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Mixture of scalar bosons and two-color fermions in one dimension: Superfluid-insulator transitions

R. Avella,1 J. J. Mendoza-Arenas,2 R. Franco,1 and J. Silva-Valencia 1,*

1Departamento de Física, Universidad Nacional de Colombia, A. A. 5997 Bogotá, Colombia
2Departamento de Física, Universidad de los Andes, A. A. 4976 Bogotá, Colombia

(Received 20 April 2020; accepted 3 September 2020; published 30 September 2020)

Superfluid-insulator transitions in a one-dimensional mixture of two-color fermions and scalar bosons are
studied within the framework of the Bose-Fermi-Hubbard model. Zero-temperature phase diagrams are con-
structed for repulsive intraspecies interactions and attractive or repulsive interspecies couplings. In addition to
the trivial Mott insulator phases, we report the emergence of nontrivial insulator phases that depend on the
sign of the boson-fermion interaction. These nontrivial insulator phases satisfy the conditions ρB ± ρF = n
and ρB ± 1

2 ρF = n, with the plus (minus) sign for repulsive (attractive) interactions and n an integer. Far from
fermionic half filling, the boson-fermion interaction drives a gapless-gapped transition in the spin sector. Our
findings could be observed experimentally in state-of-the-art cold-atom setups.
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I. INTRODUCTION

Rapid advances in the cold-atom field have allowed the
observation of several predicted physical phenomena and have
opened the possibility of experimenting with several dream
scenarios [1–4]. One of the latter corresponds to mixtures
of particles that obey Bose-Einstein or Fermi-Dirac statis-
tics. Since the beginning of this century, experimentalists
have mixed carriers with different statistics, using isotopes
of different atoms or of the same type of atom [5–28]. New
phenomena, such as phase separation [29] or Bose-Fermi
superfluid mixtures [30], have been observed in clean and
fully controllable setups, where the inter- and intraspecies
interactions can be tuned.

To fully comprehend the properties of such mixtures, those
of the independent systems need to be well understood. This
is indeed the case for several bosonic and fermionic gases.
Namely, phase transitions between Mott insulator and gapless
states in locally interacting systems have been widely stud-
ied for both statistics. It is well known that bosonic systems
exhibit Mott insulator phases at integer densities [31], while
for two-color fermions this phase emerges only at half filling
[32]. When fermions and bosons are mixed, a rich scenario
is expected, and different levels of theoretical approach have
been considered over the years.

The first approach to describing a mixture of bosons and
fermions consists of freezing their internal degrees of free-
dom, a scenario that has been widely studied [33–53]. Among
the diverse states revealed by these studies, we emphasize the
insulator phases at integer bosonic densities and the mixed
Mott insulator determined by the relation ρB + ρF = 1, where
ρB and ρF are the bosonic and fermionic densities, respec-
tively [54]. An insulator that fulfills this commensurability
relation has been observed in experiments [19].

To enrich the description, it is necessary to consider inter-
nal degrees of freedom, which are relevant for both bosons and

*jsilvav@unal.edu.co

fermions. Inspired by the BCS theory, several authors have
studied mixtures of two-color fermions and scalar bosons at
particular densities, using bosonization [36], renormalization
group [55–57], mean-field theory [58–61], and dynamical
cluster [62] approaches in one, two, and three dimensions.
In those studies, diverse ground states were reported, such as
superfluid, spin-density wave, charge-density wave (CDW),
phase separation, Mott insulator, supersolid, antiferromag-
netic order, and evidence of various types of pairing, among
other phenomena. In a recent paper, we numerically explored
the above model in one dimension, considering the hard-core
limit and only repulsive interactions. There we obtained two
nontrivial insulators phases that fulfill the relations ρB + ρF =
1 and ρB + 1

2ρF = 1 for a fixed fermionic density [63]. This
indicates that considering the internal degrees of freedom of
fermions leads to a nontrivial insulator, but restricting the
Hilbert space of the bosons prevents the emergence of bosonic
Mott insulators.

