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Gauge transformations and Galilean covariance in nonlinear gauge-coupled quantum fluids
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We investigate certain invariance properties of quantum fluids subject to a nonlinear gauge potential. In
particular, we derive the covariant transformation laws for the nonlinear potentials under a space-time Galilean
boost and consider U (1) gauge transformations. We find that the hydrodynamic canonical field equations are
form-invariant in the case of external gauge functions χ (r, t ), but not for nonlinear gauge functionals χ [ρ].
Hence, nonlinear gauge potentials are nontrivial potentials which may not be “gauged-away.” Notably, for a
superfluid in dimension d = 1, attempting to do so generates the gauge pressure of the fluid in the Hamiltonian
density. Furthermore, we investigate how the field equations transform under arbitrary Galilean transformations.
We find that the immediate lack of Galilean covariance is restored under a suitably chosen transformation rule
set for the potentials, which is identical in form to that of a Schrödinger particle coupled to external scalar and
vector potentials.
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I. INTRODUCTION

The pursuit for implementing artificial electromagnetic
potentials for charge-neutral systems has received a steady
stream of interest over the last two decades. These poten-
tials are generally engineered through combined-interactions
such that a system exhibits spatially varying local eigenstates,
which, in turn, impart a geometric phase onto the wave func-
tion [1–4]. Although initial implementations involved static
synthetic fields, further proposals have since been put forward
for creating “dynamical” gauge fields which are described by
their own Hamiltonian and not merely imposed on the sys-
tem [5–10]. One possibility for realizing a dynamical gauge
potential, albeit not a field in the strict sense, is to introduce
a “backaction” where the dynamics of the gauge potential
are tied to the motion of the condensate. Such a prospect
has been proposed in Refs. [11–17], where the effective field
depends on the spatial configuration of the atoms, in partic-
ular, the atomic density. More recently, a density-dependent
gauge potential has been experimentally demonstrated in
a two-dimensional optical lattice, by modulating the in-
teraction strength in synchrony with the lattice shaking
[18], where the tunneling rate depends on the occupation
number.

Density-dependent gauge potentials, which we shall refer
to as nonlinear gauge potentials, have been shown to give rise
to a number of interesting properties, such as chiral solitons
[11,19,20] and anyonic structures [21]. The superfluid proper-
ties can also be dramatically affected by the gauge potential,
where, for instance, drag forces will become directionally
dependent [22]. From a dynamical perspective, perhaps the
most striking feature of a density-dependent gauge potential is
the occurrence of an exotic flow-dependent nonlinear term in
the wave equation for the quantum phase. This is exemplified
notably by the stress tensor of the fluid, which features a
“gauge-pressure” term related to the overlap of the gauge po-
tential and the gauge-covariant current [23]. One would expect

such a term to carry important implications for the symmetry
properties of the fluid. For instance, a flow-dependent fluid
pressure evidently transforms between Galilean frames. This
suggests that additional transformation rules should be imple-
mented in order to “restore” the covariance of the dynamical
equations under a Galilean boost.

In this paper, we derive these transformation rules and also
investigate the invariance of the dynamical equations of such
systems under both external and nonlinear gauge transforma-
tions. We work within a hydrodynamic canonical formalism
and consider transformations at the level of the field equations,
rather than the wave equations proceeding from these. Fur-
thermore, although the motivation for our study stems from a
well-established microscopic model proposed in Ref. [11], we
follow a general approach adopted from a previous paper [23],
which is not tied to any particular model. Here, we simply
assume that a density-dependent gauge potential A(ρ) enters
the Hamiltonian functional, whose components take the form
of arbitrary density-dependent functions. Hence, our concern
lies not with the physical origin of the potentials but, rather,
the formal structure of the dynamical equations which result
from such a coupling. We shall refer to this class of fluids as
nonlinear gauge-coupled quantum fluids.

The paper is outlined as follows: In Sec. II, we begin by
reviewing the canonical field formalism and hydrodynamic
equations for such fluids, which will be used subsequently in
the text. Furthermore, in Sec. III, we consider gauge trans-
formations, treating both the case of external gauge functions
and nonlinear gauge functionals. Finally, in Sec. IV, we in-
vestigate the covariance of the canonical field equations under
general Galilean transformations.

