sharply focused circularly polarized
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Gaussian beam. In [32], using the plane-wave expansion of
the electric field vector, the axial component of the angular
momentum (AM) vector is represented as a sum of two terms.
However, these terms are not associated in [32] with the spin
AM (SAM) and orbital AM (OAM). In contrast with this
work, Ref. [32] does not consider the sharp focusing of light
within the Richards-Wolf formalism. In [33], the most general
expressions for OAM and SAM were obtained in operator
form (as average values of the corresponding operators). In
particular, an expression (11) for OAM was obtained in [33]
in the form of two terms, one of which is the average of the
angular momentum operator, and the second is the average
of the Berry-phase operator related with circular polarization.
This second term in Eq. (11) from [33] is associated with
spin-orbit conversion. We note, however, that [33] does not
contain explicit analytical expressions for the energy flux and
for the spin flux in sharp focus. In contrast to this work,
Refs. [31,33] do not consider the energy and spin flows in
the focus of linearly and azimuthally polarized light. Closest
to this work is Ref. [34], in which an attempt was made
to consider the energy flux and angular momentum in the
sharp focus of an optical vortex with circular polarization.
But unfortunately, Eqs. (11) and (21) are incorrect in [34].
Equation (21) from [34] incorrectly equates the energy flux
(Poynting vector) with the spin flux vector. In our work, the
energy flux vector [Eq. (8)], spin flux [Eq. (12)], and SAM
vector [Eq. (2)] are calculated in the focus separately.

We note here that for simulation in this work we use the
finite-difference method for solving the Maxwell’s equations

(FDTD method), implemented in the commercial software
FULLWAVE (RSoft Design). This method is more accurate
than the vectoral integrals in [29], which correctly describe
the light field in focus if the focal length is much larger than
the wavelength.

II. SPIN-ORBIT CONVERSION IN THE FOCUS

Let the initial field be a circularly polarized optical vortex
with a topological charge m and with an arbitrary axisymmet-
ric envelope function:

E = A(θ )eimϕ

(
1
iσ

)
, H = A(θ )eimϕ

(−iσ
1

)
, (1)

where σ = 1 stands for right-hand circular polarization, σ =
−1 for left-hand circular polarization, σ = 0 for linear po-
larization, and σ �= 0, ±1 for elliptical polarization (it is
supposed below that σ is a real number). Spin density or SAM
of the electric field (without the spin of the magnetic field
taken into account) can be deduced using the known formula
[35]

sE = 1

16πω
Im(E∗ × E), (2)

where ω is the cycling frequency of light. Below we omit the
constant (1/8πω) for brevity. Vectors E and H in Eqs. (1)
and (2) are the electric and magnetic strength vectors of
an electromagnetic wave. Then, according to the Richards-
Wolf formalism [29], the SAM vector from Eq. (2) has the
following components in the focal plane:

sxE = (−σγ+I0,mI1,m+1 − σγ−I0,mI1,m−1−γ 2
+I1,m+1I2,m+2 + γ 2

−I1,m−1I2,m−2) sin ϕ + γ+γ−(I1,m−1I2,m+2 − I1,m+1I2,m−2) sin 3ϕ,

syE = (γ+I0,mI1,m+1 − γ−I0,mI1,m−1+γ 2
+I1,m+1I2,m+2 − γ 2

−I1,m−1I2,m−2) cos ϕ − γ+γ−(I1,m−1I2,m+2 − I1,m+1I2,m−2) cos 3ϕ,

szE = σ I2
0,m − γ 2

+I2
2,m+2 + γ 2

−I2
2,m−2 + γ+γ−I0,m(I2,m−2 − I2,m+2) cos 2ϕ. (3)

In Eq. (3), we use the following designations for the
integrals:

Iν,μ =
(

π f

λ

) ∫ θ0

0
sinν+1

(
θ

2

)
cos3−ν

(
θ

2

)

× cos1/2(θ )A(θ )eikz cos zJμ(x)dθ, (4)

where f is the focal length of the aplanatic system, λ is the
wavelength, NA = sinθ0 is the numerical aperture, Jμ(x) is
the Bessel function of the first kind, x = kr sinθ , and (x, y, z)
and (r, ϕ, z) are, respectively, the Cartesian and the polar
coordinates. As the amplitude of the initial radial envelope
function A(θ ), we can use the Bessel-Gaussian function [36]:

A(θ ) = J1

(
2β

sin θ

sin α

)
exp

[
−β2

(
sin θ

sin α

)2
]
, (5)

where β is the pupil radius of the aplanatic system divided by
the waist radius of the Gaussian beam, γ± = (1 ± σ )/2 (for
σ = 0, other values of constants are used, γ+ = γ− = 1/

√
2).