Clearly, mixtures of scalar bosons and two-color fermions
hide much more phenomena to be discovered. This motivates
the present investigation, in which we determine the phase
diagrams that emerge when allowing more than one boson
per site, i.e., when considering the soft-core approach. This
has only been analyzed in a very recent report, where the
authors study the Fulde-Ferrell-Larkin-Ovchinnikov physics
in a spin-imbalanced mixture [64]. Taking into account that,
in cold-atom setups, the amplitude and sign of interspecies
interactions can be tuned, we considered both repulsive and
attractive couplings. Exploring the superfluid-insulator tran-
sitions in soft-core mixtures, we found that, regardless of
the sign of the boson-fermion interaction and for a fixed
fermionic density ρF , there are always two nontrivial insulator
phases between the trivial insulators at integer bosonic densi-
ties ρB. These satisfy the conditions ρB ± ρF = n and ρB ±
1
2ρF = n (n integer), with the plus (minus) sign for repulsion
(attraction). Since in experiments the number of fermions
can be changed while fixing the density of bosons, we also
perform a similar exploration and observe only three nontriv-
ial insulator phases located at densities that fulfill the above
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conditions, where the missing one leads to a nonphysical
situation. Our investigation thus establishes the emergence of
insulator phases for boson-fermion attraction, which had not
been reported until now.

The outline of this paper is as follows: The model used
to describe a mixture of bosonic and fermionic atoms is intro-
duced in Sec. II. The superfluid-insulator transitions and some
appropriate relations to locate them are discussed in Secs. III
and IV for repulsive and attractive boson-fermion interactions,
respectively. The special case of fermionic half filling density
is discussed in Sec. V. A summary of our conclusions is
presented in Sec. VI.

II. BOSE-FERMI-HUBBARD MODEL

We start by describing the model and the main approaches
considered in the current investigation for studying a degener-
ate mixture of bosons and fermions.

A system of scalar bosons in one dimension can be mod-
eled by the Hamiltonian

ĤB = −tB
∑

〈i, j〉
(b̂†

i b̂ j + H.c.) + UBB

2

∑

i

n̂B
i

(
n̂B

i − 1
)
, (1)

which takes into account the kinetic energy (first term) and
the local repulsive interaction between bosons (second term).
In Hamiltonian (1), b̂†

i (b̂i) creates (annihilates) a scalar boson
at size i. The local boson number operator is n̂B

i = b̂†
i b̂i. The

parameter UBB quantifies the local interaction, and tB is the
hopping amplitude between neighboring sites (〈i, j〉).

A system composed of two-color fermions that interact
locally is described by the Hamiltonian

ĤF = −tF
∑

〈i, j〉σ
( f̂ †

i,σ f̂ j,σ + H.c.) + UFF

2

∑

i,σ �=σ ′
n̂F

i,σ n̂F
i,σ ′ , (2)

with f̂ †
i,σ ( f̂i,σ ) being an operator that creates (annihilates) a

fermion with internal degree of freedom σ = ↑,↓ at site i.
The local operator n̂F

i,σ = f̂ †
i,σ f̂i,σ corresponds to the density

operator for σ fermions. The nearest-neighbor fermionic hop-
ping parameter is tF , and UFF quantifies the fermion-fermion
interaction. The fermionic density for systems with two-color
fermions varies in the interval [0,2], so that ρF = 1 corre-
sponds to half filling.

When two-color fermions and scalar bosons are mixed in
a one-dimensional optical lattice and interact with each other,
they are described by the Hamiltonian

ĤBF = ĤB + ĤF + UBF

∑

i,σ

n̂B
i n̂F

i,σ , (3)

where the boson-fermion interaction UBF can be repulsive or
attractive (UBF ≶ 0). We measure energies and gaps in units
of the fermionic hopping parameter tF i.e., we set tF = 1 as
the energy scale. From now on, unless stated otherwise, we
consider bosonic and fermionic isotopes of the same kind of
atoms, hence tF = tB.

Importantly, the number of bosons per site is unbounded,
making the local Hilbert space exactly untractable. To deal
with the model numerically, it is necessary to perform a cutoff,
i.e., we consider the soft-core approximation and restrict the
number of bosons per site to a maximum of n̂max = 3. This

FIG. 1. Illustration of schematic ground states of a mixture of
scalar bosons and two-color fermions in one dimension. Here we
consider a lattice with eight (L = 8) sites and draw different possi-
ble distributions of particles. Blue (gold) circles represents bosons
(fermions). (a) Coexistence of Mott insulators for fermions (ρF = 1)
and bosons (ρB = 2); here UBF ≶ 0. (b) Mixed Mott insulator state
with ρF = 1/2 and ρB = 1/2 for repulsive interparticle coupling.
(c) Noncommensurate insulator state with a fermionic density ρF =
1 and bosonic density ρB = 1/2, for UBF ≶ 0. (d) Phase separation
state for repulsive interactions, ρF = 1 and ρB = 1.

results in a large yet tractable local Hilbert space of dimension
d = 16. Note that it has been argued in several reports that
the qualitative physical properties obtained for n̂max = 3 are
unaffected when n̂max is increased [65,66].