II. HYDRODYNAMIC EQUATIONS OF THE FLUID

Our study pertains to the class of nonlinear quantum fluids
whose effective mean-field Hamiltonian may be written in
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the form

ĤMF = [p̂ − A(ρ)]2

2m
+ η(ρ), (1)

where η and A are nonlinear effective potentials which depend
on the density of the fluid. After performing a Madelung
transformation, ψ = √

ρeiθ/h̄, on the macroscopic condensate
wave function ψ , it is possible to show [23] that the dynamics
of the field components ρ and θ , may be expressed in the
Hamiltonian form

ρ̇(r) − δH

δθ (r)
= 0, (2)

θ̇ (r) + δH

δρ(r)
= 0, (3)

where the Hamiltonian functional of the field is given by

H[ρ, θ ] =
∫

d3r
{
ρ

[
[∇θ − A(ρ)]2

2m
+ η(ρ)

]
+ Q

}
, (4)

with Q = (h̄∇ρ)2/(8mρ) representing a quantum energy den-
sity. Note that the derivatives of the Hamiltonian appearing
in Eqs. (2) and (3) are functional, or variational derivatives.
As mentioned previously, a defining feature of a density-
dependent gauge potential is the occurrence of a nonlinear
flow term in the wave equation for θ . Indeed, substituting the
above expression for H into the canonical field equations (2)
and (3) yields, respectively, the wave equations

∂tρ + ∇ · (ρv) = 0, (5)

∂tθ + 1
2 mv2 + 	(ρ, u) + Q = 0, (6)

where

v = u − A/m (7)

is the physical velocity or mechanical flow, u = ∇θ/m is the
canonical or phase flow, and Q = −h̄2∇2√ρ/(2m

√
ρ ) is the

quantum potential. Moreover, the effective potentials lead to a
nontrivial nonlinear term

	 = η + ρ
∂η

∂ρ
− ρv · ∂A

∂ρ
(8)

in the wave equation of the phase, which is linear in the canon-
ical flow u. As a consequence, the fluid pressure also inherits
a flow-dependent term. This may be seen by expressing the
hydrodynamic equations (5) and (6) in the reference frame of
the fluid, which yield [23], respectively,( ∂

∂t
+ v · ∇

)
ρ + ρ∇ · v = 0, (9)

mρ
( ∂

∂t
+ v · ∇

)
uk = ∇ j (−δ jkP + σ jk ), (10)

where

σ jk = − h̄2

4mρ
∇ jρ∇kρ (11)

is the quantum stress tensor and P is the fluid pressure,
given by

P = − h̄2

4m
∇2ρ + ρ(	 − η). (12)

Note the distinction between v and u in equation (10).
As such, this equation describes the transport of canoni-
cal momentum rather than mechanical momentum. Recalling
expression (8) for 	, we see that P depends explicitly on
the flow profile of the fluid. In particular, the fluid pres-
sure may be viewed as a combination of the following three
terms:

P = PQ + Pη + PA, (13)

where PQ = −h̄2∇2ρ/(4m) is the quantum pressure, Pη =
ρ2∂ρη is the pressure contribution from the nonlinear scalar
potential, and PA = −ρ2v · ∂ρA is the pressure contribution
from the nonlinear gauge potential, which we refer to as the
gauge pressure.

III. GAUGE TRANSFORMATIONS

Let us investigate the implications of a nonlinear gauge
potential on the symmetry properties of the fluid. To begin
with, we consider gauge transformations of the form

θ → θ ′ = θ + χ, (14)

A → A′ = A + ∇χ, (15)

η → η′ = η − ∂tχ. (16)

We shall treat both the case in which χ is an external single-
valued scalar function of space and time, χ = χ (r, t ), and a
functional of the density, χ = χ [ρ]. Notice that the latter is
required for evaluating whether nonlinear gauge potentials are
physical potentials which may not be trivially gauged away,
since any attempt to do so involves a gauge functional given
by the contour integral of some function of the density. In
both cases, the transformed canonical field equations may be
written in the generic form

ρ̇(r) − δH ′

δθ ′(r)
= 0, (17)

θ̇ ′(r) + δH ′

δρ(r)
= 0, (18)

where the Hamiltonian transforms according to

H ′ =
∫

d3r
{
ρ

[
(∇θ ′ − A′)2

2m
+ η′

]
+ Q

}
. (19)

