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In the framework of nonlinear spin optics, we investigate self-confined light beams in reorientational nematic
liquid crystals. Using modulation theory and numerical experiments, we analyze spatial solitary waves supported
by the geometric phase arising in a uniaxial when subject to a nonlinear modulation of its optic axis distribution.
Spin evolution and optical reorientation in an index-homogeneous medium give rise to a longitudinally periodic,
transversely inhomogeneous potential able to counteract the diffraction of a polarized bell-shaped beam,
generating a spin-optical solitary wave. Spin-optical solitary waves evolve in polarization and have an oscillatory
character in amplitude, size, and ellipticity.
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I. INTRODUCTION AND MOTIVATIONS

Self-focusing of light beams via the nonlinear response
of dielectrics to intense excitations is known to yield trans-
verse confinement and diffractionless propagation into spatial
solitary waves—loosely, solitons—since the early work of
Chiao et al. [1]. In the applied mathematics literature there
is a distinction between the terms solitary wave and soli-
ton [2], but here we will use interchangeably terms such as
solitary waves, solitons, self-localized beams, diffractionless
wave packets, self-trapped or self-confined beams, and their
combinations as this is common in the physics literature. Self-
trapped wave packets have been reported in a wide variety of
materials and on the basis of diverse nonlinearities, among
them the quadratic cascading of parametric interactions [3]
and the cubic, Kerr-like response of intensity dependent di-
electrics [4]. The latter include the local response of, e.g.,
glass, the weakly nonlocal response of photorefractives, and
the highly nonlocal response of thermo-optics, as well as of
nematic liquid crystals [5–7]. Nonlocality, i.e., the material’s
ability to respond even at finite distances from the electro-
magnetic disturbance, is one of the features which allows
the stability of spatial solitons in two transverse dimensions
(2D), that is, in bulk [8–10]. An important benefit of 2D
solitary waves in nonlocal Kerr-like media—at variance with
those in quadratic crystals—is that they are normal modes
of the corresponding self-induced graded-index waveguides;
otherwise stated, not only do they self-trap, but the can also
confine optical signals of different frequencies as long as
their wavelengths can be guided by the nonlinearly sustained
refractive index potential [11].

Of particular interest is the electromechanical nonlinear
optical response of birefringent molecular crystals in the
fluid state, referred to as the reorientational nonlinearity. The
latter is common, e.g., in uniaxials such as nematic liquid

crystals (NLC), consisting of angularly aligned, nonpolar, and
anisotropic molecules which, bound to one another by elastic
forces, in the presence of large electric fields (at light frequen-
cies) are able to rotate in space and yield beam self-focusing
due to the resultant refractive index increase [12]. In physical
terms, when a suitably polarized intense light beam propa-
gates through the material, the torque due to the reaction of the
optically induced dipoles to the electric field vector is able to
change the molecular angular orientation, lowering the system
energy and the phase speed of extraordinary waves [13]. The
nonlinear redistribution of the refractive index, higher wher-
ever the beam is more intense, as well as nonlocal because
of the intermolecular links in the fluid, can give rise to a
graded potential with light guiding properties, i.e., a waveg-
uide preventing beam diffraction and supporting stable spatial
solitons. Such (linearly polarized) solitary waves in NLC have
been termed nematicons and their properties, as well as their
applications, have been investigated both experimentally and
theoretically in the past two decades [14–18]. We recall here
that nematicons can be generated by continuous-wave beams
at milliWatt powers [14], have governing equations which
admit no (known) exact solutions [18,19], exhibit optical
bistability versus power excitation [20,21], can be exploited
in synergy with other nonlinear effects [22–25], including
random lasing [26,27], and can be redirected by external
voltages [28,29], beams [30,31], and magnetic fields [32–34].

Nematicons are extraordinarily (e-) polarized wave packets
in uniaxial NLC, whereby the beams maintain their electric
field oscillating in the principal plane of the optic axis and
the wave vector. Whenever the input beam polarization (i.e.,
each of its plane wave components) does not match either of
the two eigenwaves of the uniaxial, it excites ordinary and
extraordinary waves detuned in phase velocities, so that the
wave packet evolves in its “spin” state during propagation.
In the presence of a nonuniformity, such as a transversely
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varying orientation of the optic axis (or symmetry axis), the
evolution can involve the periodic coupling of ordinary and
extraordinary waves and so result in a “cascaded” process.
The additional phase term generated during this polarization
transformation (i.e., the path followed along the surface of
a Poincaré sphere) is often referred to as the Pancharatnam-
Berry (PB) geometric phase [35,36], which is linked to vari-
ous phenomena in the frame of so-called “spin-orbit interac-
tions of light” or “spin optics” [37–41]. Early work on the ge-
ometric Berry phase dealt with the propagation of linearly po-
larized light in the presence of homogeneous refraction [42].
Most recent optical manifestations have been associated with
dielectric anisotropy in 2D metasurfaces and birefringent
crystals [41,43–45], entailing several applications in photon-
ics [46]. When the spin transformation is a pointwise function
of the anisotropic distribution across the beam profile, the
PB phase can alter the phase front of a propagating wave
packet and yield transverse confinement, leading to novel
waveguiding approaches which do not rely on total internal re-
flection [47–49]. Furthermore, in bulk anisotropic dielectrics,
such as homogeneously aligned nematic liquid crystals, the
modulation of the optic axis distribution can be nonlinearly
induced through all-optical reorientation, as mentioned above.
In configurations for which the optic axis is perpendicular to
the beam wave vector and the input wave packet couples to
both ordinary and extraordinary components (as it is not just
one eigenwave), the propagation is not affected by changes in
refractive index and the PB phase can be nonlinearly tailored
by reorientation according to the light polarization and inten-
sity at each point, i.e., the “local” spin. Otherwise stated, the
(inhomogeneous) optic axis modulation required to provide
transverse confinement via geometric phase, as described,
e.g., in Ref. [47], can be obtained by the nonlinear action of
a suitably polarized and shaped beam. In this limit, the input
excitation can generate a reorientational spatial solitary wave
with varying polarization—a “spin-optical” soliton. A pio-
neering experiment on such spin-orbit interaction of light was
experimentally carried out in a one-dimensional setting by
Karpierz et al., who observed beam self-localization of mixed
TE and TM beams in homogeneous (homeotropically aligned)
NLC planar waveguides [50]. This early demonstration of
one-dimensional spin-optical solitons was not interpreted in
terms of self-confined waves and Pancharatnam-Berry phase,
although the inherent roles of polarization transformation and
reorientation were invoked a few years later to derive the
approximate profile of such solitary waves [51]. Experimental
evidence of 2D spin-optical solitons due to the interplay of PB
phase and nonlinear reorientation in initially uniform samples
was subsequently reported by Kwasny et al. in (planarly
aligned) bulk NLC [52].