The ground-state energy E (N↑, N↓, NB) for NB bosons
and N↑, N↓ fermions of a Bose-Fermi mixture described by
Hamiltonian (3) is obtained by using the density-matrix renor-
malization group (DMRG) algorithm with open boundary
conditions [67,68]. We perform several finite-system sweeps
until the ground-state energy is converged to an absolute error
of 10−3, keeping a discarded weight of ≈10−7 in the dynamic
block selection state (DBSS) protocol [69].

In Fig. 1, we sketch some possible distributions of carriers
along the lattice, which will emerge depending on the sign of
the boson-fermion interaction. For instance, the coexistence
of fermionic and bosonic Mott insulator states is depicted in
Fig. 1(a), insulator states with commensurate or noncommen-
surate total number of carriers are shown in Figs. 1(b) and
1(c), respectively, and an immiscible phase separation state
is sketched in Fig. 1(d). Other carrier distributions can be
obtained by varying the densities and interaction parameters,
as discussed below.

In addition, we note that the system studied in the present
investigation can be implemented in the laboratory. In par-
ticular, several mixtures of bosonic and fermionic atoms in
a degenerate regime have been achieved in cold-atom setups,
even though their stability is severely limited by three-body
recombinations. A promising candidate for emulating the
Hamiltonian (3) is a mixture containing 174Yb and 171Yb
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FIG. 2. Physical properties in the thermodynamic limit of a mixture of scalar bosons and two-color fermions with repulsive boson-fermion
coupling. Here the boson-boson and fermion-fermion interactions are UBB = 16 and UFF = 6, respectively. (a) Bosonic density (ρB) versus the
bosonic chemical potential (μB) for a fixed fermionic density of ρF = 1/2 and two values of boson-fermion coupling. In the inset, we show
the width of the plateaus as a function of the inverse of the lattice size, indicating that they are finite when 1/L → 0 (extrapolated diamond
points). (b) Phase diagram in the bosonic chemical potential (μB)-interparticle interaction (UBF) plane for a fixed fermionic density ρF = 1/2.
The white areas are superfluid regions, while the colored lobes correspond to insulator phases, where the upper (bottom) border is the chemical
potential for adding (removing) a boson. (c) Fermionic density (ρF ) versus the fermionic chemical potential (μF ) for a fixed bosonic density
of ρB = 1/4 and two values of boson-fermion coupling. Again, in the inset we show that the width of the plateaus is finite when 1/L → 0.
(d) Phase diagram in the μF vs UBF plane for a fixed bosonic density of ρB = 1/4. As before, white (colored) areas represent superfluid
(insulator) phases. In all the figures, the points correspond to DMRG results and the lines are visual guides. The values in the thermodynamic
limit were obtained by using a second-order polynomial extrapolation.

atoms, given that the latter has a nuclear spin I = 1/2,
whereas the former has zero nuclear spin [70].

Carrying out a complete study sweeping through all the
hopping, interaction, and density parameters is a phenomenal
task, leading to the several mentioned studies on the Bose-
Fermi-Hubbard model. An important conclusion from this
theoretical and experimental research is that the sign of the
interparticle interaction is highly relevant and determines the
response of the mixture. Considering this, we will discuss
each type of interaction separately.

III. REPULSIVE BOSON-FERMION INTERACTION
(UBF > 0)

Bose-Fermi mixtures with repulsive interactions have been
shown to feature a mixed Mott state that fulfills ρB + ρF =
1 for polarized carriers [54]. In addition, when considering
an internal structure for fermions, a mixture with hard-core
bosons shows the mixed Mott state and a noncommensurate

insulator characterized by the relation ρB + 1
2ρF = 1 [63].

Hamiltonian (3) goes beyond these cases and describes a
mixture of two-color fermions and bosons in the soft-core ap-
proximation. Without coupling between fermions and bosons
(UBF = 0) only the well-known Mott insulators (trivial) of
each species emerge. Also, we recover the behavior of polar-
ized carriers as the repulsion between fermions is very large
(UFF → ∞), i.e., only the mixed Mott state will appear. In
the absence of repulsion between fermions (UFF = 0), it is
difficult to establish the mixed Mott state and the noncommen-
surate insulators will prevail. Motivated by these findings and
intrigued by the possibility of unearthing new properties and
characteristics of these mixtures in intermediate scenarios,
we consider the more general situation corresponding to the
soft-core limit of Eq. (3).

