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Stiickelberg interferometry using spin-orbit-coupled cold atoms in an optical lattice
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Time evolution of spin-orbit-coupled cold atoms in an optical lattice is studied, with a two-band energy
spectrum having two avoided crossings. A force is applied such that the atoms experience two consecutive
Landau-Zener tunnelings while transversing the avoided crossings. Stiickelberg interference arises from the
phase accumulated during the adiabatic evolution between the two tunnelings. This phase is gauge field
dependent and thus provides new opportunities to measure the synthetic gauge field, which is verified via
calculation of spin transition probabilities after a double-passage process. Time-dependent and time-averaged
spin probabilities are derived, in which resonances are found. We also demonstrate chiral Bloch oscillation and

rich spin-momentum locking behavior in this system.
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I. INTRODUCTION

Atom interferometry has been proven to be a powerful
tool for precision metrology [1]. In addition, atom interfer-
ometry can be used to test fundamental physical theory such
as general relativity [2-6]. Recent years have also witnessed
growing interest in atom interferometry with synthetic gauge
fields [7-10], mostly due to the fact that synthetic gauge fields
such as spin-orbit (SO) coupling can be generated in neutral
cold atoms via atom-light interaction [11-13]. The gauge field
can couple the atom’s internal spin states to its center-of-mass
motion, thus the path difference in coordinate space can be
mapped to a spin interference signal in an interferometer
setup, which can be used to measure external AC force [7] and
demonstrate the non-Abelian Aharonov-Bohm effect [9,10].
It is interesting to note that non-Abelian gauge fields in real
space have been observed recently [14] and a five-dimensional
non-Abelian gauge field has also been explored [15,16].

In this work we concentrate on Stiickelberg interferometry.
The principle of Stiickelberg interference lies in a quantum
system traveling through more than one avoided crossing of
two of its energy levels [17-20]. Avoided crossing represents
a close encounter of two energy levels without actual degen-
eracy [21]. Passing through the avoided crossings leads to
Landau-Zener (LZ) tunneling, which coherently splits and re-
combines wave function between the two energy levels. Thus
the phase accumulated between two LZ transitions (some-
times referred as the Stiickelberg phase) leads to quantum
interference. The avoided crossings function as beam splitters
in parameter (quasimomentum or time) space, in the sense
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that the physical principle underlying Stiickelberg interferom-
etry is identical to that of the Mach-Zehnder interferometer.
Stiickelberg interferometry has been implemented in molecule
formation in ultracold atoms [22], atomic Bose-Einstein con-
densates (BECs) in an optical lattice [23,24], electronic spins
in a nitrogen-vacancy center [25], and, recently, acoustic
modes [26]. The interband LZ tunneling of ultracold atoms in
bichromatic optical lattices [27-29] and between high-energy
bands [30-32] is also predicted to have the potential to per-
form Stiickelberg interference.

Recently a periodically driven SO-coupled atomic BEC in
free space was used to implement Stiickelberg interference
[33]. Using periodic modulation of Raman coupling to cre-
ate a pair of avoided crossings in the energy dispersion, the
resulting interference fringes become modulation frequency
dependent. Besides scenarios in free space, synthetic SO
coupling has also been implemented in ultracold atomic gas
trapped in an optical lattice via either optical clock transition
[34-36], a double-well optical lattice [37,38], Raman dressing
[39,40], or use of a two-dimensional manifold of momentum
states [41]. By considering spin as a synthetic dimension,
these experiments can resemble the model of a two-leg ladder
subject to a magnetic flux [42]. A two-leg ladder has been
realized using a single optical cavity with two independent
synthetic dimensions [43] and the tunneling problem of a
ladder system has also been addressed with an electronic setup
[44,45]. Many interesting phenomena such as chiral Bloch
oscillation, bandgap closing, edge states, and unconventional
phases have been predicted in such a system by incorporating
diagonal couplings, additional legs, and strong and long-range
interactions [46-62] .