In the Madelung representation of the fluid, it becomes readily
apparent that the combination of transformations (14) and (15)
leaves the mechanical flow v from Eq. (7) unchanged, i.e., v
is gauge invariant. Hence, according to Eq. (19), the new and
old Hamiltonians are related by

H ′[ρ, θ ′] = H[ρ, θ ] −
∫

d3rρ
∂χ

∂t
. (20)

A. External gauge functions χ(r, t )

Let us examine the situation where χ is an externally
prescribed scalar function. Clearly, in this case, δχ = 0 for
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arbitrary field variations δρ and δθ . Hence, the first variation
of Eq. (20) yields

δH ′

δθ ′(r)
= δH

δθ (r)
, (21)

δH ′

δρ(r)
= δH

δρ(r)
− ∂χ (r, t )

∂t
. (22)

Inserting the first and second of these into, respectively, the
transformed field equations (17) and (18), we immediately
recover the original field equations (2) and (3). Therefore,
the canonical equations of the nonlinear fluid are form invari-
ant under gauge transformations generated by external gauge
functions χ (r, t ). Inspecting the form of the nonlinear term
in the wave equation for the phase, 	 from Eq. (8), this is
not surprising. Indeed, the nonlinear flow term results from
a particular form of density-dependence of A, which remains
unchanged by an external gauge function.

B. Nonlinear gauge functionals χ[ρ]

Next we examine the case where χ takes the form of some
functional of the density. To begin with, observe how the
canonical structure of the field equations (2) and (3) implies
that the field components ρ and θ play the role of conjugate
variables, where the Poisson bracket of two dynamical vari-
ables f and g on phase space reads

{ f (x), g(y)}ρ,θ =
∫

d3r
(

δ f (x)

δρ(r)

δg(y)

δθ (r)
− δ f (x)

δθ (r)

δg(y)

δρ(r)

)
.

(23)

Now, for gauge transformations generated by χ [ρ], the field
variables transform according to

(
ρ

θ

)
→

(
ρ ′ = ρ

θ ′ = θ + χ [ρ]

)
. (24)

Let us check whether the new variables form a canonically
conjugate pair. To this end, we evaluate the Poisson bracket
of the new variables with respect to the old variables, which
gives

{ρ ′(x), θ ′(y)}ρ,θ =
∫

d3r
(

δρ ′(x)

δρ(r)

δθ ′(y)

δθ (r)
− δρ ′(x)

δθ (r)

δθ ′(y)

δρ(r)

)

= δ(x − y), (25)

on account of ρ ′ being independent of θ . Hence θ ′ and ρ may
be treated as independent variables. We shall make use of this
property further in Sec. III C.

Following the same line of reasoning as in Sec. III A, let
us evaluate the first variation of Eq. (20) for the case of
a nonlinear gauge functional. Since χ is independent of θ ,
Eq. (21) remains valid and the transformed canonical equation
(17) for ρ again reduces to the original canonical equation
(2). However, the canonical equation for θ is no longer form
invariant but transforms according to

θ̇ ′ + δH

δρ
− δ

δρ

∫
d3rρ∂tχ [ρ] = 0, (26)

where an additional term appears due to χ [ρ]. Although the
form taken by this term will depend on χ [ρ], one may see that
current terms will generally be involved through ∂tχ [ρ]. In

the following section, we examine one such gauge functional.
We may therefore conclude that density-dependent gauge po-
tentials are physical potentials which may not be trivially
gauged away.

C. The one-dimensional gauge-coupled superfluid

Typically, one may be interested in gauge functionals
which eliminate the gauge potential from the kinetic-energy
density. Let us examine one such case. As our system, we
consider the superfluid fraction of particles in an optically
addressed weakly interacting dilute Bose gas of two-level
atoms, first proposed in Ref. [11]. Confining the dynamics
to one of the condensate components, a density-modulated
gauge potential emerges in the form A = aρ, where ρ is the
atomic density of the relevant condensate component, while
a = (g11 − g22)∇φ/(8�) controls the effective strength and
orientation of the nonlinear vector potential. Here, � is the
generalized Rabi frequency of the light-matter coupling, φ

is the phase of the incident laser field and gi j = 4π h̄2ai j/m
denote the coupling constants of the channels stemming from
pairwise interactions between the atoms, where ai j are the
associated s-wave scattering lengths.