In this paper we afford the ambitious goal of using mod-
ulation theory [2] to model two-dimensional optical solitary
waves stemming from the interplay of nonlinear reorien-
tation and spin transformation in nematic liquid crystals.
These solitary waves are not associated with a refractive
index change as they stem from spin-orbit interactions, an
entirely innovative approach to light guidance [47]. Such
an unusual self-trapping mechanism could hold promise to-
wards new all-optical switching schemes, as well as signal
waveguiding in novel soliton-defined permanent structures in

polymerizable media [53]. These spin-optical solitons have
an oscillatory character versus propagation and therefore shed
radiation which cannot be totally trapped by the light-induced
waveguide, as is the case for nonlocal, linearly polarized
nematicons [18]. Finally, spin-optical solitons evolve to have
elliptical profiles, as expected due to the inherent anisotropies
in nonlinearity and diffraction.

II. MATERIAL, NONLINEARITY, AND
INTERACTION GEOMETRY

Hereby, we consider nematic liquid crystals, a birefrin-
gent material with a single symmetry axis, which consists
of anisotropic molecules bound in a fluid state. NLC are
thermotropic liquid crystals exhibiting large birefringence,
extended spectral transparency, and a reorientational response
to electromagnetic fields [54,55]. Standard NLC are posi-
tive uniaxials with optic axis coincident with the molecular
director n, a unit vector locally aligned with the long axis
of the ellipsoid-shaped molecules. For a given wave vector
k, the two ordinary (o-) and extraordinary (e-) plane wave
eigensolutions propagate with phase velocities c/n⊥ and c/ne,
respectively, with c the speed of light in vacuum, ne(θ ) =
(cos2 θ/n2

⊥ + sin2 θ/n2
‖)

−1/2
the extraordinary refractive in-

dex, θ the angular orientation of n with respect to k, n⊥ the
ordinary refractive index, and n‖ = ne(π/2) the upper limit of
the extraordinary index. In the presence of an electric field
of vector E, below the so-called Freédericks threshold the
optical torque acting on the induced dipoles can be cast in
the form [55]

� = ε0εa(n · E)(n × E), (1)

with ε0 the vacuum dielectric constant and εa the dielectric
anisotropy εa = n2

‖ − n2
⊥. When the initial E, k, and n are

not mutually orthogonal, an intense e-wave field can generate
a torque � counteracting the elastic forces (intermolecular
links) in the liquid and so increase θ and ne to yield a
saturable self-focusing response. This nonlinear response is
therefore nonlocal and polarization preserving, and supports
the propagation of nematicons [14–16]. The torque given by
Eq. (1) can also act on n when k · n = 0, i.e., when the
beam propagates orthogonally to the optic axis. In this case,
a transverse electric field can reorient n in the (x, y) plane
according to the beam shape, altering the system anisotropy
and introducing pointwise coupling between the spatially
dispersive o-wave and e-wave components.

For the sake of simplicity, and with reference to the
experimental evidence reported earlier, the interaction we
investigate hereby for spin-optical spatial solitary waves due
to a reorientation tuned geometric phase resembles the NLC
configuration in Ref. [52], as sketched in Fig. 1. A coherent
bell-shaped input beam with main wave vector along k ‖ z
and electric field components Ex and Ey along x and y, respec-
tively, propagates into planar homogeneous NLC with optic
axis n aligned along y. In this setting (i.e., at normal incidence
with respect to n), the relative dielectric susceptibility can be
expressed as

ε jk = n2
⊥δ jk + εan jnk, j, k = x, y, z, (2)

with δ jk the Kronecker delta and n j the components of n =
(sin ξ, cos ξ, 0). The angle ξ fully describes the optic axis
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FIG. 1. Sketch of the considered sample and interaction geome-
try. A planar cell of thickness L contains the homogeneously aligned
nematic liquid crystal. The ellipses represent the elongated NLC
molecules, with long axes along n and parallel to y at rest. The
input light beam impinges on the sample normally to n, carrying
both ordinary (wave vector ko) and extraordinary (wave vector ke)
components of the electric field E. In the absence of longitudinal
field components, the optic axis n can reorient within (x, y) at an
angle ξ with respect to y.