First, fixing the fermionic density at ρF = 1/2, we in-
crease the number of bosons from zero up to a global density
ρB � 3, considering a boson-boson interaction UBB = 16 and
fermion-fermion repulsion UFF = 6 [see Fig. 2(a)]. For a
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weak boson-fermion repulsion of UBF = 1 (red open squares),
the bosonic chemical potential μB = E (N↑, N↓, NB + 1) −
E (N↑, N↓, NB) increases monotonically with the number of
bosons, except at integer densities, where large plateaus
appear. This is expected from the bosonic limit (without
fermions) and the results found for polarized fermions and
bosons [54]. Naturally, this is not seen in the hard-core limit
[63]. For a larger boson-fermion interaction UBF = 8 (black
circles), the trivial plateaus at integer bosonic densities sur-
vive, but their width shrinks. Surprisingly, four nontrivial
plateaus emerge at the bosonic densities ρB = 1/2, 3/4, 3/2,
and 7/4. In the inset of Fig. 2(a), we show the evolution
of the width of these plateaus [�B = E (N↑, N↓, NB + 1) +
E (N↑, N↓, NB − 1) − 2E (N↑, N↓, NB)] as the lattice size in-
creases, being finite in the thermodynamic limit. Crucially, the
plateaus at the bosonic densities ρB = 1/2 and 3/2 are related
to ground states where the total number of particles (bosons
plus fermions) is commensurate with the lattice size, i.e., these
insulators correspond to mixed Mott insulators given by the
relation ρB + ρF = n, where n is an integer, namely n = 1
and 2 for the plateaus at ρB = 1/2 and 3/2, respectively. On
the other hand, the nontrivial plateaus at the bosonic densities
ρB = 3/4 and 7/4 do not fulfill the commensurability condi-
tion and instead satisfy the relation ρB + 1

2ρF = n, recovering
the particular bosonic densities with n = 1 and 2. The latter
nontrivial insulators imply that the number of bosons plus the
number of any kind of fermions are commensurate with the
lattice, which was recently evinced as a limiting case of an
imbalanced scenario [71]. The above discussion, as well as
calculations for other fermionic densities (not shown), allow
us to conclude that a mixture of two-color fermions and scalar
bosons can have two insulator states (one of them commensu-
rate) between trivial (integer density) bosonic insulators.

These results clearly indicate that both the fermionic and
bosonic densities, as well as their coupling, determine the ex-
istence and the properties of the insulating phases. To present
a more complete picture, we show a phase diagram of the
bosonic chemical potential versus the boson-fermion interac-
tion, keeping constant the fermionic density ρF = 1/2, the
boson-boson interaction UBB = 16, and the fermion-fermion
repulsion UFF = 6 [see Fig. 2(b)]. The colored regions are
insulating phases, while the white ones correspond to gapless
phases, i.e., superfluid states. The trivial bosonic Mott lobes
(green areas) shrink as the repulsive boson-fermion coupling
increases, with critical points indicating their suppression at
U ∗

BF ≈ 11.7 and 11.3 for ρB = 1 and 2, respectively. In our
case, the fermion-fermion interaction makes the Mott insu-
lator lobes disappear more quickly than the prediction for
a mixture of scalar bosons and polarized fermions, namely
U ∗

BF ≈ 2UBB [54]. In the latter study and in our previous
hard-core approach [63], it was shown that the nontrivial lobes
emerge from a finite value of the boson-fermion repulsion, a
scenario that is seen here in the most general case. Contrary to
what is observed in the hard-core limit [63], each mixed Mott
lobe (cyan areas) appears earlier than the closest noncommen-
surate lobe (yellow areas) due to the lower repulsion between
bosons. Specifically, the nontrivial lobes for densities ρB =
1/2, 3/4, 3/2, and 7/4 emerge at the critical points U ∗

BF ≈ 1.9,
2.5, 2.9, and 3.9, respectively. Notice that the width of the
mixed Mott lobes tends to saturate for large values of the

boson-fermion interaction, showing that this feature does not
depend on the boson repulsion. Furthermore, the evolution
of noncommensurate lobes differs from the hard-core result,
where the width always increases [63]. Now we see that, for
ρB = 3/4, the width saturates for larger values of UBF and
vanishes for ρB = 7/4, determining a closed lobe in the phase
diagram.