The system is described by a wave equation of the form
(6), with 	 = −a · J + gρ and g = (g11 + g22 + 2g12)/4. For
a superfluid confined to dimension d = 1, the wave equation
for the phase reads

∂tθ + 1
2 mv2 − aJ + gρ + Q = 0, (27)

where v = (∂xθ − aρ)/m and J = ρv. We choose d = 1,
since the last term in Eq. (26) becomes integrable in this case.
In turn, the fluid pressure again takes the form of equation
(13), where the quantum pressure is PQ = −h̄2∂2

x ρ/4m, Pη =
gρ2/2, and the gauge pressure reads PA = −JA.

The gauge functional which eliminates A from the kinetic-
energy density is

χ = −
∫ x

−∞
dyaρ(y, t ). (28)

Invoking this relation in Eq. (20), we find that the new and old
Hamiltonians are related by

H ′ = H −
∫

dxρ2av′, (29)

where v′ = ∂xθ
′/m. Hence, an additional term − ∫

dxJ ′A =
− ∫

dxJA appears in the Hamiltonian under the nonlinear
gauge transformation, where J ′ = ρv′. In other words, the
gauge pressure PA is generated in the Hamiltonian density
when one attempts to eliminate the nonlinear gauge potential.
Inserting expression (29) for H ′ into the field equation (18)
yields the wave equation

∂tθ
′ + 1

2 mv′v′ − 2aJ ′ + gρ + Q = 0, (30)

where we have used δv′/δρ = 0, which holds on account
of ρ and θ ′ being independent (see Sec. III B). Compar-
ing Eqs. (27) and (30), we see that the wave equation has
transformed under the nonlinear gauge transformation. In par-
ticular, the attempt to absorb the nonlinear gauge potential into
the phase has produced an additional current term in the wave
equation.
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IV. GALILEAN TRANSFORMATIONS

We now turn our attention to a space-time symmetry group
associated with coordinate transformations, namely, Galilean
transformations. The coordinate transformations from some
inertial frame of reference �, to another frame �′ moving
with a uniform, nonrelativistic relative velocity w, may be
written in the general form [24–26]

xi → x′
i = Ri jx j − wit + ai,

(31)
t → t ′ = t + t0,

where ai and t0 are constants representing offsets in position
and time respectively, and Ri j is a unitary rotational matrix
satisfying Ri jR jk = δik . Differential operators also transform
between frames under Eq. (31) such that

∇i → ∇′
i = Ri j∇ j, (32)

∂

∂t
→ ∂

∂t ′ = ∂

∂t
+ wiRi j∇ j . (33)

In turn, the velocity field transforms as

vi → v′
i = Ri jv j − wi. (34)

Since the energy and momentum of the fluid transforms under
a Galilean boost, the phase also transforms between reference
frames. Let us denote this transformation by

θ → θ ′ = θ + χ, (35)

where χ = χ (r, t ) is a single-valued scalar function of space
and time. Furthermore, we should not exclude the prospect
that the potentials may be subject to transformations in order
that the dynamical equations be form invariant. In fact, this is
already the situation for a nonrelativistic quantum-mechanical
particle coupled to both external scalar and vector potentials
[27–29]. Accordingly, let us denote the transformations of the
nonlinear potentials as

η → η′ = η + μ, (36)

Ai → A′
i = Ri jA j + Gi, (37)

where μ and G are unspecified. However, in view of the
nonlinear character of η and A, we allow for the possibility
that these also depend on the density.

In the frame �′, the canonical field equations (2) and
(3) read

∂ρ ′

∂t ′ − δH ′

δθ ′ = 0, (38)

∂θ ′

∂t ′ + δH ′

δρ ′ = 0, (39)

where the Hamiltonian from Eq. (4) transforms to

H ′ =
∫

d3r′
[
ρ ′

(
1

2
mv′ · v′ + η′

)
+ Q′

]
, (40)

with v′ = (∇′θ ′ − A′)/m. Since ρ ′ = ρ and v′ is restricted by
Eq. (34), the Hamiltonians in the two frames are related by

H ′[ρ ′, θ ′] = H[ρ, θ ] +
∫

d3rρ
(

1

2
mw2 − mwiRi jv j + μ

)
.