In the partial case of left-hand circular polarization (σ = –1,

γ+=0, γ− = 1), Eq. (3) reduces to

sxE− = Q(r) sin ϕ, syE− = −Q(r) cos ϕ,

szE− = I2
2,m−2 − I2

0,m, Q(r) = I1,m−1(I0,m + I2,m−2). (6)

Equation (6) shows that the spin-density vector of an
optical vortex with left-hand circular polarization has all three
components in the focus. If instead of the optical vortex
there is a Gaussian beam with left-hand circular polarization
(m = 0), then in the focal plane all the spin components are
still nonzero:

sxE0− = −Q(r) sin ϕ, syE0− = Q(r) cos ϕ,

szE0− = I2
2,2 − I2

0,0, Q(r) = I1,1(I0,0 + I2,2). (7)

Due to the optical effect of spin-orbit conversion, a nonzero
energy flux arises in the focus of a Gaussian beam with left-
hand circular polarization [16]. Indeed, the Poynting vector
(energy flux) reads [29]

S = [c
/

(8π )]Re[E × H∗], (8)

where c is the speed of light in vacuum, E × H is the cross
product, and * stands for complex conjugation. Below, we
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omit the constant c/(8π ). For the components of the Poynting
vector in the focal plane of a homogeneously polarized optical
vortex, we get

Sz =
(

1 + σ 2

2

)
I2
0,m − γ 2

+I2
2,m+2 − γ 2

−I2
2,m−2, (9)

Sx = −Q(r) sin ϕ,

Sy = Q(r) cos ϕ,

Q(r) = γ 2
+I1,m+1(I0,m + I2,m+2) + γ 2

−I1,m−1(I0,m + I2,m−2).

(10)

For a Gaussian beam with left-hand circular polarization,
Eq. (10) reduces to

Sz0− = I2
0,0 − I2

2,2, Sx0− = Q(r) sin ϕ,

Sy0− = −Q(r) cos ϕ, Q(r) = I1,1(I0,0 + I2,2). (11)

A comparison of Eqs. (7) and (11) indicates that in addition
to the SAM (7) there is the energy flux of the same magnitude
(11) in the focus. They are equal up to a sign, i.e., the
transverse energy flux rotates [Sϕ– = –Q(r), Sr− = 0] in the
opposite direction (clockwise) with respect to the direction of
SAM vectors (they are directed counterclockwise). Figure 1
shows the intensity distribution [Fig. 1(a)] of a plane wave
with left-hand circular polarization (i.e., polarization vectors
rotate counterclockwise) in the focal plane, as well as dis-
tribution of the azimuthal component Sϕ of the transverse
energy flux in the focus [Fig. 1(b)] and its radial cross section
[Fig. 1(c)]. The negative values of Sϕ in Figs. 1(b) and 1(c)
show a clockwise rotation of the Poynting vector S in the XY
plane. Figure 1 was obtained by the FDTD method for the
following parameters: wavelength λ = 532 nm, size of the cell
in the computation grid λ/30, a launch plane wave is limited
by an 8-μm-diam aperture, and focal length f = 4.55 μm
(numerical aperture NA = 0.65). In this work, all cases of
numerical simulation are based on the FDTD-based rigorous
solution of Maxwell’s equations. The price to be paid for the
rigorous solution is a huge amount of computations leading to
a very long computing process. Because of this, we assume
input beam diameters and focal lengths comparable with inci-
dent wavelengths. On the other hand, examples of zone plates
[37] and microlenses [38] with focal lengths comparable with
the wavelength of light have been reported.

It should be taken into consideration that the larger the
focal length compared to the incident wavelength, the more
accurate is the Richards-Wolf theory [29]. Because of this, the
analytical relations derived in this work will be accurate in the
focus of objectives whose focal length comprises millimeters
or dozens of millimeters. However, if the focus is located
near the surface of a zone plate [37] or a microlens [38] at
a near-wavelength distance, the Richards-Wolf theory gives
approximate results. In Fig. 1, a comparison is made between
the computational results for the projections of the SAM vec-
tor using a rigorous FDTD method [Figs. 1(d) and 1(e)] and
the Richards-Wolf formulas (3) and (4) [Figs. 1(f) and 1(g)].
From the comparison, the intensity patterns are seen to be in
agreement.

As seen in Figs. 1(d) and 1(e), transverse compo-
nents of the SAM vectors are directed counterclockwise. A

FIG. 1. Intensity distribution of the electric field component |E |2
(a), azimuthal component Sϕ of the Poynting vector (radial compo-
nent is zero) (b), and its cross-section along the X-axis through the
optical axis (c). Components of the SAM vector in the focal plane:
sEx (d), (f), sEy (e), (g), and sEz (h), calculated using an FDTD method
(d), (e), (h) and Richards-Wolf formulas (f), (g).

comparison of Fig. 1(b) and Figs. 1(d) and 1(e) shows
that the transverse energy flux and the transverse distribu-
tion of SAM vectors are equal in magnitude and opposite
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FIG. 2. Distributions of the transverse components of the spin-
density vector sEx (a) and sEy (b) at a distance of 2λ beyond the
focal plane when focusing a Gaussian beam with left-hand circular
polarization. In Fig. 1, these distributions are shown in the focal
plane: sEx [Fig. 1(d)] and sEy [Fig. 1(e)].

in sign. This is also seen from a comparison of Eqs. (7)
and (11).