When studying mixtures of bosons and fermions, it is a
common practice to fix the fermionic density and vary the
number of bosons; however, in experiments both can be con-
trolled. To provide more evidence of the revealed density
conditions, we explore the superfluid-insulator transitions, fix-
ing the bosonic density (ρB = 1/4) and varying the number
of fermions. We define the fermionic chemical potential as
μF = E (N↑ + 1, N↓ + 1, NB) − E (N↑, N↓, NB); its evolution
as the number of fermions per site varies from zero to two
is shown in Fig. 2(c). Again we see that for a weak boson-
fermion repulsion UBF = 1 (red squares), the bosons and
fermions are quasi-independent [compare with Fig. 2(a)], and
there is only one plateau at half filling, as expected from the
exact solution of the Fermi-Hubbard model (without bosons)
[72]. Increasing the repulsion between bosons and fermions
to UBF = 8 (black circles), the antiferromagnetic Mott in-
sulator phase disappears, whereas three nontrivial insulating
phases emerge at the fermionic densities ρF = 3/4, 3/2, and
7/4. We see that the mixed Mott insulator states are present,
since the plateaus at ρF = 3/4 and 7/4 correspond to a total
number of particles equal to and twice the lattice size, respec-
tively. The remaining plateau ρF = 3/2 satisfies the relation
ρB + 1

2ρF = 1. Here, one nontrivial plateau is missing, be-
cause the mathematical relation reported above leads to an
unphysical situation (fermionic density ρF = 7/2 > 2). The
charge gap [�F = E (N↑ + 1, N↓ + 1, NB) + E (N↑ − 1, N↓ −
1, NB) − 2E (N↑, N↓, NB)] for each nontrivial insulating phase
as a function of the inverse of the lattice size is shown
in the inset of Fig. 2(c). Using a second-order polynomial
extrapolation, we obtained that this gap is always finite;
therefore, these insulating phases survive in the thermody-
namic limit.

In Fig. 2(d), we show the corresponding phase diagram in
terms of the fermionic chemical potential versus the boson-
fermion repulsion for a fixed bosonic density ρB = 1/4 and
boson-boson (fermion-fermion) interaction UBB = 16 (UFF =
6). As in Fig. 2(b), the white regions are superfluid, whereas
the colored ones correspond to insulator phases. In the ab-
sence of the boson-fermion interaction, only the trivial Mott
insulator phase (green area) emerges, which shrinks as the
interaction between fermions and bosons increases, disap-
pearing at U ∗

BF ≈ 7.8. Also, as the boson-fermion coupling
increases from zero, the nontrivial commensurate lobes (cyan
areas) emerge at the critical points U ∗

BF ≈ 1.4 and 0.7 for
ρF = 3/4 and 7/4, respectively. However, the evolution of
these lobes is different; whereas the charge gap for ρF = 3/4
tends to saturate for larger values of UBF , that of ρF = 7/4
varies, as determined by the increase in chemical potentials
for increasing or decreasing the number of fermions. The
noncommensurate insulator lobe (yellow area) arises from
U ∗

BF ≈ 2.1 and grows monotonically. We expect that these
critical points will take different values as the densities and
the other interaction parameters vary.
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FIG. 3. (a) Evolution of the density versus chemical potential
curve for bosons, for different values of the fermion-fermion in-
teraction. Here, we consider tB = tF = 1 and UFF = 0, 3, and 8.
(b) Bosonic density versus bosonic chemical potential for mixtures
with mass asymmetry between the carriers. Here, UFF = 6 and
tB/tF = 0.5, 1, and 2. In both plots, the fermionic density is ρF =
1/2, UBB = 16, and UBF = 8. The lines are visual guides.

The influence of the fermion-fermion repulsion on the
insulator phases discussed above is depicted in Fig. 3(a).
Here we consider a Bose-Fermi mixture with a fermionic
density of ρF = 1/2 and parameters UBB = 16 and UBF = 8
for boson-boson and boson-fermion interaction, respectively.
In the absence of the fermion-fermion repulsion, the noncom-
mensurate insulators dominate, the trivial plateaus at integer
densities are narrow, and the mixed Mott insulators do not
appear, evincing the importance of the coupling between
fermions for the existence of the latter. Indeed, as UFF grows,
the mixed Mott plateaus emerge and grow as expected; in
addition, the trivial insulators are also favored. However, the
once dominant noncommensurate plateaus decrease with the
growth of fermionic repulsion.

Throughout this paper, we consider Bose-Fermi mixture
composed of isotopes of the same atom; therefore the assump-
tion tB = tF is reasonable. However, we will briefly look at
mixtures composed of different atoms and their superfluid-
insulator transitions. In Fig. 3(b), we show the ρB-μB curve
for mixtures with a quarter fermionic filling and hopping

0 5 10
UBF

0.0

1.0

2.0

Δ
s

ρB = 3/4
ρB = 7/4
ρB = 3/2
ρB = 2

UFF = 6
UBB = 16ρF = 1/2

FIG. 4. Spin gap �S as a function of the boson-fermion in-
teraction UBF for a fixed ρF = 1/2. For all the bosonic densities
considered, a gapless and a gapped region are clearly seen. The lines
are visual guides.

parameters tB/tF = 0.5, 1.0, and 2. For the set of interaction
parameters considered (UBB = 16, UBF = 8, and UFF = 6) it
was found that, as expected, all the insulators decrease when
bosons become lighter, a behavior that is more dramatic for
bosonic densities greater than 1 where the nontrivial plateaus
disappear. These results confirm that the findings reported
here are valid for any kind of mixture and that new features
can emerge when the parameters vary even further. From now
on, we come back to consider tB = tF = 1.

