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Towards a quantum Monte Carlo–based density functional including finite-range effects:
Excitation modes of a 39K quantum droplet
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Some discrepancies between experimental results on quantum droplets made of a mixture of 39K atoms in
different hyperfine states and their analysis within extended Gross-Pitaevskii theory (which incorporates beyond
mean-field corrections) have been recently solved by introducing finite-range effects into the theory. Here we
study the influence of these effects on the monopole and quadrupole excitation spectrum of extremely dilute
quantum droplets using a density functional built from first-principles quantum Monte Carlo calculations, which
can be easily introduced in the existing Gross-Pitaevskii numerical solvers. Our results show differences of up to
20% with those obtained within the extended Gross-Pitaevskii theory, likely providing another way to observe
finite-range effects in mixed quantum droplets by measuring their lowest excitation frequencies.
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I. INTRODUCTION

Ultracold gases serve as a unique platform for understand-
ing quantum many-body physics [1]. This notoriously hard
problem is often reduced to the effective single-particle pic-
ture when the interactions are very weak and the density is
very low [2,3]. Because of its simplicity and predictive power,
the mean-field approach has become a standard (or a first
starting point) to study the properties of ultracold gases.

The accuracy of mean-field theories to address dilute
quantum gases is expectable, as nearly all experiments are
performed at very low values of the gas parameter ρa3, ρ

being the atom number density and a the s-wave scattering
length describing the interparticle interactions. This allows for
a perturbative approach à la Bogoliubov [4], where static and
dynamic properties are well described by the Gross-Pitaevskii
equation. However, as the density and/or the interaction
strength increases, the system becomes more correlated and
out of the range of applicability of perturbation theories. It is
a priori difficult to know when the perturbative approach is
no longer valid. Thus it is essential to supplement the theory
with developments [5–15] aiming at verifying the range of
applicability of the mean-field approach and disclosing the
role played by higher-order effects.

A promising system for investigating quantum many-body
effects, going beyond mean-field theory, is the self-bound
Bose-Bose mixture first proposed by Petrov [16]. In this mix-
ture, with repulsive intraspecies and attractive interspecies
short-range interactions, the unstable attractive mean-field
energy is balanced out by a repulsive beyond mean-field
term [the Lee-Huang-Yang (LHY) term] [17], resulting in a
liquid droplet resembling the well-known 4He droplets [18]
but with a far smaller density. So far, a Bose-Bose droplet
state has been observed in a mixture of two 39K hyperfine

states [19–21] and in an heterogeneous mixture of 41K-87Rb
atoms [22].

In the first experimental observation [19], discernible dif-
ferences were observed between the experiment and the
results of the mean-field (MF) theory extended with an LHY
term. Quite recently, it has been reported [23] that the agree-
ment between theory and experiment improves notably when
finite-range effects are properly taken into account. For the
particular mixture of two hyperfine states of 39K atoms, we
know two scattering parameters in each of the interaction
channels [24], the s-wave scattering length a and the effective
range reff , which are the first two coefficients in the expansion
of the s-wave phase shift in the scattering between two atoms
[25]:

k cot δ(k) = −1

a
+ 1

2
reffk2 + O(k4). (1)

The nonzero (in fact quite large) effective ranges open
a promising new regime in quantum mixtures which goes
beyond the usual mean-field theory corrected with the LHY
term (MF+LHY) [26–28]. A large effective range means that
the interaction between atoms is far from the contact Dirac δ

interaction usually employed for dilute Bose gases.
In a previous work [23], some of us have performed dif-

fusion Monte Carlo (DMC) calculations [29,30] using model
potentials that reproduce both scattering parameters, obtain-
ing the equation of state for a 39K mixture in the homogeneous
liquid phase. We concluded that one could reproduce the
critical atom number determined in the experiment [19] only
for the model potentials which incorporate the correct effec-
tive range. This critical number is a static property of the
quantum droplet at equilibrium. Besides a good knowledge of
the equilibrium properties of a quantum many-body system,
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TABLE I. Scattering parameters, i.e., s-wave scattering length a and effective range reff (in units of Bohr radius a0) as a function of B [32].

a11 reff
11 a22 reff

22 a12 reff
12

B(G) (units of a0) (units of a0 ) (units of a0) (units of a0 ) (units of a0) (units of a0 )

56.230 63.648 –1158.872 34.587 578.412 –53.435 1021.186
56.453 70.119 –1150.858 34.136 599.143 –53.333 1023.351
56.639 76.448 –1142.642 33.767 616.806 –53.247 1025.593

determining the excitation spectrum is essential to unveil its
microscopic structure.