Motivated by these developments, in this work we consider
Stiickelberg interferometry using SO-coupled cold atoms in
an optical lattice. We found the conditions to realize two
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avoided crossings in the energy dispersion of this two-band
system, which can be achieved in experiment, and thus the
system can be used to perform Stiickelberg interference.
Stiickelberg interferometry represents atom interferometry
with synthetic gauge fields and provides a new opportunity
to study novel SO-coupled band structures. We demonstrate
that the interference pattern reveals a phase which depends on
the synthetic magnetic flux, from which information on the
synthetic gauge field can be derived. Although the synthetic
magnetic flux can be directly probed via measurement of the
atomic SO momentum transfer, here Stiickelberg interference
provides an alternative way to demonstrate the effect of the
synthetic gauge field without inquiring about the atomic mo-
mentum information. The time evolution is also explicitly
studied, where resonances and chiral Bloch oscillation are
predicted.

The article is organized as follows: In Sec. II we present our
model and the effective Hamiltonian is derived. The principle
of Stiickelberg interference is illustrated in Sec. III. We use
the adiabatic-impulse model to analyze a double-passage pro-
cess in which two avoided crossings are transversed. A more
general discussion of the dynamics is also performed with
Floquet-Bloch theory. Section IV is devoted to the discussion
of chiral Bloch oscillation in the case where no LZ transitions
take place, and finally, we conclude in Sec. V.

II. MODEL

In this work we consider the following model, typically
representing a two-leg bosonic ladder pierced by a magnetic
flux, which can be described by the Hamiltonian (/i = 1)

H= ——Z(A* #5841 + Hee))

+ Z ( 6y — —crz)é;. €))

Hamiltonian (1) can be implemented in the system of Raman-
dressed 8’Rb cold atoms trapped in a one-dimensional optical
lattice [12,39,71] along the z direction under the lowest energy
band truncation and tight-binding approximation, as shown
in Fig. 1(a). Here the atomic hyperfine states |1, —1) (|{))
and |1, 0) (|1)) are coupled via Raman lasers, thus generating
effective SO interaction. By considering the atomic pseu-
dospin as a synthetic dimension, the system can be exactly
mapped to a two-leg bosonic ladder, as shown in Fig. 1(b). The
spin-momentum locking in the Raman transition is equivalent
to spin-dependent (leg-dependent) tunneling between neigh-
boring sites, thus a particle hopping around an elementary
plaquette picks up an Aharonov-Bohm phase 2¢, which is
equivalent to the presence of an effective magnetic flux 2¢ per
plaquette piercing the system. ¢ = kg /k;, with kg(;) the wave
vector of Raman beams projected onto the z axis and the laser
forming the lattice, respectively. Here the two-component an-
nihilation operator ¢; = (&4, & ¢)T and A is half-bandwidth
on the scale of kHz in typical experiments with ¥’Rb atoms
[63]. The interleg coupling is characterized by the hopping
amplitude €2/2 and detuning §.

Compared with the previously studied two-leg ladder [42],
here the interleg detuning § is additionally taken into account.
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FIG. 1. Schematic showing the system under consideration.
(a) Setup: ¥Rb cold atoms are confined in a one-dimensional optical
lattice along the z direction, inside which the effective SO interaction
is induced via coupling of the ||) and |1) hyperfine states with
Raman lasers. A bias magnetic field B causing quadratic Zeeman
splitting is applied along the z direction. (b) The hyperfine states
can be treated as an effective synthetic dimension made by two sites
connected with a coherent tunneling, resulting in a two-leg ladder
pierced by a synthetic magnetic flux 2¢ per plaquette.

We note that the two-photon detuning § is usually available
via the bias magnetic field in typical experiments with Raman-
dressed BECs [11,37,39]. Making the Fourier transform ¢, =

% > &re” 1 with Cq = (Cqr, Cqy ) and d = 7 /k; the lat-
tice constant, which is equivalent to the transform of the
system from the Wannier basis to the Bloch basis, Hamil-

tonian (1) can be rewritten in the quasimomentum basis as
H = Z eH ¢Cq> With

- . Q
Hy = —Acos ¢ cos(gd)l + Eéx
8 s A
+ | — 3 + Assin ¢ sin(gd) |6,. 2)
Hamiltonian ~ #, indicates a  two-band  struc-

ture with e1(q) = —Acos¢cos(gd) =
VI[=8/2 + Asing sin (qd)]* + (2/2)>. When |8/2A sin ¢|
< 1, there are two avoided crossings (at which spacing
between &. takes the minimal value €2) located in the
first Brillouin zone, thus making the system ideal for
implementing Landau-Zener-Stiickelberg interferometry.