Figure 2 shows distributions of the transverse components
of the SAM vector sEx (a) and sEy (b) at a distance of 2λ

from the focal plane. It is seen that the SAM vectors rotate
by a certain angle clockwise, that is, the transverse flux of
the spin vector rotates in the same direction as the transverse
flux of energy [Figs. 1(b) and 1(c)]. This can be explained.
According to [39], energy flux consists of the spin flux and
the orbital energy flux. The Gaussian beam does not have
the transverse azimuthal orbital energy flux, and therefore the
transverse energy flux includes only the transverse spin flux.
Therefore, they must rotate in the same direction. Below, in
the final section, we show experimentally that this energy flux
(orbital angular momentum) can be partially transferred to a
dielectric microparticle so that it rotates relative to its center
of mass.

According to Eq. (10), if circular polarization of the initial
Gaussian beam changes from left-hand to right-hand, then
the transverse energy flux changes its direction and rotates
counterclockwise. Modeling shows that the transverse spin
flux near the focus also changes its direction and rotates
counterclockwise. In the experiment, this is also confirmed by
counterclockwise rotation of a microparticle.

Below, based on Eqs. (7) and (11), we obtain an exact
expression for the orbital angular momentum (OAM) in the
focus of a Gaussian beam with left-hand circular polarization.
The Poynting vector from Eq. (8) is the sum of the orbital
energy flow Sor and of the spin flow Ssp [39]:

S = Re

2
(E∗ × H) = Sor + Ssp, (12)

Sor = Im

2k
[E∗(∇E)], Ssp = 1

4k
[∇ × Im(E∗ × E)]. (13)

For a Gaussian beam with left-hand circular polarization
[Eq. (1)], Richards-Wolf theory [29] allows us to obtain
expressions for the azimuthal components of the vectors Sor

and Ssp via the integrals from Eq. (4):

Sor,ϕ = − 1

kr

(
I2
1,1 + I2

2,2

)
,

Ssp,ϕ = 1

kr

(
I2
1,1 + I2

2,2

) − I1,1(I0,0 + I2,2),

Sϕ = −I1,1(I0,0 + I2,2), Sϕ = So,ϕ + Ss,ϕ.

(14)

Equation (14) shows that in the focal plane there is
an orbital energy flux that can rotate an on-axis micropar-
ticle around its center of mass clockwise since Sor,ϕ =
−(I2

1,1 + I2
2,2)/kr < 0. It is also seen in Eq. (14) that the spin

flow in the focus rotates clockwise, which is consistent with
Fig. 2. Similarly to Eq. (12), the axial component Jz of the
angular momentum of a light field can be written as a sum
of the orbital angular momentum (OAM) Lz and of the spin
angular momentum (SAM) szE [24]:

Jz = Lz + szE = −1

k

(
I2
0,0 + I2

1,1

)
, (15)

where

Lz = rPor,ϕ = −1

k

(
I2
1,1 + I2

2,2

)
, (16)

szE = 1

k

(
I2
2,2 − I2

0,0

)
. (17)

As seen from Eq. (16), in the focus there is the OAM
directed oppositely to the z-axis. Such OAM rotates a mi-
croparticle clockwise. From a comparison of Eqs. (16) and
(17), the longitudinal projection of SAM is seen to be maximal
in the focus on the optical axis. Meanwhile, the longitudinal
projection of OAM is maximal on a ring of radius ∼200 nm
[Fig. 1(c)]. This peculiarity of distributions of the longitudinal
projections of SAM and OAM can be utilized to demonstrate
a spin-orbital conversion in the strong focus. We note that
similar expressions for SAM and OAM in the focus have
been obtained in [40] based on the Barnett technique [41],
and they are different from Eqs. (15)–(17), since the integrals
(4), used in all expressions in this work, are different from
similar integrals (14) in [40]. In [42], spin-orbit conversion is
analyzed based on the sharp focusing of a linearly polarized
Laguerre-Gaussian beam, and there are no formulas for SAM
and OAM in the focus.

III. ORBITAL-SPIN CONVERSION IN THE FOCUS
AND THE MÖBIUS STRIP

The energy flux of a light field can be represented as a
superposition of the orbital energy flux and of the spin flux
[41]. Therefore, along with the spin-orbit conversion, there
must also be an inverse effect, i.e., the orbital-spin conversion.
Indeed, setting σ = 0 (i.e., linear polarization) in Eq. (3),
we derive an expression for the axial component of the spin
density vector in the focus of an optical vortex with linear
polarization directed along the X-axis:

szE = 1
2 (I2,m−2 − I2,m+2)(I2,m−2 + I2,m+2 + I0,m cos 2ϕ).

(18)
From Eq. (18) it follows that at m = 0 (Gaussian beam) the

axial spin component (18) is absent (zero), whereas at m = 1
it is already nonzero:

szE1 = 1
2 (I2,1 + I2,3)(I2,1 − I2,3 − I0,1 cos 2ϕ). (19)

Equation (19) demonstrates the effect of orbital-spin con-
version. Indeed, at the entrance to the optical aplanatic system,
a linearly polarized optical vortex has zero spin-density vector
and, at the same time, a nonzero transverse energy flux due to
the spiral phase. However, in the focal plane, the spin-density
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FIG. 3. Distributions of the longitudinal component sEz of the
spin density (19) (a) and of the intensity |E |2 (b) in the focal plane.
The rightmost figure (c) shows a distribution in the XZ-plane of a
minimal-to-maximal radius ratio of the 3D polarization ellipses for
a focused linearly polarized Gaussian beam (m = 0): yellow color
means C-points with circular polarization, white color means narrow
ellipses, and numbers near the ellipses show the X-coordinates of
their centers (in microns).