In the present work we present a study of the monopole
and quadrupole excitation spectrum of a 39K quantum droplet
using the quantum Monte Carlo (QMC) functional introduced
in Ref. [23], which correctly describes the inner part of large
drops, constituting an extension to the MF+LHY theory. The
excitation spectrum of these droplets has already been calcu-
lated within the MF+LHY approach [16,31]. Our goal is to
make visible the appearance of any beyond-LHY effect aris-
ing from the inclusion of the effective range in the interaction
potentials.

This paper is organized as follows. We build in Sec. II the
QMC density functional, in the local density approximation
(LDA), and compare it with the MF+LHY approach, which
can be expressed in a similar form. In Sec. III we give details
on the application of the density functional method, static and
dynamic, to the obtainment of the ground state and excitation
spectrum of quantum droplets. In Sec. IV we report the results
of the monopole and quadrupole frequencies obtained with
the QMC functional and compare them with the MF+LHY
predictions. Finally, a summary and outlook are presented in
Sec. V.

II. THE QMC DENSITY FUNCTIONAL

We shall consider 39K mixtures at the optimal relative
atom concentration yielded by the mean-field theory, namely,
N1/N2 = √

a22/a11 [16]. For these mixtures we have shown
that the energy per atom in the QMC approach can be accu-
rately written as [23]

E

N
= αρ + βργ , (2)

where ρ is the total atom number density. The parameters α,
β, and γ have been determined by fits to the DMC results for
the model potentials satisfying the s-wave scattering length
and effective range, given in Table I. Parameters appearing
in Eq. (2) are collected in Table II for three values of the

TABLE II. Parameters of the QMC energy per atom calculated
at several magnetic fields B, assuming ρ1/ρ2 = √

a22/a11, satisfying
the s-wave scattering length a and effective range reff given in Table I.
α is in h̄2a2

11/(2m) units, β is in h̄2a3γ−2
11 /(2m) units, m being the mass

of a 39K atom, and γ is dimensionless.

B(G) α β γ

56.230 –0.812 5.974 1.276
56.453 –0.423 8.550 1.373
56.639 –0.203 12.152 1.440

magnetic field (B). The QMC approach does not yield a
universal expression for E/N , as it depends on the value of
the applied B. For the optimal concentration, the MF+LHY
energy per particle can be cast in a similar expression,

E/N

|E0|/N
= −3

(
ρ

ρ0

)
+ 2

(
ρ

ρ0

)3/2

, (3)

where E0/N and ρ0 are the energy per atom and atom density
at equilibrium,

E0/N = 25π2h̄2|a12 + √
a11a22|3

768ma22a11(
√

a11 + √
a22)6 (4)

and

ρ0 = 25π

1024a3
11

(a12/a11 + √
a22/a11)2

(a22/a11)3/2(1 + √
a22/a11)4 . (5)

In Eqs. (4) and (5), m is the mass of a 39K atom and ai j

are the three different s-wave scattering lengths. MF+LHY
theory is thus universal if it is expressed in terms of ρ0 and E0.
According to this theory, the droplet properties do not change
separately on N and ai j but are rather combined through

N

Ñ
= 3

√
6

5π2

(1 + √
a22/a11)5

|a12/a11 + √
a22/a11|5/2 , (6)

where Ñ is a dimensionless parameter [16]. Additionally, the
healing length corresponding to the mixture is

ξ

a11
= 8

√
6

5π

√
a22

a11

(1 + √
a22/a11)3

|a12/a11 + √
a22/a11|3/2 . (7)