II. STUCKELBERG INTERFEROMETRY

The principle of Stiickelberg interferometry is illus-
trated in Fig. 2, where we assume §/2Asin¢ > 0 with-
out loss of generality. The two avoided crossings are
then located at A with gad = arcsin (§/2Asin¢) and B
with gpd = m — arcsin (§/2A sin ¢). Suppose that the sys-
tem is initially prepared in the state |qo, 1) with god €
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FIG. 2. Energy band e(gq) at § = 0.63A, @ =0.2A, and ¢ =
/3. The diabatic energy levels are shown by dashed lines. This
figure illustrates the principle of the two-leg ladder as Stiickelberg
interferometry.

[—m, arcsin (6 /2 A sin ¢)] (for example, gy could be the quasi-
momentum of the system ground state), which is marked as
point O in Fig. 2. Furthermore, a constant external force F
is exerted on the atoms via tilting of the optical lattice, which
drives Bloch oscillation of the atoms. Bloch oscillation depicts
the traveling of atoms along the energy bands. Upon reaching
the avoided crossing A, the atoms will coherently split into two
components via LZ transition. The two components then sep-
arately travel along €4 (g) and thus acquire a different phase.
Finally, the two components recombine and interfere with
each other after another LZ transition at the avoided crossing
B, from which the information on the phase difference ¢y
accumulated during traversing €4 (q) between A and B can be
derived.

In the following we first study this double-passage pro-
cess (the avoided crossing region is passed twice) using the
adiabatic-impulse model in Sec. IIl A, where a simple rela-
tion between the spin population and the Stiickelberg phase
is found. This model can help us gain physical insight into
Stiickelberg interferometry. Then the spin dynamics is studied
in Sec. III B, from which one can calculate the time-averaged
spin population. This is relevant to experiments and the corre-
sponding interference patterns are identified.

A. Double-passage: Adiabatic-impulse model

Under the assumption that F' is weak enough not to induce
interband transitions, the adiabatic approximation can be ap-
plied, under which the atoms move adiabatically along the
energy band with the quasimomentum ¢(¢) = qo + Ft [64]
except in the vicinity of the avoided crossings. The nonadia-
batic evolution of atoms while traversing the avoided crossing
region is considered to take place instantaneously, which vali-
dates at 2 + (2A sin ¢)2 > (Fd )2 [65]. The double-passage
process from #; =1, to ty = tl;" with 24y = (ga®B) — 90)/F
can be described by a transfer matrix 7p in the diabatic basis
(bare spin basis) as

c(ty) = Tpe(), 3)

where ¢(t) = (¢;) = (¢4, ¢ i)T represents the atomic popula-
tion amplitude in the diabatic basis (bare spin basis) and is
governed by the equations of motion idc(t)/dt = 7:lqc(t). In
the adiabatic-impulse approximation [66], Tp can be divided
into three parts.

i. The LZ transition at the avoided crossing A:
To symmetrize the two diabatic energy levels, we treat
c(t)exp {iA cos ¢ fof dt’ cos [q(t')d]} as the wave vector, sub-
mit it to the equations of motion, and get

d Q 8
lﬂ = =CL(1) + |:—— + A sinq’) sin (qd)]CT(i)' (4)
dt 2 2

In the vicinity of A with |Fd(t —t4)| < 1, Eq. (4) can be
linearized as

Aoy _ L2 v, 5)
i = —c —t'c
dt’ ) L) ) )
with v =2AFdsin ¢ cos (gad) = 2AFd sin ¢

\/1 — (8/2Asing)* and ' =t —t,. Equation (5) defines
the standard LZ problem for which the exact solution
can be expressed in terms of parabolic cylinder functions
[17,19]. Then the nonadiabatic transition is described
by [er(40), ¢y (+0)]" = Taley(—0), ¢, (=0)]"  with the
time-independent matrix