vector is nonzero and has the axial component (19), although
on the axis itself (r = 0) the longitudinal spin component (19)
is zero. Note that in this case (i.e., when the initial field is a
linearly polarized optical vortex with m = 1), the spin-density
vector [Eq. (2)] has in the focus also transverse components,
which can be obtained from the general expression [Eq. (3)].
If ϕ ≈ 0 (i.e., near the horizontal axis X), the first multiplier in
Eq. (19) is positive whereas the second one is negative (since
I0,1 > I2,1) and thus szE1 < 0. If ϕ ≈ π/2 (near the vertical
axis Y), the first multiplier in Eq. (19) is still positive but
the second one is positive also (since I0,1 + I2,1 > I2,3), and
therefore szE1 > 0. Everything written above holds near the
optical axis [kr < γ , where γ is the first zero of the Bessel
function J1(x)].

The conclusions based on Eq. (19) are confirmed by sim-
ulation. Using the FDTD method, we calculated distributions
of the axial spin component sEz [Fig. 3(a)] and of the intensity
|E |2 [Fig. 3(b)] in the focus of a linearly polarized optical
vortex with m = 1. Other parameters are the same as in Fig. 1.

Figure 3(a) demonstrates that on the vertical axis (Y-axis)
the longitudinal component of the spin vector (19) is directed
forward along the optical axis, while on the horizontal axis
(X-axis) it has the opposite direction. This means that near the
vertical and horizontal transverse axes in the focal plane, the
polarization vectors rotate in different directions: clockwise
near the X-axis and counterclockwise near the Y-axis.

In [25], it was demonstrated both numerically and exper-
imentally that in the longitudinal YZ-plane near the sharp
focus of a linearly polarized (along the Y-axis) Gaussian
beam (without the vortex, i.e., m = 0) there are points of
circular polarization (C-points) around which the long axes

of the polarization ellipses form the lemon-type polarization
topology with the index of +1/2 and –1/2. In the 3D case,
the surface of these polarization ellipses around the C-point
forms an optical polarization Möbius strip [25,26,31]. Below
we derive equations for obtaining the C-points near the focus
of a linearly polarized Gaussian beam. Using the Richards-
Wolf method [29] for the initial field (1) with σ = 0 (i.e.,
linear polarization along the X-axis), we get the electric field
components expressed via the integrals (4):

Ex = −i(I0,0 + I2,2 cos 2ϕ), Ey = −iI2,2 sin 2ϕ,

Ez = −2I1,1 cos ϕ. (20)

According to Eq. (20), the polarization ellipses on the
horizontal axis (i.e., ϕ = 0) lie in the XZ-plane since Ey = 0.
Therefore, it is possible to obtain an equation to find the points
on the X-axis with circular polarization:

|Ex|2 − |Ez|2 = (I0,0 + I2,2)2 − 4I2
1,1 =

⎧⎨
⎩

0, x = x0,

> 0, x < x0,

< 0, x > x0.

(21)

Near the optical axis, the integral I0,0 in Eq. (21) exceeds
two other terms [since it depends on the function J0(x)] and
therefore the polarization ellipses are elongated along the
X-axis. At some point x = x0, the polarization ellipse turns
into a circle (C-point), and at x > x0 the polarization ellipses
are elongated along the Z-axis. Such polarization topology
corresponds to the lemon topology with the index of +1/2
[25]. Figure 3(c) shows (in pseudocolors) the small-to-large
axis ratio of the 3D polarization ellipse. Centers of the ellipses
are in the XZ-plane. For the FDTD-simulation, we supposed
that the wavelength is λ = 633 nm, the initial field is the
Gaussian beam with linear polarization along the X-axis, and
that the focusing is done by a zone plate with the focal length
of f = λ. As seen in Fig. 3(c), there are a number of points
(yellow color) near the focus, where polarization is circular
(C-points), and around which the polarization topology is of
lemon-type with alternating indices +1/2 and −1/2. Coordi-
nates of the C-points [Fig. 3(c)] are proportional to zeros of
the Bessel function from Eq. (21).

In the focus, evidently, in addition to the longitudinal spin
component [Eq. (19)], there are longitudinal and transverse
energy fluxes:

Sz = 1
2

(
I2
0,m − I2

2,m+2 − I2
2,m−2

)
, Sx = −Q(r) sin ϕ,

Sy = Q(r) cos ϕ,

Q(r) = 1
2 I1,m+1(I0,m + I2,m+2) + 1

2 I1,m−1(I0,m + I2,m−2).

(22)

Equation (22) shows that unlike the axial spin component
[Eq. (18)], the axial component of the Poynting vector is circu-
larly symmetric, as is the intensity distribution [Fig. 3(b)]. It is
also seen from Eq. (22) that at m = 0 (i.e., without the optical
vortex) there is no energy rotation in the focus [Q(r) = 0].