The energy per atom, Eq. (2), allows one to readily intro-
duce, within LDA, a density functional whose interacting part
is

Eint = ρ
E

N
= αρ2 + βργ+1. (8)

A similar expression holds in the MF+LHY approach. In
the homogeneous phase, one may easily obtain the pressure

p(ρ) = ρ2 ∂

∂ρ

(
E

N

)
= αρ2 + βγργ+1 (9)

and incompressibility

κ (ρ) = ρ
∂ p

∂ρ
, (10)

which can be written as

κ (ρ) = ρ2 ∂2Eint

∂ρ2
= ρ2

{
2

∂

∂ρ

(
E

N

)
+ ρ

∂2

∂ρ2

(
E

N

)}
. (11)
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FIG. 1. DMC energy per particle as a function of the den-
sity. From bottom (purple triangles) to top (red stars), the results
correspond to magnetic fields B=56.23, 56.453, and 56.639 G. Cal-
culations were performed for the mean-field optimal ratio ρ2/ρ1 =√

a11/a22. The energy per atom and atom density are normalized to
the |E0|/N and ρ0 MF+LHY values obtained from Eqs. (4) and (5),
respectively. The dashed lines are fits in the form E/N = αρ + βργ .
The black solid line corresponds to the MF+LHY theory, Eq. (3).

Figure 1 shows the DMC energy per atom as a function of
the density for selected values of the magnetic field, together
with the result for the MF+LHY theory. It is worth noticing
the rather different equations of state yielded by the QMC
functional and MF+LHY approaches. The QMC approach
yields a substantially larger equilibrium density and is more
binding. The QMC incompressibility is also larger, as can be
seen in Fig. 2; at first sight this seems to be in contradiction
with the results in Fig. 1, which clearly indicate that the cur-
vature of the E/N vs ρ curve at equilibrium [∂ (E/N )/∂ρ =
0 point] is smaller for the QMC functionals than for the
MF+LHY approach. However, this is compensated by the
larger QMC value of the atom density at equilibrium, see
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FIG. 2. DMC over MF+LHY incompressibility ratio at equilib-
rium for the magnetic fields considered in Ref. [23]. The dashed line
is a linear fit to the points.
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FIG. 3. DMC over MF+LHY equilibrium density ratio for the
magnetic fields considered in Ref. [23]. The dashed line is a linear fit
to the points.

Eq. (11) and Fig. 3, where we show the ratio of QMC and
MF+LHY equilibrium densities. Besides its importance for a
quantitative description of the monopole droplet oscillations
addressed here, inaccurate incompressibility may affect the
description of processes where the liquidlike properties of
quantum droplets play a substantial role, such as, e.g., droplet-
droplet collisions [33].

Another fundamental property of the liquid is the surface
tension σ of the free surface. Remarkably, for simple func-
tionals such as the QMC and MF+LHY ones discussed in this
work, its value can be obtained by a simple quadrature [34],

σ = 2
∫ ρ0

0
dρ

[(
h̄2

8m

)
(αρ + βργ − μ)

]1/2

, (12)

where μ is the chemical potential evaluated at the equilib-
rium density. The surface tension of several QMC functionals,
i.e., functionals corresponding to different magnetic fields, is
given in Table III. As can be seen, QMC functionals yield
consistently higher values of the surface tension than the
MF+LHY approach. Within MF+LHY, the surface tension
can be written in terms of the equilibrium density (5) and
healing length (7), σMF+LHY = 3(1 + √

3)ρ0 h̄2/(35mξ ) [16].

III. THE LDA-DFT APPROACH

A. Statics

Once Eint[ρ] has been obtained, we used density functional
theory (DFT) to address the static and dynamic properties
of 39K droplets similarly as for superfluid 4He droplets [35].
Within DFT, the energy of the quantum droplet at the optimal
composition mixture is written as a functional of the atom

TABLE III. Surface tension of a 39K Bose-Bose mixture at the
MF+LHY optimal mixture composition in 10−8 × h̄2/(ma4

11) units.