The fermionic particles of our mixture have an inter-
nal degree of freedom; therefore, a natural question is
whether gapped excitations related to it take place. To explore
this issue, we calculate the spin gap �S = E (N↑ + 1, N↓ −
1, NB) − E (N↑, N↓, NB) at each insulator phase. In Fig. 4, we
show the spin gap in the thermodynamic limit as a function of
the boson-fermion repulsion for a system with fixed fermionic
density ρF = 1/2, UFF = 6, and UBB = 16. Note that, for
this fermionic density, repulsive coupling between fermions
and without boson-fermion interaction, we expected a metal-
lic ground state with dominant spin-density fluctuations, i.e.,
both charge and spin gaps vanish [73]. Turning on the boson-
fermion repulsion and for all the insulating regions, we obtain
spin gapless states for a range of values of UBF ; however, a
finite spin gap opens from a critical value, which depends on
the bosonic density. We emphasize that similar results were
obtained for attractive boson-fermion coupling and that this
unexpected result, which suggests a quantum phase transition
in the spin sector, corresponds to an unveiled phenomenon that
has not been discussed before in Bose-Fermi mixtures.

IV. ATTRACTIVE BOSON-FERMION INTERACTION
(UBF < 0)

Attractive interactions between bosons and fermions have
been considered by several authors, and interesting effects
have been predicted and observed [46,55]. Now we wish to
establish whether the conditions for the emergence of the
insulator phases of the mixture change with the nature of the
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FIG. 5. Quantum phases of a mixture of two-color fermions and scalar bosons for attractive boson-fermion interactions. Repulsive
intraspecies interactions were considered (UBB = 16 and UFF = 6). (a) Bosonic phase diagram (ρB vs μB) for a fixed fermionic density
ρF = 1/4 and two values of the boson-fermion coupling. The bosonic charge gap for each insulator region is shown in the inset for UBF = −8
as a function of 1/L, where extrapolation to the thermodynamic limit is observed. (b) Replicating panel (a), we obtain the μB vs UBF phase
diagram. The white areas are superfluid regions, while the colored lobes correspond to insulator phases. (c) Fermionic density profile ρF versus
the fermionic chemical potential μF for fixed bosonic density ρB = 1/4. In the inset, we show the evolution of the fermionic charge gap when
the lattice grows, showing that it remains finite in the thermodynamic limit. In all panels, the points correspond to DMRG results and the lines
are visual guides.

boson-fermion interaction. For this, we maintain the same
values of the boson-boson and fermion-fermion couplings
considered in Fig. 2 and explore the superfluid-insulator tran-
sitions with UBF < 0; our results are shown in Fig. 5. First, for
a constant global density of fermions ρF = 1/2, we increase
the number of bosons from zero. The corresponding chemical
potential is shown in Fig. 5(a), where attractive boson-fermion
interactions of UBF = −1 and UBF = −8 were considered.
Figures 2(a) and 5(a) have the same parameters, except that
the former is for the repulsive case and the latter for the
attractive one; this allows us to clearly see the influence of
the nature of the boson-fermion interaction. Again, for weak
boson-fermion couplings, only trivial plateaus at integer den-
sities appear, and their widths are independent of the sign of
the boson-fermion coupling. The most interesting situation
takes place for larger strengths with the emergence of four
more plateaus in the bosonic density versus chemical potential
curve, as we illustrate for UBF = −8 [see Fig. 5(a)]. This con-
firms that between trivial plateaus, two insulating states arise
regardless of the sign of the boson-fermion interaction, this
fact being a main conclusion of the present study. For two of
the new nontrivial plateaus, namely, those at bosonic densities
ρB = 1/4 and ρB = 5/4, the total number of particles is not
commensurate with the lattice size. Since the fermionic den-
sity is ρF = 1/2, these new insulator states fulfill the relation
ρB − 1

2ρF = n, where the integer n takes the values 0 and 1 for
ρB = 1/4 and ρB = 5/4, respectively. These insulator states
are characterized by a local coupling between one fermion and
one or more bosons [71], forming composite particles, which
were evinced in experiments [19]. For the other two plateaus,
taking place at bosonic densities ρB = 1/2 and 3/2, the to-
tal number of carriers is commensurate with the lattice size,
and the condition ρB − ρF = n (n integer) is satisfied, with
n = 0 and 1 for ρB = 1/2 and 3/2, respectively. However,
we note that, for other fermionic densities, the plateaus that
satisfy the latter condition are such that the total number of
carriers is incommensurate with the lattice size. For example,
we observed that, for ρF = 1/3, the four nontrivial insulating
plateaus emerge at the bosonic densities ρB = 1/6, 1/3, 7/6,

and 4/3, none of which satisfy the commensurability relation
with the lattice size. Therefore, we are faced with a new
scenario, where there is no mixed Mott state.