reorientation in the plane (x, y) under the action of an electric
field purely transverse (Ez = 0) with respect to k ‖ z. The
eigenwave vectors take the values ko = k0n⊥ and ke = k0n‖
for electric fields oscillating along x and y, respectively.
Hence an input beam encompassing both transverse com-
ponents populates the o- and e-eigensolutions with a (mo-
mentum) mismatch �k = k0(n⊥ − n‖). In the linear regime,
these eigenwaves acquire an additional phase term �φ =
�k z when propagating along z, yielding a polarization state
transformation from, e.g., linear to elliptical, circular, ellipti-
cal to linear, etc., with a beat length lb = 2π/�k [56]. When
reorientation of the symmetry axis occurs in the transverse
plane (x, y) owing to the electric field distribution across the
beam profile, the point dependent coupling between eigen-
waves translates to a geometric phase as the latter depends on
the spin evolution across the wave packet, i.e., it is nontransi-
tive [49]. The PB phase needs to be larger on beam axis (than
in its outskirts) while monotonically accumulating retardation
along z in order to balance out diffraction [47]. Both these
requirements are satisfied by the reorientational response,
inasmuch as the nonlinearity is maximum at the beam inten-
sity peak and exhibits a recurrent change in sign with period
	 = lb owing to the polarization rotation. This change in sign
counteracts the sign change in PB phase accumulation due to
spin evolution, so that the PB distribution in (x, y, z) resembles
a “quasi-phase-matched” [57,58] three-dimensional photonic
potential able to compensate spatial spreading and so guide
light [47].

In the configuration described above, invoking the paraxial
approximation for wave-packet propagation in a nonlocal
uniaxial environment, the dimensional model for the evolution
of a beam with both transverse components of the electric
field and in the presence of nonlinear reorientation can be
written as

2ik0n⊥
∂Ex

∂z
+ ∂2Ex

∂x2
+ ∂2Ex

∂y2
+ k2

0εaEx sin2 ξ

+ 1

2
k2

0εaEyeik0(n‖−n⊥ )z sin 2ξ = 0, (3)

2ik0n‖
∂Ey

∂z
+ ∂2Ey

∂x2
+ n2

‖
n2

⊥

∂2Ey

∂y2
− k2

0εaEy sin2 ξ

+ 1

2
k2

0εaExe−ik0(n‖−n⊥ )z sin 2ξ = 0, (4)

with the nonlinear, nonlocal response given by

K∇2ξ + 1
4ε0εa[2(|Ex|2 − |Ey|2) sin 2ξ

+ 2 ReExE∗
y e−ik0(n‖−n⊥ )z cos 2ξ ] = 0. (5)

Here, the Laplacian ∇2ξ is in the transverse plane (x, y) and K
is the scalar strength for the elastic NLC molecule interaction
in the liquid, assuming equal elastic constants for bend, splay,
and twist deformations [55]. For the computational analysis
we will use the material parameters of the standard E7 mixture
at room temperature, a positive uniaxial NLC with n‖ = 1.73
and n⊥ = 1.53, and elastic constant K = 12pN . Coherent and
polarized Gaussian beams are launched with plane wave front
at wavelength λ = 1.064 μm with waist w of 2.5 μm at
the origin x = y = z = 0 of a planar cell of size L = 42 μm
across x. The latter thickness, slightly smaller than in reported
experiments [52] for which beam alignment is a crucial is-
sue, was selected to reduce computation times, while having
minimal effects on the results. It should be noted that, as
long as the beams are well removed from the boundaries, the
solutions for Ex, Ey, and ξ have negligible dependence on the
cell size.

III. MODULATION THEORY

The paraxial Eqs. (3)–(5) used in the present work can
be derived from a more general, Helmholtz-type system as
in [52], and are also related to the model in [51]. The
derivation of the paraxial equations involves a number of
approximations and transformations which are relevant for
the interpretation of the results, as will be detailed. The full,
Helmholtz-type model governing the field components Ex and
Ey and the director angle ξ are [52]

εa cos2 ξ
∂2Ey

∂x∂y
+ 1

2
εa sin 2ξ

∂2Ey

∂x2

+ (n2
⊥ + εa sin2 ξ )

∂2Ex

∂x2
+ n2

⊥
∂2Ex

∂y2
+ n2

⊥
∂2Ex

∂z2

+ 1

2
εa sin 2ξ

∂2Ex

∂x∂y

= −k2
0n2

⊥

[
(n2

⊥ + εa sin2 ξ )Ex + 1

2
εa sin 2ξ Ey

]
, (6)

εa sin2 ξ
∂2Ex

∂x∂y
+ 1

2
εa sin 2ξ

∂2Ex

∂y2

+ (n2
‖ − εa sin2 ξ )

∂2Ey

∂y2
+ n2

⊥
∂2Ey

∂x2
+ n2

⊥
∂2Ey

∂z2

+ 1

2
εa sin 2ξ

∂2Ey

∂x∂y

= −k2
0n2

⊥

[
(n2

‖ − εa sin2 ξ )Ey + 1

2
εa sin 2ξ Ex

]
, (7)
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K∇2ξ + 1

4
ε0εa[(|Ex|2 − |Ey|2) sin 2ξ

+ (ExE∗
y + E∗

x Ey) cos 2ξ ] = 0. (8)

This system describing the evolution of the two, x and y,
components of the electric field and the resulting director
response is highly nonlinear in orientation ξ and not amenable
to exact analysis. There are a number of dispersive terms
in the equations for Ey and Ey which are small due to the
factor εa and can be asymptotically simplified. A solitary
wave stems from a balance between natural diffraction and
effective self-focusing. Hence the system (6) and (7) can be
simplified by balancing first-order diffraction, which is O(1),
and first-order nonlinearity, which is O(εa). In addition, the
equations can be recast in paraxial form using

Ex = X eik0n⊥z, Ey = Y eik0n‖z. (9)

Taking the usual slowly varying approximation—in which
∂2X/∂z2 and ∂2Y/∂z2 are neglected—results in the paraxial
equations