B(G) σMF+LHY σQMC

56.230 35.1 48.8
56.453 9.31 12.2
56.639 1.21 1.46
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FIG. 4. Density profiles of two 39K quantum droplets corre-
sponding to a small, (Ñ − Ñc )1/4 = 3, and to a large, (Ñ − Ñc )1/4 =
6, droplet, where Ñc = 18.65 is the critical number below which the
droplet becomes unstable within the MF+LHY theory [16]. Solid
lines, QMC functional; dotted lines, MF+LHY approach.

density ρ(r) as

E [ρ] = T [ρ] + Ec[ρ] = h̄2

2m

∫
dr|∇�(r)|2 +

∫
dr Eint[ρ],

(13)

where the first term is the kinetic energy, and the effective
wave function �(r) of the droplet is related to the atom
density as ρ(r) = |�(r)|2. The equilibrium configuration is
obtained by solving the Euler-Lagrange equation arising from
the functional minimization of Eq. (13),{

− h̄2

2m
∇2 + ∂Eint

∂ρ

}
� ≡ H[ρ] � = μ�, (14)

where μ is the chemical potential corresponding to the num-
ber of 39K atoms in the droplet, N = ∫

dr|�(r)|2.
The time-dependent version of Eq. (14) is obtained by

minimizing the action and adopts the form

ih̄
∂

∂t
�(r, t ) = H[ρ] �(r, t ). (15)

We have implemented a three-dimensional numerical solver
based on the Trotter decomposition of the time-evolution op-
erator with second-order accuracy in the time step 
t [36],

e−iH
t = e−i
tV (R′ )/2e−i
tK e−i
tV (R)/2 + O(
t3), (16)

with K and V being the kinetic and interaction terms in
Eq. (14). Within this scheme, it is possible to obtain both
the ground state and the dynamical evolution. Indeed, by
reformulating the problem via a Wick rotation t = −iτ , the
propagation of a wave function in imaginary time τ leads
to the ground-state equilibrium solution. It is known that in
real time, the Trotter decomposition may be unstable for dif-
ferent combinations of the time and space steps used in the
discretization [37]. To tackle this problem we have carefully
chosen the time step that ensures that the dynamic evolution
is stable during the total propagation time.

Figure 4 shows the density profile of two droplets, one
corresponding to a small Gaussian-like droplet and the other
to a large saturated one. They have been obtained within the

QMC (B = 56.230 G) functional and MF+LHY methods.
The sizable difference between the profiles yielded by both
approaches reflects the different values of their equilibrium
densities, see Fig. 3.

B. Real-time dynamics and excitation spectrum

The multipole excitation spectrum of a quantum droplet
can be obtained, e.g., by solving the equations obtained by
linearizing Eq. (15) [16,38,39]. We have used an equivalent
method based on the Fourier analysis of the real-time os-
cillatory response of the droplet to an appropriated external
field [40,41]. The method, which we outline now, bears clear
similarities with the experimental procedure to access to some
excited states of confined Bose-Einstein condensates (BECs)
[42,43]. For monopole oscillations, our method is similar to
that used in Ref. [44].

A droplet at the equilibrium, whose ground-state effective
wave function �(r) is obtained by solving the DFT equation,
Eq. (14), is displaced from it by the action of a static external
one-body field Q whose intensity is controlled by a parameter
λ. The new equilibrium wave function � ′(r) is determined by
solving Eq. (14) for the constrained Hamiltonian H′:

H → H′ = H + λQ. (17)

If λ is small enough so that λQ is a perturbation and
linear response theory applies, switching off Q and letting
� ′(r) evolve in time according to Eq. (15), 〈Q(t )〉 will os-
cillate around the equilibrium value Qeq = 〈�(r)|Q|�(r)〉.
By Fourier analyzing 〈Q(t )〉, one gets the non-normalized
strength function corresponding to the excitation operator Q,
which displays peaks at the frequency values corresponding
to the excitation modes of the droplet. Specific values of λ

that we use are in the range from λ = 10−13 to 10−15 for the
monopole modes, and λ = 10−15 to 10−17 for the quadrupole
modes, with λ being measured in h̄2/(2ma4

11) units, and the
smaller values corresponding to larger magnetic fields, i.e.,
less correlated drops.