(41)

The first variation of the above equation yields

δH ′

δρ ′ = δH

δρ
+ 1

2
mw2 − mwiRi jv j

+μ + ρ
(∂μ

∂ρ
+ wiRi j

∂Aj

∂ρ

)
, (42)

δH ′

δθ ′ = δH

δθ
+ wiRi j∇ jρ. (43)

Note that, in order to obtain Eq. (43), we have substituted
Eq. (7) for v into Eq. (41) and integrated by parts accord-
ingly. Let us investigate the implications of these relations on
the transformed canonical equations (38) and (39). Invoking
Eqs. (33) and (43) in Eq. (38), we immediately recover the
original field equation for ρ. Hence the canonical equation (2)
is form invariant under a Galilean transformation. Notice here
that no demands are being made of μ, G, or χ , other than the
restriction that χ be independent of θ , since the violation of
the latter introduces additional terms in Eq. (43). Turning our
attention to the field equation for θ , let us substitute Eqs. (33),
(35), and (41) into Eq. (39), which gives

θ̇ + δH

δρ
+ ξ = 0, (44)

where we have grouped the additional terms generated by the
Galilean transformation in the function ξ = ξχ + ξπ , with

ξχ =
( ∂

∂t
+ wiRi j∇ j

)
χ + wiRi j (∇ jθ − mv j ) + 1

2
mw2,

(45)

ξπ = μ + wiRi jA j + ρ

(
∂μ

∂ρ
+ wiRi j

∂Aj

∂ρ

)
. (46)

In other words, a suitably chosen set of transformations
(35)–(37) which solves ξ = 0, signals the form invariance of
the field equation (3). Such a prospect is readily achieved by
setting both Eqs. (45) and (46) to zero. The condition ξχ = 0
is upheld by a suitable phase transformation, while the impo-
sition ξπ = 0 leads to a transformation rule for the potentials.
Indeed, notice that the phase factor χ = mw2t/2 − mwiRi jx j

solves the first of these two conditions, such that [24,29]

θ → θ + 1
2 mw2t − mwiRi jx j, (47)

while the second condition is ensured for μ = −wiRi jA j .
Thus, the nonlinear potentials transform according to

η → η − wiRi jA j, (48)

Ai → Ri jA j . (49)

These transformations are identical to those which appear
for a Schrödinger field coupled to external scalar and vector
potentials [29] but represent a nonlinear transformation. Note
that the above transformations also appear for a classical
charge, emerging as the magnetic limit of Galilean electro-
magnetism [30]. In turn, performing transformations (34),
(48) and (49) in Eq. (8) for the nonlinear scalar term in the
wave equation for the phase 	 yields

	 → 	 − wiRi jA j . (50)
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Hence 	 and η undergo an identical transformation. Further-
more, although the fluid pressure P from Eq. (12) also depends
explicitly on v, performing transformations (48) and (50) in
Eq. (12) reveals that the covariant transformations of the po-
tentials between frames ensure that the pressure is invariant.

V. CONCLUSION

The dynamical equations of a nonlinear gauge-coupled
quantum fluid are invariant under local gauge transformations,
insofar as the gauge function χ takes the form of an exter-
nal scalar function of r and t . However, when χ becomes a
functional of the density, the form invariance of the dynamical
equation for the phase θ is lost. As a result, density-dependent
gauge potentials are physical, nontrivial potentials which can-
not be absorbed into the phase, since attempting to do so
invariably destroys the form of the dynamical equations. For
a gauge-coupled one-dimensional superfluid, the additional

term in the field equation generated by a nonlinear gauge
transformation becomes integrable. In particular, the gauge-
pressure of the nonlinear fluid is generated in the Hamiltonian
density for gauge transformations which eliminate the gauge
potential from the kinetic-energy density. Finally, the im-
mediate lack of Galilean covariance of the nonlinear fluid
may be restored by subjecting the potentials to a nonlinear
transformation. As a result, the flow-dependent fluid pressure
inherent to such systems becomes invariant under a Galilean
transformation. These transformations are identical in form
to those of a Schrödinger field subject to external scalar and
vector potentials but represent nonlinear transformations.
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