IV. PHOTONIC WHEELS OR PHOTONIC HELICOPTER

In the previous section, the spin density or SAM vector
of a linearly polarized Gaussian beam in the focal plane is
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shown to have a zero longitudinal component. However, it
turns out in this case that the transverse components of the
spin-density vector in the focus are nonzero. Indeed, for linear
polarization along the X-axis (σ = 0, γ+ = γ− = 1/

√
2) for

any m, Eq. (3) reduces to

sxE = 1
2 sin ϕ(−I1,m+1I2,m+2 + I1,m−1I2,m−2)

+ 1
2 sin 3ϕ(I1,m−1I2,m+2 − I1,m+1I2,m−2),

syE = 1
2 cos ϕ(

√
2I0,mI1,m+1 −

√
2I0,mI1,m−1

+I1,m+1I2,m+2 − I1,m−1I2,m−2)

− 1
2 cos 3ϕ(I1,m−1I2,m+2 − I1,m+1I2,m−2), (23)

and at m = 0 (szE0 = 0) we get

sxE0 = −2 cos ϕ sin 2ϕI1,1I2,2,

syE0 = 2 cos ϕ cos 2ϕI1,1I2,2 + √
2 cos ϕI0,0I1,1.

(24)

It is seen from Eq. (24) that there is no transverse flux
of the spin on the optical axis itself as well as along the
vertical axis (ϕ = ±π/2). Spin flux (24) to the right side from
the vertical axis Y(–π/2 < ϕ < π/2) is directed along the
positive direction of this axis. According to Eq. (24), if ϕ = 0,
then syE = √

2I1,1(
√

2I2,2 + I0,0) > 0. To the left side from
the vertical axis (π/2 < ϕ < 3π/2), the transverse spin is
directed along the negative direction. If ϕ = π , Eq. (24) yields
syE = −√

2I1,1(
√

2I2,2 + I0,0) < 0. Since at an arbitrary point
the spin vector is orthogonal to the ellipse (or circle) of
rotation of the polarization vector, then, according to Eq. (24),
the polarization vector to the left and to the right side from
the optical axis rotates in the horizontal plane in different
directions (similar to helicopter propellers). This effect is
similar to the photonic wheels [24,43], but since the plane of
polarization vector rotation is horizontal rather than vertical,
the analogy with rotation of the helicopter propellers comes
to mind. It is clear that if the plane of polarization vector
rotation near the focus should be vertical (photonic wheels),
it is necessary for the illuminating beam (1) to be vertically
polarized (along the Y-axis) instead of horizontally (along the
X-axis). We note that in [25,44] the transverse spin density
was measured experimentally in the sharp focus with linear
polarization. Experimentally measured syE (Fig. 3 in [44])
coincides with syE in Fig. 4(a), while measurement of the other
transverse SAM density sxE failed in [44] due to its small
value. References [25,44] do not contain the formulas (23)
and (24) describing the transverse SAM in the focus.

Figure 4 shows distributions of the transverse components
of the spin-density vector (spin angular momentum) in the
focus of a linearly polarized Gaussian beam (the polarization
vector is directed along the X axis). Other parameters are the
same as in Fig. 1. It is seen in Fig. 4 that the Y-component
sEy of the spin vector exceeds more than 30 times the X-
component sEx in magnitude. Thus, the sEx component can be
neglected, while the shape and sign of sEy in Fig. 4(a) confirm
the theoretical prediction [Eq. (24)] that the spin vector in the
focal plane is oriented vertically and in the different directions
at the left and at the right sides from the YZ-plane. Therefore,
in the XZ-plane there are polarization ellipses (or circles)
along which the electric field vector rotates in time. Such a

FIG. 4. Distributions of the transverse components of the spin-
density vector (longitudinal component is zero) in the focal plane:
sEy (a) and sEx (b). Analogy with rotation of the helicopter
propellers (c).

configuration of polarization ellipses resembles the rotation
of helicopter propellers [Fig. 4(c)].

V. PURE LONGITUDINAL SPIN IN THE FOCUS
AND PURE MAGNETIZATION

An azimuthally polarized optical vortex with a topological
charge m has the following complex amplitude [instead of
Eq. (1)]:

E = A(θ )eimϕ

(− sin ϕ

cos ϕ

)
, H = A(θ )eimϕ

(
cos ϕ

sin ϕ

)
. (25)

In the focal plane, components of the light field with a
topological charge of m = 1 read

Ex = −1

2
[(I0,0 + I2,0) + ei2ϕ (I0,2 + I2,2)],

Ey = − i

2
[(I0,0 + I2,0) − ei2ϕ (I0,2 + I2,2)],

Ez = 0.

(26)

It is seen from Eq. (26) that the azimuthally polarized
optical vortex of first order has in the focus a zero longitudinal
component. Since the longitudinal component of the electric
field is zero in Eq. (26), the energy flow (Poynting vector) has
only a longitudinal component, while its transverse compo-
nents are zero.

Then, we can obtain an expression for the longitudinal
component of the spin-density vector in the plane of sharp
focus:

sEz = 1
4 (|I0,m−1 + I2,m−1|2 − |I0,m+1 + I2,m+1|2). (27)

According to Eq. (27), the effect of pure magnetization
takes place [27] in this case, since in the focal plane only the
longitudinal component of the spin-density vector is nonzero.
The transverse components of the spin vector are zero for
any m (sEϕ = sEr = 0), and thus the plane, in which all the
polarization vectors rotate, coincides with the focal plane.
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FIG. 5. Distributions of the longitudinal component of the Poynt-
ing vector Sz (black color means zero, light color means maximum)
(a) and of the longitudinal component of the spin-density vector sE ,z

(black color means minimum, light color means maximum) (b) in the
focal plane of a sharply focused optical vortex (m = 1) that passed
through a narrow annular aperture. Yellow plot (a) is a section of sE ,z.