IV. RESULTS

We have used as excitation fields the monopole Q0 and
quadrupole Q2 operators

Q0 =
N∑
i

r2
i , (18)

Q2 =
N∑
i

(
r2

i − 3z2
i

)
, (19)

which allows one to obtain the � = 0 and 2 multipole
strengths. The � = 0 case corresponds to pure radial oscil-
lations of the droplet, and for this reason it is called the
“breathing” mode. In a pure hydrodynamical approach, its
frequency is determined by the incompressibility of the liquid
and the radius of the droplet [3,45].

We have propagated the excited state � ′(r) for a very
long period of time, storing 〈Q(t )〉 and Fourier analyzing it.
Figure 5 (left) shows 〈Q0(t )〉 for 39K quantum droplets of
different sizes. We choose the same scale of particle numbers
(x axis) as in Ref. [16], as the monopole frequency ω0 close
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FIG. 5. Time evolution of the monopole moment 〈Q0(t )〉 and
strength function (right) for 39K quantum droplets of different sizes
obtained using the QMC functional at B = 56.230 G. In the right
panels, the vertical solid line corresponds to the frequency |μ|/h̄
corresponding to the atom emission energy |μ|, and the dotted and
dash-dotted lines to the E3/h̄ and E1/h̄ frequencies, obtained by the
sum rules in Eqs. (23) and (20), respectively.

to the instability point Ñc = 18.65 is directly proportional
to (Ñ − Ñc)1/4 [16]. Whereas a harmonic behavior is clearly
visible for the largest droplets, as corresponding to a single-
mode excitation, for small droplets the radial oscillations are
damped and display different oscillatory behaviors (beats),
anticipating the presence of several modes in the monopole
strength, as the Fourier analysis of the signal unveils.

Figure 5 (right) displays the monopole strength function
in logarithmic scale as a function of the excitation frequency.
The solid vertical line represents the frequency |μ|/h̄ corre-
sponding to the atom emission threshold, i.e., the absolute
value of the atom chemical potential, |μ|. It can be seen
that for (Ñ − 18.65)1/4 = 5.1 the strength is in the contin-
uum frequency region above |μ|/h̄. Hence, self-bound small
39K droplets, monopolarly excited, have excited states (reso-
nances) that may decay by atom emission [16,44]. This decay
does not imply that the droplet breaks apart; it just loses the
energy deposited into it by emitting a number of atoms, in
a way similar to the decay of some states appearing in the
atomic nucleus, the so-called “giant resonances” [45]. We
want to stress that the multipole strength is not normalized,
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FIG. 6. Time evolution of the quadrupole moment 〈Q2(t )〉 and
strength function (right) for 39K quantum droplets of different sizes
obtained using the QMC functional at B = 56.230 G. In the right
panels, the vertical solid line corresponds to the frequency |μ|/h̄
corresponding to the atom emission energy |μ| and the dotted and
dash-dotted lines to the E3/h̄ and E1/h̄ frequencies, obtained by the
sum rules in Eqs. (24) and (21), respectively.

as it depends on the value of the arbitrary small parameter λ.
However, the relative intensity of the peaks for a given droplet
is properly accounted for in this approach.

A similar analysis for the quadrupole mode is presented in
Fig. 6. In this case we have found a more harmonic behavior
for 〈Q2(t )〉, and therefore the quadrupole strength function is
dominated by one single peak.

Figures 5 and 6 show an interesting evolution of the
strength function from the continuum to the discrete part
of the frequency spectrum as the number of atoms in the
droplet increases. For small N values, but still corresponding
to self-bound quantum droplets, the spectrum is dominated
by a broad resonance that may decay by atom emission. The
〈Q(t )〉 oscillations are damped, and when several resonances
are present (monopole case), distinct beats appear in the
oscillations.