2ik0n⊥
∂X

∂z
+ ∂2X

∂x2
+ ∂2X

∂y2
+ k2

0εaX sin2 ξ

+ 1

2
k2

0εaY eik0(n‖−n⊥ )z sin 2ξ = 0, (10)

2ik0n‖
∂Y

∂z
+ ∂2Y

∂x2
+ n2

‖
n2

⊥

∂2Y

∂y2
− k2

0εaY sin2 ξ

+ 1

2
k2

0εaX e−ik0(n‖−n⊥ )z sin 2ξ = 0, (11)

K∇2ξ + 1

4
ε0εa[(|X |2 − |Y |2) sin 2ξ

+ 2 ReXY ∗e−ik0(n‖−n⊥ )z cos 2ξ ] = 0. (12)

This intuitive compensation of leading-order diffraction and
nonlinearity can be formalized through a coordinate scaling
analysis. Due to εa being small, the x and y scales of the
solitary wave are long. So we can set the long wave spatial
scales as x̄ = √

εax and ȳ = √
εay, with z̄ = εaz. The full

Eqs. (6)–(8) are then transformed to these new, slowly varying
space variables. Keeping only the first-order, O(1), terms and
making the paraxial approximation (9) yields the Eqs. (10)–
(12) [transformed back to (x, y, z) from (x̄, ȳ, z̄)].

Moreover, the equations can be set in nondimensional form
using the rescaled space variables

z̃ = k0εa

n⊥
z, x̃ = k0

√
εax, ỹ = k0

√
εay. (13)

These nondimensional variables are the long wave variables
(x̄, ȳ, z̄) scaled by the wave number k0. The electric fields can
be nondimensionalized on an input wave packet of power Pb,
amplitude Ab, and width Wb, so that Ey = AbX and Ey = AbY .
For a Gaussian beam, the amplitude scale Ab is determined
from the power by

Pb = π

2
CA2

bW
2

b , C = 1

2
ε0cne. (14)

Applying this nondimensionalization, Eqs. (10)–(12) become

2i
∂X

∂ z̃
+ ∂2X

∂ x̃2
+ ∂2X

∂ ỹ2
+ X sin2 ξ + 1

2
Y e

iz̃
1+γ sin 2ξ = 0,

(15)

2iγ
∂Y

∂ z̃
+ ∂2Y

∂ x̃2
+ γ 2 ∂2Y

∂ ỹ2
− Y sin2 ξ + 1

2
X e

−iz̃
1+γ sin 2ξ = 0,

(16)

ν∇2ξ + (|X |2 − |Y |2) sin 2ξ + 2 Re
(
XY ∗e

−iz̃
1+γ

)
cos 2ξ = 0,

(17)

where

γ = n‖
n⊥

, ν = 4Kk2
0

ε0A2
b

. (18)

These scalings, applied to the material and geometry out-
lined earlier, correspond to typical dimensionless nonlocality
ν = 600, anisotropy γ = 1.13, thickness L = 200, and input
waists wX0 = wY 0 = 12, which are used to obtain the results
presented in the following. The nondimensional Eqs. (15)–
(17) have the Lagrangian formulation

L = i(X ∗Xz̃ − XX ∗
z̃ ) − |Xx̃|2 − |Xỹ|2

+ iγ (Y ∗Yz̃ − YY ∗
z̃ ) − |Yx̃|2 − γ 2|Yỹ|2 − 1

2ν|∇ξ |2

+ Re
(
XY ∗e− iz̃

1+γ

)
sin 2ξ + sin2 ξ (|X |2 − |Y |2). (19)

Unfortunately, there are no known solitary wave solutions
of the reduced system (15)–(17), as for the nematic equa-
tions [18]. In these cases, other than using numerical methods
to find solitary wave solutions, variational approximations
have proved to be useful and give results in good agreement
with numerical and experimental results [7,18,59,60]. The
Gaussian approximations

X = (
aX e−r2/w2

X + igX
)
eiσX ,

Y = (
aY e−r2/w2

Y + igY
)
eiσY , (20)

ξ = α e−r2/β2
,

with r2 = x̃2 + ỹ2, are appropriate for variational approxima-
tions to nematicons, where the parameters aX , aY , wX , wY , σX ,
σY , α, β, gX , and gY are functions of z̃ [18]. The trial func-
tions for the electric fields X and Y have space independent
terms igX and igY . The beam components oscillate as they
propagate, which generates diffractive radiation, forming a
shelf under them [59]. These shelf terms igX and igY represent
the long-wavelength radiation produced in the vicinity of the
beam, whose existence and spatially independent form was
shown from the inverse scattering method applied to the NLS
equation [59]. The shed radiation away from the beam is not
dealt with here [59,60] as it has appreciable effects exclusively
on long z̃ scales [60]. The radiation shelves under the beam
can be assumed as circles of radii �X and �Y under X and Y ,
respectively [59,60]. Note that the inclusion of the radiation
generated by the evolving beam is an alternative to the chirp
method of Anderson [61].

Since the ỹ-component electric-field Eq. (16) has non-
symmetric x̃ and ỹ diffraction coefficients, the trial function
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for Y in (20) should have different widths in x̃ and ỹ, wY x̃

and wY ỹ. Indeed, numerical solutions show that even if the
initial components have a circular cross section, they evolve
to an elliptic shape; see Fig. 2(g). Even though the trial
functions (20) could be extended to have different widths wXx̃

and wXỹ in x̃ and ỹ for X and, likewise, different wY x̃ and wY ỹ

for Y , this would significantly increase the complexity of the
resulting modulation equations, with only marginal changes
in their solution as εa is small—γ ∼ 1. Hence, for the sake of
simplicity, the circular trial functions (20) will be employed
in the following.