In [45], an expression is given for the longitudinal compo-
nent of the Poynting vector in the focus of an optical vortex
with a topological charge m and with nth-order azimuthal
polarization:

Sz = 1
2

(
I2
0,m+n + I2

0,m−n − I2
2,m+n−2 − I2

2,m−n+2

)
. (28)

According to this expression, the energy flux of an az-
imuthally polarized (n = 1) optical vortex along the optical
axis reads

Sz = 1
2

(
I2
0,m+1 + I2

0,m−1 − I2
2,m−1 − I2

2,m+1

)
. (29)

It can be shown that the axial component of the orbital
energy flow (13) can be expressed via the integrals (4):

Sor,z = 1
4 [(I0,0 + I2,0)(J0,0 + J2,0) + (I0,2 + I2,2)(J0,2 + J2,2)],

(30)

where

Jν,μ =
(

π f

λ

) ∫ θ0

0
sinν+1

(
θ

2

)
cos3−ν

(
θ

2

)
cos3/2(θ )

× A(θ )eikz cos zJμ(x)dθ. (31)

Equation (30) shows that on the optical axis in the focus,
the orbital energy flow is maximal and positive.

Figure 5 depicts distributions of the longitudinal compo-
nents of the Poynting vector Sz [Fig. 5(a)] and of the spin-
density vector sE ,z [Fig. 5(b)] in the focal plane computed
using Eqs. (29) and (27). Figure 5 is obtained for the following
parameters: wavelength λ = 532 nm, focal length f = 100λ,
vortex order (topological charge) m = 1, numerical aper-
ture NA = sinθ = sin 85 = 0.996, calculation area –1.5λ �
x, y � 1.5λ.

As seen in Fig. 5, the longitudinal spin component changes
its sign from ring to ring in the energy flux distribution.
This means that on different radii of the energy flux pat-
tern in focus, the polarization vector rotates in different di-
rection. On the optical axis, both the energy flux and the
spin are maximal and equal, Sz1 = (I2

0,0 − I2
2,0)/2 > 0 and

sEz1 = |I0,0 + I2,0|2/4, respectively. This can be seen from
Eqs. (29) and (27) at m = 1 and r = 0.

FIG. 6. Experimental optical setup for rotation of particles in a
circularly polarized Gaussian beam: Laser is the solid-state laser
(λ = 532 nm, Poutput = 100 mW); QP is the quarter-wave plate;
M1, M2, and M3 are the mirrors; MO1 and MO2 are the micro-
objectives (40 ×, NA = 0.65); C is the cell with water solution with
polystyrene particles; CAM is the video camera CAM (TOUPCAM
UCMOS08000KPB, pixel size 1.67 μm); I is the lighting lamp; L
is the biconvex lens with a focal length of 150 mm; and M4 is the
semitransparent mirror.

VI. EXPERIMENTAL DEMONSTRATION OF THE
SPIN-ORBITAL CONVERSION IN THE FOCUS

The experimental setup is shown in Fig. 6. A source
linearly polarized laser beam of a Gaussian shape goes from
a solid-state laser (λ = 532 nm, Poutput = 100 mW) and then
passes through a quarter-wave plate QP, which makes the
beam circularly polarized. Mirrors M1, M2, and M3 direct
the laser beam into the input pupil of a micro-objective MO1
(40 ×, NA = 0.65), which focuses the beam inside a cell C,
formed by two coverslips and containing an aqueous solution
with polystyrene particles. The focal length of the objective
MO1 is 4.5 mm and the diameter of the focal spot at full
width at half-maximum (FWHM) intensity is approximately
FWHM = 0.5λ/NA = 0.77λ = 0.41 μm. Micro-objective
MO2 (40 ×, NA = 0.65) generates an image of the trapping
plane on the matrix of a video camera CAM (TOUPCAM
UCMOS08000KPB, pixel size 1.67 μm). Lamp I, lens L
(focal length of 150 mm), and semitransparent mirror M4 are
used for highlighting the solution with particles. Figures 7
and 8 depict experimental results on rotation of an elongated-
spheroidal about (2 × 1)-μm-sized polystyrene particle
in a Gaussian beam with right-hand or left-hand circular
polarization.

According to Figs. 7 and 8, in the focus of a circularly
polarized Gaussian beam, the spin-orbit conversion generates
a spiral energy flow, as predicted by Eq. (11). Due to this
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FIG. 7. Stages of rotation of a particle trapped in a focused
Gaussian beam with left-hand circular polarization. Black lines show
the particle orientation. The particle size is 2 by 1 μm. The size of
the scale mark is 5 μm.

energy flow, a longitudinal component of the orbital angular
momentum is formed in the focus of the light field, which is
transmitted to the trapped microparticle and rotates it clock-
wise (left circular polarization) (Fig. 7) or counterclockwise
(right circular polarization) (Fig. 8). Note that, according to
Eq. (10), for left circular polarization the energy flux in the
focus rotates clockwise, and the particle in Fig. 7 rotates
clockwise, too. In addition, according to Eq. (11), for right
circular polarization, the transverse energy flux in the focus
rotates counterclockwise and the particle in Fig. 8 rotates
counterclockwise, too.