This remarkable evolution of the monopole and quadrupole
spectrum has also been found for 3He and 4He droplets
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(Ñ − 18.65)1/4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
ω

[h̄
/(

m
ξ2 )

]

QMC, B=56.230 G

QMC, B=56.453 G

QMC, B=56.639 G

MF+LHY
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frequencies as a function of the total atom number in units of Ñ .
Points are the results obtained from QMC and MF+LHY TDDFT
calculations, and dashed lines are the E1/h̄ frequencies from the sum-
rule approach [Eqs. (20) and (21)]. Full lines represent the frequency
corresponding to the absolute value of the droplet chemical potential
|μ|, corresponding to the legend from top to bottom

[46,47]. In the 4He case, it has been experimentally confirmed
by detecting “magic” atom numbers in the size distribution of
4He droplets which correspond to especially stable droplets
[48]. The magic numbers occur at the threshold sizes for
which the excitation modes of the droplet, as calculated by
the diffusion Monte Carlo method, are stabilized when they
pass below the atom emission energy. This constituted the
first experimental confirmation for the energy levels of 4He
droplets. On the other hand, in confined BECs, the energy of
the breathing mode is obtained by direct analysis of the radial
oscillations of the atom cloud [3].

We show in Fig. 7 the breathing and quadrupole frequen-
cies, corresponding to the more intense peaks, as a function of
the number of atoms obtained with the QMC functional and
the MF+LHY approach. For the latter, our results are in full
agreement with both those obtained using the Bogoliubov–
de Gennes method [16], which is fully equivalent to ours,
and with those of Ref. [44]. The results are plotted in the
universal units of the MF+LHY theory. We find that the
QMC functional predicts systematically larger monopole and
quadrupole frequencies in all the range of particle numbers we
have studied. Additionally, as we change the magnetic field,
i.e., the scattering parameters, QMC predictions do not fall on
the same curve, meaning that the QMC functional breaks the
MF+LHY universality.

When the multipole strength is concentrated in a single nar-
row peak, it is possible to estimate the peak frequency using
the sum-rules approach [3,45]. Sum rules are energy moments
of the strength function that for some excitation operators
can be written as compact expressions involving expectation

values on the ground-state configuration. For the multipole
operators considered here, two such sum rules are the linear-
energy m1 and cubic-energy m3 sum rules. The inverse-energy
sum rule m−1 can be obtained from a constrained calculation
involving the Hamiltonian H′ of Eq. (17). Once determined,
these three sum rules may be used to define two average
energies E1 = √

m1/m−1 and E3 = √
m3/m1, expecting, bona

fide, that they are good estimates of the peak energy.
For the monopole and quadrupole modes, the E1 energies

are [45]

E1(� = 0) =
√

−4h̄2

m

〈r2〉
(∂〈Q0〉/∂λ)|λ=0

(20)

and

E1(� = 2) =
√

−8h̄2

m

〈r2〉
(∂〈Q2〉/∂λ)|λ=0

, (21)

with λ being the parameter in the constrained Hamiltonian
H′, Eq. (17), and 〈r2〉 = ∫

drρ(r)r2/N evaluated at λ = 0.
The frequencies corresponding to these energies are drawn in
Figs. 5 and 6 as vertical dash-dotted lines. Except for small
droplets, for which the monopole strength is very fragmented,
one can see that they are good estimates of the peak frequency.

Closed expressions for the E3 averages can be easily ob-
tained for the monopole and the quadrupole modes [3,45]. For
the sake of completeness, we present the result obtained for
the QMC functional.