The trial functions (20) are substituted into the La-
grangian (19), which is then averaged by integrating in x̃ and
ỹ from −∞ to ∞ [2], noting that the beam parameters aX ,
aY , wX , wY , α, β, σX , and σY depend on z̃. However, it is
not possible to calculate the averaging integrals for the terms
involving sin2 ξ and sin 2ξ in (19), so another convenient
assumption is that the director angle |ξ | is small and the
trigonometric functions can be expanded to their first terms
in Taylor series. The resulting modulation equations provide
solutions in good agreement with numerical integration of the
full Eqs. (15)–(17). The averaged Lagrangian L is then

1

π
L = −(

a2
X w2

X + 2�X g2
X

)
σ ′

X + 2w2
X gX a′

X

+ 4aX wX gX w′
X − 2aX w2

X g′
X − a2

X

− γ
(
a2

Y w2
Y + 2�Y g2

Y

)
σ ′

Y + 2γw2
Y gY a′

Y

+ 4γ aY wY gY w′
Y − 2γ aY w2

Y g′
Y − 1

2
(1 + γ 2)a2

Y

+ 2

D
αaX aY w2

X w2
Y β2 cos θ − 1

2
να2

+ 1

2
α2

[
a2

X w2
X β2

β2 + w2
X

− a2
Y w2

Y β2

β2 + w2
Y

]
. (21)

Here

D = β2w2
X + β2w2

Y + w2
X w2

Y , θ = z̃

1 + γ
− σX + σY .

(22)
Taking variations of the above averaged Lagrangian with
respect to all the parameters, except the director width β, gives
the modulation equations

d

dz̃

[
a2

X w2
X + 2�2

X g2
X

] = −2αaX aY w2
X w2

Y β2

D
sin θ, (23)

γ
d

dz̃

[
a2

Y w2
Y + 2�2

Y g2
Y

] = 2αaX aY w2
X w2

Y β2

D
sin θ, (24)

d

dz̃
aX w2

X = �2
X gX

dσX

dz̃
, (25)

d

dz̃
aY w2

Y = �2
Y gY

dσY

dz̃
, (26)

dgX

dz̃
= aX

2w2
X

(27)

− 2αaY w2
Y β2

D2

(
w2

X β2 − w2
Y β2 + w2

X w2
Y

)
cos θ,

γ
dgY

dz̃
= (1 + γ 2)aY

4w2
Y

(28)

FIG. 2. Evolution of beam and transverse director orientation
for an in-phase initial excitation with aX 0 = aY 0 = 1.3 and σX 0 =
σY 0 = 0. (a) Numerical solution of Eqs. (15)–(17) versus z. Red
(solid) line: total amplitude ab; black (dashed) line: amplitude aX

of X ; pink (dashed) line: amplitude aY of Y ; blue (dotted) line:
director angle amplitude α, (b) same as (a), but for solution of
the full modulation Eqs. (23)–(31) with same line types. Lines
with symbols: solution (32)–(36) of the approximate modulation
equations; (c) numerical X evolution through ỹ = 0, (d) numerical
X evolution through x̃ = 0, (e) numerical Y evolution through ỹ = 0,
(f) numerical Y evolution through x̃ = 0, and (g) color plot of beam
intensity cross sections

√
|X |2 + |Y |2 calculated numerically at fixed

propagation intervals.
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− 2αaX w2
X β2

D2

(
w2

Y β2 − w2
X β2 + w2

X w2
Y

)
cos θ,

dσX

dz̃
= −2

w2
X

+ 2αaY w2
X w2

Y β2

aX D2

(
β2 + w2

X

)
cos θ, (29)

γ
dσY

dz̃
= −1 + γ 2

w2
Y

+ 2αaX w2
X w2

Y β2

aY D2

(
β2 + w2

Y

)
cos θ,

(30)

plus the algebraic equation

α = 2aX aY w2
X w2

Y β2 cos θ

D[ν − β2�]
, � = a2

X w2
X

β2 + w2
X

− a2
Y w2

Y

β2 + w2
Y

,

(31)

for the amplitude of the director (re)orientation. In principle,
these equations are completed by taking variations of the
averaged Lagrangian with respect to β in order to determine
the width of the director reorientation. However, away from
the components X and Y , the solution of the director Eq. (17)
varies as ln r, which is one of the homogeneous solutions
of Laplace’s equation. This means that the appropriate width
of the director response is not that given by the variational
equation for β, as the trial function for the director is based on
a Gaussian, but the thickness L of the NLC cell. We then set
β = L/(2

√
ln 100), so that the angular director response (20)

falls to 0.01 of its value in the center and the boundary
condition is approximately satisfied. It should be stressed
again that the results do not depend significantly on this
approximation to the boundary condition. In previous appli-
cations of this Lagrangian technique, the director distribution
decayed exponentially away from the beam due to the director
being pretilted by an external electric field, so that the bound-
ary condition was automatically satisfied [18,60]. The trial
function (20) for ξ then represents the director distribution
directly forced by the beam. However, it does not include
the ln r behavior away from the beam, because owing to the
exponential decay this contributes negligibly to the beam-
director interaction when averaging the Lagrangian (19).