Note that the spin-orbit conversion effect was also studied
in [46–48], but those works do not contain the explicit an-
alytical expression for the orbital angular momentum in the
focus of a circularly polarized Gaussian beam. Experiments
on the microparticle rotation in the focus, which demonstrate
the spin-orbit conversion, are described in [47,48]. However,
in [47,48], in contrast to our work, a gold (absorbing) particle
was rotated rather than a dielectric (nonabsorbing) one. In
addition, the gold particle was rotated in a circular path with
a diameter of 10–15 μm, where the focused Gaussian beam
(with a diameter of about 1 μm) has almost zero energy. In
our experiment, a dielectric particle was trapped in the focus
of a Gaussian beam and rotated around its center of mass. The
azimuthal component of the energy flow, which rotates the
particle, has its maximal value on a circle with the radius of
about 0.5 μm (i.e., where the intensity drops twice in the focus
[46]). Around the center of mass, spin angular momentum
can rotate only an absorbing particle [49], and therefore it
did not affect the dielectric nonabsorbing microparticle in our
experiment.

To account for the experimental results, we have conducted
numerical simulation and derived a torque exerted onto the

FIG. 8. Stages of rotation of a particle trapped in a focused
Gaussian beam with right-hand circular polarization. Black lines
show the particle orientation. The particle size is 2 by 1 μm. The
size of the scale mark is 5 μm.

spheroidal microparticle of interest. Let a coherent light field
fall onto a microparticle with permittivity ε1 in a medium
with permittivity ε0. Then, an optical torque M exerted on the
microparticle at a point A will be equal to [50,51]

M =
∮

S
[r × (σ · n)]dS, (32)

where r is the radius-vector drawn from the point A(x, y, z) to
the integration point on the surface S, n is the external normal
vector to the surface S, A is the point relative to which the
torque M is calculated, and σ is the Maxwell stress tensor,
whose components in the CGS system can be written as [52]

σik = 1

4π

( |E|2 + |H|2
2

δik − EiEk − HiHk

)
, (33)

where Ei, Hi are the electric and magnetic field components,
and δik is the Kronecker delta (δi=k = 1, δi �=k = 0). The nu-
merical simulation was conducted for a numerical aperture
of NA = 0.65, a beam power of 100 mW, a wavelength of
532 nm, and a (1 × 2)-µm spheroidal particle located in
the water (refractive index n = 1.33). The refractive index
of the particle was taken from Ref. [53] and taken to be
n = 1.6 + i0.0002. The particle was placed in the focus of
a converging left-handed circularly polarized spherical wave
passing through a circular aperture, with its center found on
the optical axis. The torque (32) acting on the particle center
was rigorously calculated with and without regard for the
imaginary part of its refractive index. With the imaginary
part taken into account, the on-axis projection of the torque
was equal to Mz = 2.08 × 10−19 N m. With the imaginary
part taken to be zero (a nonabsorbing particle), the torque
was found to be approximately two times smaller: Mz =
0.82 × 10−19 N m. This result is in good agreement with a
result reported in Ref. [54], in which a spherical particle of
a size equal to several wavelengths of a 514-nm Ar laser
light with refractive index n = 1.47 + i10−6 placed in the
air in the focus of a circularly polarized Gaussian beam
experienced a torque of Mz = 0.3 × 10−19 N m, causing it to
rotate with an angular frequency of 4 rad/s. From Fig. 7,
the particle is seen to make a half-turn per 4 s (frames
from 11th to 15th second), hence the experimental angular
rotation frequency is about ω = π/4rad/s. This is the max-
imum rotation frequency achieved by the particle in Fig. 7.
The Stokes formula for a drag torque [30] is Mdrag,z = −
8πηa3ω, where a is the radius of a spherical particle and
η is the fluid viscosity. In our experiment with a (2 × 1)-
μm particle, we assume a = 1.41 × 10−6 m. At room tem-
perature, the water viscosity is η = 0.00089 Ns/m2. Then,
we find that Mdrag,z = 0.49 × 10−19 N m, which is less than
the torque derived for a nonabsorbing particle (Mz = 0.82 ×
10−19 N m). For an absorbing particle, the rotation frequency
would be four times higher than that measured in the ex-
periment. By way of illustration, the relationship derived
in Ref. [49] for a spherical particle gives a rotation fre-
quency of ω = IMgM ′M ′′/[ηc(M ′2 + 2)] = 5 rad/s, where
M ′ = Re(n), M ′′ = Im(n), I is the intensity of light (W/m2),
Mg is the refractive index of the medium (for water, Mg =
1.33), and с is the velocity of light in vacuum. This is
an overestimated value for the rotation frequency, because
the relationship is valid for the Rayleigh particles whose
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radius is much less than the incident wavelength. This is
approximately the same frequency at which strongly ab-
sorbing particles would have rotated when trapped in the
beam. For example, a 2-µm CuO particle has been de-
scribed to rotate with a 4-Hz frequency along a circular
path in kerosene (η = 1.58 × 10−3 N s/m2) when trapped
in a 10-mW beam [30]. In another study [31], 1–5-µm
CuO particles were reported to rotate with an ∼1-Hz fre-
quency in a 633-nm laser beam of 17-mW power that passed
through an aperture with NA = 1.3. Experimental results
most similar to ours were reported in Ref. [55] on trapping
a 1-µm Teflon sphere with a 2% absorption in a 25-mW
laser beam of wavelength 1064 µm (NA = 1.3), which ro-
tated around its center of masses with a ∼1-Hz frequency (2π