Defining

Eα = α

∫
drρ2(r)

Eβ = β

∫
drργ+1(r)

〈T 〉 = h̄2

2m

∫
dr|∇�(r)|2, (22)

where �(r) and ρ(r) are those of the equilibrium configura-
tion, we have

E3(� = 0) =
[

h̄2

Nm〈r2〉
]1/2

[4〈T 〉 + 9(Eα + γ 2Eβ )]1/2, (23)

E3(� = 2) =
[

h̄2

Nm〈r2〉
]1/2

[4〈T 〉]1/2. (24)

We have E3(� = 2) < E3(� = 0). The ω3 = E3/h̄ frequen-
cies are shown in Figs. 5 and 6 as vertical dotted lines. It
can be seen that even when the strength is concentrated in a
single peak, ω3 is a worse estimate of the peak frequency than
ω1 = E1/h̄. This is likely so because m3 gets contributions
from the high-energy part of the spectrum. At variance, since
contributions to m−1 mainly come from the low-energy part
of the spectrum, ω1 is better suited for estimating the peak
frequency.

The relative differences between the MF+LHY theory and
the QMC functional for monopole and quadrupole frequen-
cies are presented in Fig. 8. As the magnetic field increases,
the droplet is more correlated and differences of even 20% can
be observed.
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FIG. 8. Relative frequency difference between QMC and
MF+LHY TDDFT calculations for quadrupole (bottom figure) and
monopole modes (top figure) as a function of the total atom number
in units of Ñ .

We finally compare in more detail the frequencies obtained
with the QMC and MF+LHY functionals at B = 56.230
G for Ñ = 100 and Ñ = 1010, which correspond to N =
7 × 104 and N = 7.1 × 105, respectively. Although it might
require rather large droplets to observe neat breathing oscil-
lations, systems with Ñ > 100, for which clean quadrupole
modes show up (see Fig. 7), are already accessible in ex-
periments [19,20,22,33]. For N = 7 × 104, the quadrupole
frequencies are ω

QMC
2 = 2323 Hz and ωMF+LHY

2 = 1972 Hz,
i.e., oscillation periods τ

QMC
2 = 2.70 ms and τMF+LHY

2 =
3.19 ms. A similar comparison can be made for the
monopole frequency; for N = 7.1 × 105, the frequencies are
ω

QMC
0 = 3114 Hz and ωMF+LHY

0 = 2755 Hz, and the oscilla-
tion periods are τ

QMC
0 = 2.02 ms and τMF+LHY

0 = 2.28 ms. In
Fig. 9 we report our results for the breathing and quadrupole

105 106 107
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ω
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|μ|
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FIG. 9. Predictions of the frequency corresponding to the abso-
lute value of the chemical potential |μ|, breathing frequency ω0, and
quadrupole frequency ω2 as a function of total atom number using
the QMC functionals. Dashed lines are ω1 = E1/h̄ frequencies.

modes in not-reduced units to facilitate future comparisons
with experiments.

V. SUMMARY AND OUTLOOK

Using a QMC-based density functional which properly
incorporates finite-range effects, we have determined the
monopole and quadrupole excitation modes of 39K quan-
tum droplets at the optimal MF+LHY mixture composition.
Comparing with the results obtained within the MF+LHY
approach, we have found that finite-range effects have a de-
tectable influence on the excitation spectrum, whose study
may thus be a promising way to explore physics beyond the
LHY correction.

We have shown that introducing the QMC functional into
the usual DFT methodology can easily be done, as only
minor changes need to be made in the (many) existing Gross-
Pitaevskii numerical solvers [49–51]. This opens the door to
using better functionals—based on including quantum effects
beyond mean field—in the current applications of the ex-
tended Gross-Pitaevskii approach [33,52].

The significant difference between the predictions of QMC
and MF+LHY functionals for the excitation spectrum in-
dicates that finite-range effects could show up in other
dynamical problems as well. In particular, in droplet-droplet
collisions [33], where the actual value of the incompressibil-
ity might play a relevant role. A reliable functional might
also be useful to study quantum droplet aspects that are cur-
rently under study for superfluid 4He droplets, such as the
appearance of quantum turbulence and of bulk and surface
vorticity in droplets merging, the equilibrium phase diagram
of rotating quantum droplets [53–55], and the merging of
vortex-hosting quantum droplets. These aspects are at present
under investigation. Further improvements in the building of a
more accurate QMC functional should consider the inclusion
of surface tension effects others that those arising from the
quantum kinetic energy term [56].
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