The modulation Eqs. (23) and (24) model the power of
the components X and Y . Adding them shows that the total
light power is conserved, although the power cycles between
the two components, causing them to oscillate in amplitude
and width. The inclusion of the radiation shelf, the gX and gY

terms in the trial functions (20), is vital to obtaining consistent
modulation equations which yield physical results and agree
with numerical solutions. By neglecting the radiation shelf
and setting gX = 0 and gY = 0 in Eqs. (27) and (28), when
α is substituted from (31), these modulation equations would
become singular for cos θ = 0. The circulating radiation into
and out of the shelf as the beam evolves stops this unphysical
singularity and causes the amplitudes and widths to oscillate
between nonzero limits, in agreement with numerical solu-
tions. The final quantities to be determined are the shelf radii
�X and �Y , evaluated by matching the solitary wave phase to
the oscillation period of the modulation equations around their
fixed point [59,60]. However, this leads to highly involved
expressions. As the shelf radii are proportional to the widths
wX and wY [59,60], we picked the pertinent factor to match
modulation and numerical solutions for a particular parameter

choice and then fixed it for all other solutions [62,63]. We thus
set the values �X = 0.3wX and �Y = 0.3wY .

In general, the modulation Eqs. (23)–(31) need to be solved
numerically. If the oscillations in the components are small,
little radiation is fed into the shelves under the beam and |gX |
and |gY | can be assumed small, as well [7,59,60]. In this case,
Eqs. (23)–(31) can be solved to yield, to O(|α|),

aX = aX0 − aX0a2
Y 0w

2
X0w

4
Y 0β

4

D2
0ψ (ν − β2�0)

[cos 2(ψ z̃ − σX0 + σY 0)

− cos 2(σX0 − σY 0)], (32)

aY = aY 0 + a2
X0aY 0w

4
X0w

2
Y 0β

4

γ D2
0ψ (ν − β2�0)

[cos 2(ψ z̃ − σX0 + σY 0)

− cos 2(σX0 − σY 0)], (33)

wX = wX0 + a2
Y 0w

3
X0w

4
Y 0β

4

2D2
0ψ (ν − β2�0)

[cos 2(ψ z̃ − σX0 + σY 0)

− cos 2(σX0 − σY 0)], (34)

wY = wY 0 − a2
X0w

4
X0w

3
Y 0β

4

2γ D2
0ψ (ν − β2�0)

[cos 2(ψ z̃ − σX0 + σY 0)

− cos 2(σX0 − σY 0)], (35)

α = 2aX0aY 0w
2
X0w

2
Y 0β

2

D0(ν − β2�0)
cos(ψ z̃ − σX0 + σY 0), (36)

where

ψ = 1

1 + γ
+ 2

w2
X0

− 1 + γ 2

γw2
Y 0

. (37)

The subscript 0 denotes quantities at z̃ = 0. This approxi-
mation agrees well with numerical solutions, as long as the
components do not evolve far from their initial state. It shows
that the only effect of an initial phase difference between
X and Y is a shift of their oscillations and the director
oscillation, without changes in amplitudes and periods. These
basic findings for the evolution of beam and director reorien-
tation based on modulation theory will be confirmed below
through comparisons with numerical solutions of the paraxial
Eqs. (15)–(17).

IV. RESULTS AND DISCUSSION

Figure 2 shows a set of results for equal amplitude, in-
phase input components X and Y , comparing full numerical
solutions of Eqs. (15)–(17) with those of the modulation
Eqs. (23)–(31) and the approximate solutions (32)–(36). This
case corresponds to a linearly polarized input beam, with
electric field initially oscillating at π/4 in the plane (x̃, ỹ)
and therefore producing a strong nonlinear response [14],
at variance with purely extraordinary (ordinary) waves po-
larized along ỹ (x̃), as they induce no reorientation based
on Eq. (1) below the Freédericks threshold [13]. The initial
conditions for X and Y are the trial functions (20) and the
amplitudes aX , aY and widths wX , wY chosen so that the beam
amplitude |(X,Y )| undergoes minimal adjustments down the
NLC sample. Figures 2(a) and 2(b) show the total beam
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amplitude ab, the amplitudes of its x̃ and ỹ components, and
the amplitude of the director reorientation, respectively. The
various solutions show substantial agreement of theory and
numerics despite the approximations, even though some small
discrepancies are visible, particularly in the detailed evolution
of the amplitudes and the periodicity of the nonlinear director
modulation. The inherent physics, stemming from a periodic
orientation of the optic axis in the transverse plane (x̃, ỹ) about
its initial alignment along ỹ, with the geometric phase yield-
ing phase front curvature and self-focusing, emerges clearly
from the model. The role of the geometric phase, previously
described by polarimetry and the Poincaré sphere using the
Jones calculus and the Stokes parameters (see Refs. [64–66]
and references therein), is clearly manifested through the
evolution of beam size and amplitude owing to self-trapping.
The solitary wave is transversely confined despite propagation
in a uniform index environment and, as pointed out for the 1D
case in Ref. [51], it oscillates in width and amplitude versus
z̃ [Figs. 2(c)–2(f)] owing to the phase velocity mismatch be-
tween eigenpolarizations (birefringence). The beam intensity
evolves to an elliptic cross section owing to the lack of circular
symmetry around z̃ [Fig. 2(g)].

The full modulation solution for the overall amplitude is
in excellent agreement with the numerical result, including
the slight decay versus z̃. The approximate modulation so-
lution (32)–(36) agrees well also, but it oscillates about the
initial amplitude without the slight decay versus z̃. The agree-
ment between X and Y amplitudes given by the numerical
and modulation solutions is also satisfactory, although the
modulation amplitude has larger oscillations. The full and
approximate modulation solutions for X and for Y match quite
well; the curves for Y are not displayed to avoid cluttering
Fig. 2(b). The amplitude of the director oscillation is correctly
predicted by the modulation theory, with the modulation
period slightly shorter than the numerical one.

Figures 2(c)–2(g) display cross sections of each evolving
component and snapshots of the beam intensity. In Fig. 2(g)
we plotted values for which

√
|X |2 + |Y |2 � 0.5

√
a2

X + a2
Y .