To illustrate the general behavior of the insulating phases
for attractive boson-fermion couplings, a phase diagram in
the μB vs UBF plane is shown in Fig. 5(b), keeping a
fermionic density of ρF = 1/2 constant and a boson-boson
(fermion-fermion) interaction of UBB = 16 (UFF = 6). This
phase diagram was obtained by replicating Fig. 5(a) for sev-
eral negative values of UBF . The white areas correspond to
superfluid regions, which surround the insulator (colored)
ones. As in the repulsive case, the trivial lobes shrink and
vanish at U ∗

BF ≈ −11.7 and −12.6 for ρB = 1 and 2, respec-
tively. A finite value of the boson-fermion coupling is required
for nontrivial lobes to arise, determining the critical point
located at U ∗

BF ≈ −3.5, −1.7, −3.4, and −3.0 for the bosonic
densities ρB = 1/4, 1/2, 5/4, and 3/2, respectively.

In Fig. 5(c), we display the evolution of the fermionic
chemical potential as the number of fermions increases, for
a mixture with a bosonic density of ρB = 1/4 and an at-
tractive boson-fermion interaction. This figure corresponds
to the attractive version of Fig. 2(c) and, as before, only the
antiferromagnetic Mott insulator emerges for small strengths.
However, as the boson-fermion coupling increases, the width
of this trivial plateau decreases and eventually vanishes, while
other nontrivial ones arise at the fermionic densities ρF =
1/4, 1/2, and 5/4 (the fourth one for n = −1 being un-
physical, with ρF = 5/2 > 2). The above fact reinforces our
result that the attractive boson-fermion interaction generates
insulator regions different from the repulsive one. Note that
the positions of these nontrivial insulator regions fulfill the
relations discussed before.

V. HALF FILLING

A case that deserves special attention is that of half fill-
ing, because it is well known that this configuration leads to
interesting physical phenomena in fermionic systems. In the
absence of bosons, only at half filling (ρF = 1) an insulator
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FIG. 6. (a) Bosonic density ρB as a function of chemical po-
tential μB. The fermion density is ρF = 1 (half filling), and the
fixed boson-boson (fermion-fermion) repulsion is UBB = 16 (UFF =
6). Two different nonzero values of the boson-fermion interaction
were considered; namely, UBF = 10 (blue) and UBF = −10 (black).
(b) The distribution of fermions (blue circles) and bosons (red
squares) across the lattice for a mixture with repulsive (left panel) and
attractive (right panel) interspecies interactions. Here, we consider
the same density for bosons and fermions, and equal to one; the other
parameters are UBB = 16, UFF = 6, and UBF = |20|. In both figures,
the lines are visual guides, whereas the points correspond to DMRG
results.

phase is expected, which corresponds to the well-known Mott
insulator state, where each site is occupied by one fermion
and antiferromagnetic order is established along the lattice.
Adding bosons to the system, but without coupling them to
the fermions, we trivially expect a superfluid-to-Mott insu-
lator transition under a fermionic Mott background, which
takes place when the bosonic density reaches integer values.
A coexistence of fermionic and bosonic Mott insulators is
thus established for UBF = 0, as seen in Fig. 6(a). Turning
on the boson-fermion coupling, we observe that the trivial
boson plateaus shrink as the interparticle interaction grows,
and both will disappear at some large UBF . Therefore, the
Mott insulator for bosons and fermions coexists in the system

for finite values of the interparticle coupling. Regardless of
the sign of the boson-fermion interaction, only one nontrivial
plateau emerges between the trivial bosonic plateaus, namely
at densities ρB = 1/2 and 3/2, which agrees with the relations
found above for the repulsive and attractive cases.

Finally, we discuss the spatial distribution of particles
across the lattice for different states. A homogeneous profile
of carriers is obtained in the nontrivial plateaus for weak val-
ues of the boson-fermion interaction, which is characterized
by one fermion per site and one or three bosons extended
across two sites at the densities ρB = 1/2 and 3/2, respec-
tively. For larger values of UBF , interwoven CDW orderings
for bosons and fermions emerge, where the particular form
of the density profiles naturally depends on the repulsive or
attractive character of the interaction.