rad/s). However, it is important to mention that absorption
of a Teflon particle is an order of magnitude higher than that
of a polystyrene particle in our experiment, resulting in the
rotation frequency of the polystyrene particle being almost an
order of magnitude less (π/4 rad/s).

Summing up, a rigorous calculation of the torque exerted
on a particle under near-experimental conditions has shown
that with the particle absorption taken into account, the re-
sulting torque is nearly twice as high. Meanwhile, the theo-
retically calculated rotation frequency is several times higher
than that observed in the experiment. This may be because
the particle got trapped prior to the focus where the gradient
focus-directed upward force (Fig. 6) was compensated for
by the gravity force. Let us remember that with increasing
distance from the focus, the torque sharply decreases [54].
Our dielectric weakly absorbing microparticle was observed
to rotate about its axis near the focus of a Gaussian beam,
unlike all other known experiments, in which particles were
reported to rotate in an annular laser beam [30,31,47,48,55].

We also calculated torques exerted on a 200-nm on-axis
spherical particle (n = 1.6 + i0.0002) placed in water in
the focal plane (NA = 0.65): Mz = 0.3 × 10−19 N m. If the
spherical particle was shifted from the axis by 300 nm, the
torque applied to its center became zero (having reduced by
two orders of magnitude), with the particle ceasing to rotate
about its axis. In the meantime, the torque relative to the
optical axis exerted on the off-axis particle was found to
increase by a factor of 2.5: Mz = 0.8 × 10−19 N m. Therefore,
we can infer that a 200-nm off-axis particle would move
around the optical axis along a spiral path, being attracted
to where the on-axis intensity is maximal. This calculation
substantiates the feasibility of demonstrating the individual
effect of OAM and SAM on the particle in the strong focus.

VII. CONCLUSION

Here, we have obtained the following results. Based on
the Richards-Wolf theory, analytical expressions have been
obtained for the energy flux and for the spin density in the
sharp focus of vortex laser beams with linear, circular, and
azimuthal polarization. Using the obtained expressions, the
following optical phenomena have been shown to take place
in the focus.

Spin-orbital conversion. A source circularly polarized
Gaussian beam does not have the orbital angular momentum
(OAM), but in the plane of sharp focus the OAM of such a
beam is nonzero (that is, there is a transverse energy flux). The
transverse energy flux in the focus is equal in magnitude and
in sign to the transverse spin flux for both left-hand and right-
hand circular polarization. Both fluxes (spin flux and energy
flux) rotate near the focus clockwise (for left-hand circular
polarization of the Gaussian beam) and counterclockwise (for
right-hand circular polarization of the Gaussian beam). In our
experiment, a circularly polarized laser beam with a wave-
length of 532 nm and a power of 100 mW was focused with
a numerical aperture of 0.65. We demonstrated the rotation
of a polystyrene spheroidal (1 × 2) μm microparticle around
its center of mass and around the optical axis (half revolution
in 4 s). A change in the handedness of circular polarization
of the Gaussian beam led to a change in the direction of
microparticle rotation.

Orbital-spin conversion. A linearly polarized optical vortex
with unit topological charge does not have the spin vector,
but in the area of sharp focus an axial spin-density vector
appears, and it is distributed in the focal plane so that the
polarization vector rotates differently in different areas: clock-
wise near the horizontal transverse axis and counterclockwise
near the vertical axis. The spin vector on a certain-radius circle
(350 nm) in the focal plane forms in this case the Möbius
strip.

Photonic wheels or helicopter propellers. In the plane
of sharp focus, the spin-density vector of a linearly po-
larized Gaussian beam has only transverse components (its
longitudinal component is zero). If linear polarization of
the initial beam is horizontal, then in the focal plane the
spin-density vector is directed vertically, that is, the polar-
ization ellipses lie in the horizontal plane, and the polar-
ization vectors in these ellipses rotate in different direc-
tions at different sides from the optical axis (clockwise and
counterclockwise). This rotation of the polarization vectors
in the horizontal plane resembles the rotation of helicopter
propellers.

The effect of pure magnetization. An azimuthally polarized
optical vortex with an integer topological charge has no spin.
But in the plane of sharp focus, a spin-density vector (or spin
angular momentum) appears, directed along the optical axis.
There are no transverse components of the spin vector. This
means that the polarization ellipses are in the focal plane.
The rotation direction of the polarization vectors (clockwise
or counterclockwise) in the focal plane alternates from ring to
ring of the diffraction pattern in the beam cross section.
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