Out of phase oscillations of the amplitudes and widths of X
and Y can be appreciated, as predicted by the modulation the-
ory, while the beam evolves from its initially circular profile
to an elliptic shape with the major axis in the ỹ direction. This
can be attributed to the ỹ diffraction coefficient γ 2 in Eq. (16)
being different to that for X [Eq. (15)]. This, discussed above
for the choice of the trial functions for X and Y , suggests that
the ỹ width of Y should be γ = n‖/n⊥ = 1.13 times that of
X . The ratio of the numerical ỹ widths of Y and X oscillates
between 0.96 and 1.22 during propagation, in agreement with
theory. In addition, the ratio of the ỹ and x̃ widths of the total
beam (X,Y ) in Fig. 2(g) monotonically increases to 1.16 at
z̃ = 100.

Figure 3 displays similar results as in Fig. 2, but for an
initial phase difference of π between components, i.e., a linear
input polarization with electric field at −π/4. Consistent with
the inherent physics of the all-optical reorientation of neutral
molecules, the approximate modulation solution (32)–(36)
predicts that the amplitudes and widths evolve in an identical
manner to that for the in-phase components, with the director
oscillations simply shifted by π . This is borne out by the
numerical solutions in Figs. 3(a) and 3(c)–3(f). The equivalent

FIG. 3. Evolution of beam and transverse orientation of optic
axis for an excitation with aX 0 = aY 0 = 1.3, wX 0 = wY 0 = 12, σX 0 =
−π , and σY 0 = 0. (a) Numerical solution of Eqs. (15)–(17) versus z.
Red (solid) line: total amplitude ab; black (dashed) line: amplitude
aX of X ; pink (dashed) line: amplitude aY of Y ; blue (dotted)
line: director amplitude α, (b) same as (a), but for approximate
solution (32)–(36) of modulation equations, (c) numerical X evo-
lution through ỹ = 0, (d) numerical X evolution through x̃ = 0, (e)
numerical Y evolution through ỹ = 0, and (f) numerical Y evolution
through x̃ = 0.

of the beam evolution in Fig. 2(g) is redundant and is not
displayed.

Figure 4 presents solutions and comparisons for an initial
phase difference of π/2, i.e., a circularly polarized input. The
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FIG. 4. Evolution of beam and transverse director orientation for
an initial excitation with aX 0 = aY 0 = 1.3, σX 0 = π/2, and σY 0 =
0. (a) Numerical solution of Eqs. (15)–(17) versus z. Red (solid)
line: total amplitude ab; black (dashed) line: amplitude aX of X ;
pink (dashed) line: amplitude aY of Y ; blue (dotted) line: director
orientation amplitude α, (b) same as (a), but for solution of the
full modulation equations (23)–(31) with the same line types. Lines
with symbols: solution (32)–(36) of the approximate modulation
equations, (c) numerical X evolution through ỹ = 0, (d) numerical
X evolution through x̃ = 0, (e) numerical Y evolution through ỹ = 0,
(f) numerical Y evolution through x̃ = 0, and (g) color plot of beam
intensity cross sections at fixed propagation intervals.

FIG. 5. Evolution of beam and transverse director orientation for
an input excitation with aX 0 = aY 0 = 1.3, σX 0 = π/3, and σY 0 = 0.
(a) Numerical solution of Eqs. (15)–(17) versus z. Red (solid) line:
total amplitude ab; black (dashed) line: amplitude aX of X ; pink
(dashed) line: amplitude aY of Y ; blue (dotted) line: director angle
amplitude α, (b) same as (a), but for approximate solution (32)–
(36), (c) numerical X evolution through ỹ = 0, (d) numerical X
evolution through x̃ = 0, (e) numerical Y evolution through ỹ = 0,
(f) numerical Y evolution through x̃ = 0, and (g) color plot of beam
intensity cross section at fixed propagation intervals.
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FIG. 6. Evolution of beam and transverse director orientation
for an initial excitation with in-phase components σX 0 = σY 0 = 0
and aX 0 = 1.7, aY 0 = 0.7. (a) Numerical solution of Eqs. (15)–(17)
versus z. Red (solid) line: total amplitude ab; black (dashed) line:
amplitude aX of X ; pink (dashed) line: amplitude aY of Y ; blue
(dotted) line: director angle amplitude α, (b) same as (a), but for ap-
proximate solution (32)–(36) of modulation equations, (c) numerical
X evolution through ỹ = 0, (d) numerical X evolution through x̃ = 0,
(e) numerical Y evolution through ỹ = 0, (f) numerical Y evolution
through x̃ = 0, and (g) color plot of beam intensity cross section at
fixed propagation intervals.

FIG. 7. Evolution of beam and transverse director orientation for
an initial excitation with in-phase components σX 0 = σY 0 = 0 and
aX 0 = 0.7, aY 0 = 1.7. (a) Numerical solution of (15)–(17) versus z.
Red (solid) line: total amplitude ab; black (dashed) line: amplitude aX