A different scenario emerges for ρF = ρB = 1, where for
weak interspecies interaction the Mott insulator for bosons
and fermions coexists, and on average there is one boson
and one fermion per site. However, this picture can change,
depending on the magnitude and sign of UBF . Namely, it
can lead to a redistribution of fermions and bosons along the
lattice, which opens the possibility for them to occupy the
same or different domains of agglutinated particles, i.e., the
well-known boson-fermion miscibility problem will arise here
[19,36,42]. For large and positive values of the boson-fermion
coupling, fermions and bosons occupy different domains
along the lattice, establishing a phase-separation state, as
sketched in Fig. 1(d) and clearly seen in the density pro-
files shown in Fig. 6(b) for UBF = 20. Therefore a quantum
phase transition between insulating states of a different nature
takes place. A similar effect occurs for attractive interparticle
interactions; however, in this case and for large magnitudes
of |UBF |, bosons and fermions share the same domains [see
Fig. 6(c)], leaving regions of the lattice without particles. In
other words, the ground state is a miscible phase separation
characterized by domains with or without carriers. It is impor-
tant to emphasize that recently a phase separation state was
observed in a mixture of 41K and 6Li atoms [29] using an
interspecies Feshbach resonance for controlling the repulsive
interaction. It was clearly seen that bosons and fermions occu-
pied different domains in the lattice, as we show in Fig. 6(b).
Thus, it would be possible to identify experimentally the
phase separation states predicted by our study, provided that
atoms with the correct nuclear spin are used.

VI. CONCLUSIONS

We studied the ground state of a one-dimensional mix-
ture of scalar bosons and two-color fermions in the soft-core
regime, using the density-matrix renormalization group tech-
nique. Relaxing the hard-core restriction, but keeping up
to three bosons per site, we kept the system numerically
tractable, leading us to unveil different phenomena. For repul-
sive intraspecies interactions, we swept through a wide range
of bosonic and fermionic densities, for positive and negative
interspecies couplings, and obtained rich zero-temperature
phase diagrams.

Choosing repulsive boson-fermion interactions and fix-
ing the fermionic density ρF , two nontrivial plateaus arise
between the trivial Mott insulators as the number of bosons
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increase from zero, which satisfy the relations ρB + ρF = n
and ρB + 1

2ρF = n, n being an integer. As the boson-fermion
coupling increases, the nontrivial insulator phases emerge. For
stronger couplings, the Mott insulator phases disappear. This
generalizes the previous results for polarized atoms and a mix-
ture of two-color fermion and scalar bosons in the hard-core
limit [54,63]. To reinforce our conclusions, we also fixed the
bosonic density and varied the fermionic density. Here, we
found the trivial antiferromagnetic Mott insulator and three
nontrivial insulators that fulfilled the relations given before.
In addition, we observed that increasing the fermion-fermion
interaction enhances the trivial and mixed Mott insulators,
while decreasing the noncommensurate ones. Furthermore,
we evinced that lighter bosons degrade the insulating
phases.

For attractive boson-fermion interactions, we observed in-
sulator phases for integer and fractional bosonic densities,
where the latter can be commensurate or not with the lattice
size; this establishes a fundamental difference from the repul-
sive case. Therefore, the relations that determine the nontrivial
insulator states for attractive interspecies interactions differ
from those reported before. Namely, the corresponding rela-
tions are given by ρB − ρF = n and ρB − 1

2ρF = n, n being
an integer. This constitutes one of the main results reported in
our paper. We also showed that, for a finite interparticle cou-
pling, the trivial Mott insulator states for bosons and fermions
coexist in the system.

The energy cost to generate a spin flip in the system was
calculated for each insulator phase. We found that the spin gap
is zero for a range of values of the boson-fermion coupling and
that there is a different critical point for each insulator phase,
in which it becomes finite. This suggests a diverse magnetic
behavior of the system.

Our work motivates the study of Bose-Fermi mixtures in a
wide variety of scenarios. For example, in spite of long-range
mediated interactions between carriers [74,75], dynamical
analysis can be efficiently performed with DMRG methods
in systems of particles of different species and statistics
[76–80]. Furthermore, considering that the mixed Mott state
(commensurate), phase separation, among other interesting
phenomena, have been observed in experiments with bosonic
and fermionic isotopes in cold-atom setups, we expect that
our results will stimulate experimentalists to implement the
insulator states reported in our investigation.
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