of X ; pink (dashed) line: amplitude aY of Y ; blue (dotted) line: direc-
tor amplitude α, (b) same as (a), but for approximate solution (32)–
(36), (c) numerical X evolution through ỹ = 0, (d) numerical X
evolution through x̃ = 0, (e) numerical Y evolution through ỹ = 0,
(f) numerical Y evolution through x̃ = 0, and (g) color plot of beam
intensity cross section at fixed propagation intervals.
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numerical solutions show that the total beam amplitude ab and
the component amplitudes aX and aY slightly increase versus
z̃; the director oscillates uniformly with the same amplitude
as in Fig. 2 and Fig. 3. The amplitude trend can be explained
from panels (c)–(f), showing that X and Y have constant x̃
widths, but a contraction in the ỹ widths, which translates
into an amplitude growth due to power conservation. This
asymmetric evolution of the profile can also be observed in
Fig. 4(g) calculated up to z̃ = 300. The total beam profile
oscillates as the beam propagates down the cell. The beam
initially contracts across ỹ and becomes distinctly elliptical,
but the ỹ width then expands again, with this process repeating
so that the beam ellipticity oscillates down the cell. The ỹ
widths of X and Y in Figs. 4(d) and 4(f) mirror this elliptical
evolution of the profile. As for the in-phase (and π out-
of-phase) field inputs, the approximate and full solutions of
the modulation equations are in good agreement, with some
deviation versus z̃, as expected. The modulation solution Y
has a rise in amplitude similar to the numerical solution, while
the X amplitude decreases, resulting in a nearly constant total
amplitude.

Figure 5 presents the solutions for a π/3 initial phase
difference. The results are similar to those for the π/2 phase
case (Fig. 4), except for the expected initial translation of
the director modulation and the details of the evolution. In
particular, the beam cross section again oscillates in ellipticity
as the beam propagates down the cell. The solutions of the
full modulation equations are not shown for the sake of
visual clarity.

Finally, we studied the formation of spin-optical solitons
with the input consisting of in-phase components, of equal
profile and waists, but power imbalanced by a factor of 6. The
latter was arbitrarily chosen to provide a substantial intensity
mismatch. Figure 6 shows the results for an input with x̃
and ỹ component powers in the ratio 6:1. As the X field
is stronger than the Y and the input is linearly polarized,
strong reorientation of the optic axis occurs and affects the
polarization evolution, i.e., the resulting geometric phase. The
spin-orbit interaction produces more marked self-focusing of
both components across ỹ, as visible in Figs. 6(d) and 6(f).
Noteworthy is that the solitary profile assumes an elliptical
shape with a periodic evolution in ellipticity, as seen in
Fig. 6(g), over an extended propagation distance, as noted
for the π/2 and π/3 phase differences for components of
equal power.

An opposite trend can be observed in Fig. 7 for the forma-
tion of spin-optical solitons when the input components are
in phase, but with powers mismatched in the ratio 1:6, i.e.,
with Y larger than X . Nonlinear reorientation is substantially
reduced in amplitude and period, both for the numerical and
modulation solutions [see Figs. 7(a) and 7(b)]. Correspond-
ingly, the numerical amplitudes tend to decay because self-
focusing is weaker, as can be observed in Figs. 7(c)–7(f).
Also, the solitary wave profile assumes a distinctly elliptical
shape with a periodic evolution in ellipticity, as visible in
Fig. 7(g) over z̃ = 200. The ratio of the ỹ widths of the Y
and X components oscillates between 0.98 and 1.33, i.e.,
around the theoretical value γ = n‖/n⊥ = 1.13. In contrast

to the equal component power cases, however, the ratio of
the ỹ and x̃ widths of the total beam (X,Y ) in Fig. 7(g)
grows monotonically from 1 at z̃ = 0 to 2.69 at z̃ = 200.
The evolution of profile ellipticity is a remarkably pecu-
liar feature of these spin-optical solitons, deserving further
investigation.

V. CONCLUSIONS

Spin-orbit interactions of light in optically anisotropic di-
electric media encompass a wealth of effects and phenomena.
When all-optical reorientation is available, as in nematic
liquid crystals, nonlinear periodic changes in transverse ori-
entation of the optic axis, together with the accumulation
of a geometric Pancharatnam-Berry phase stemming from
point-to-point beam polarization evolution, can lead to self-
confinement and spatial solitary waves even in the absence
of changes in refractive indices. It is worth noting that spin-
optical solitons stemming from nonlinearity and nonuniform
changes in polarization state recall the “quadratic cascading”
which occurs in parametric optical interactions, for which
velocity mismatched fundamental and generated frequency
components exchange energy in a periodic fashion, while
acquiring a net relative phase. Even though after a period
(beat length) all the energy can be retrieved back at the
initial frequencies, the pointwise (amplitude dependent) non-
linear distortion of the phase front can lead to transverse
confinement and the formation of quadratic solitons (or “si-
multons”) with no associated refractive index waveguides
[3,57,58,67–69]. An in-depth study of the formal connection
between such rather diverse nonlinear mechanisms is worth
pursuing, as a wealth of other physical effects could benefit
from the gained understanding, both in terms of models,
numerical techniques and solutions, and the role of physical
features, particularly nonlocality and periodicity. We have
numerically and theoretically investigated spin-optical soli-
tons in nematic liquid crystals, studying a planar configu-
ration with purely transverse orientation of the molecular
director with respect to the propagating beam wave vector.
Spin-optical solitons are self-confined solutions connected
with a longitudinally modulated orientation of the symmetry
axis: they exhibit periodically evolving polarization state,
widths and peak amplitudes, and profile ellipticity, for all
the investigated input configurations at normal incidence,
including relative phase and amplitudes. Self-confinement is
weakly dependent on the initial polarization state, except for
those cases in which either nonlinear reorientation does not
take place (pure extraordinary or ordinary eigenwaves) or is
weakly effective (stronger field component along the optic
axis at rest). Other peculiar features of these PB-phase solitons
include a transverse profile with elliptical shape and varying
ellipticity, which will be analyzed and discussed in a forth-
coming publication with reference to both field components.
In addition, the role of longitudinal nonlocality in the medium
needs be addressed, as it is expected to affect the response to
light beams and their polarization state evolution, intervening
on some of the features of these fascinating spin-optical
solitons.
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