Th = ( iz ! _PLZE_WSL) ©)
f VTP Pz )

where the LZ transition probability Pz = exp (—27&) and
the Stokes phase ¢y =m/4+&(né — 1) +argC(1 — i§),
with & = Q?/4v and the gamma function I".

ii. The adiabatic evolution in the region between the two
avoided crossings A and B: One can note that in this re-
gion far from the avoided crossings the diabatic energy for
spin-1 (spin-|}) components coincides with the energy dis-
persion £4(q), respectively, i.e., the excited eigenstate of 7:Lq
coincides with spin-1 while the ground eigenstate coincides
with spin-|, as shown in Fig. 2. This enables us to write the

evolution matrix as
. ¢S
e ' 0
U= ) 7
( 0 e’¢2s> 7

with g5 = [ dgle.(q) — e—(q)]/F.

iii. The LZ transition at the avoided crossing B: This process
is identical to part i except that v — —v in Eq. (5). Then the
LZ transition matrix 75 = T,[.

Combining processes i—iii, the transfer matrix 7p has the
form

To=TauTa=(5 L),

o = Pize ' F 4 (1 - Py)e(F o),

B =—2iy/Piz(1 — Pz)sin (% +<Pst)- ®)

Equations (3) and (8) indicate that the transition probability
from spin-1 to spin-|, is | 8|2, which oscillates with the phase
ds/2 + @g. Since ¢s o< 1/F, then under the adiabatic approxi-
ation with small force F the Stiickelberg phase ¢g is dominant
and the contribution from ¢y can be neglected [44], i.e., one
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FIG. 3. (a) Contour plot of the transition probability |8 12 in
the (¢, 2) parameter plane with § = 0.23A and Fd = 0.05A. The
dashed lines represent 2 = 0.2A and 0.39A, respectively, with the
corresponding oscillations shown in (b) and (c).

can neglect the quantum phase and focus on the semiclassical
lattice effect.

We calculate the transition probability |B]* as a function
of the synthetic magnetic flux ¢ and the Raman coupling
strength Q2 with the results shown in Fig. 3. This figure is
symmetric with respect to ¢ = /2, as | B|? is a function of
sin ¢. On both sides of ¢ = 7 /2 it displays approximately
periodic oscillation which can be recognized as Stiickelberg
oscillation. The appearance of Stiickelberg oscillation versus
¢ reflects the nearly monotonic dependence of the Stiick-
elberg phase ¢g on ¢ since the value of P 7 is insensitive
to the variation of ¢. The interval between two neighboring
maximal (minimal) transition probabilities is then given by
S¢ps &~ 2m. The calculation is performed with Fd = 0.05A
and the oscillation will become stronger for a smaller force
F. For the parameters considered here, at 2 = 0.2A we have
Pz ~ 0.5 and hence the transition probability can reach the
maximum 1, as shown in Fig. 3(b). Since 2 determines
the energy spacing at the avoided crossings and the LZ tran-
sition probability Py is exponentially dependent on it, one
can then generally expect that with increasing deviation from
Q = 0.2A the transition probability |8|*> will gradually de-
crease. This is the case except for the region around ¢ = /2.
As ¢s is a complex function of €2, another local maximum
of the transition probability appears around 2 = 0.39A, as
shown in Fig. 3(c).

By measuring the Stiickelberg interference fringes one can
map out the novel band structure with SO coupling [23,33].
Compared with the experiment [33], here the Raman coupling
is not periodically modulated. However, in the scenario with
an optical lattice, it can have the effect of engineering the
dispersion and realizing two avoided crossings, thus making
Stiickelberg interference feasible. The interference fringes in
[33] rely on the frequency and amplitude of the periodical
modulation applied on the Raman beams, showing the ef-
fect of Floquet engineering on SO-coupled bands. Here the
physics underlying Stiickelberg interference is the presence
of synthetic magnetic flux. In the meanwhile, considering
the fact that the center of interference (or zeroth-order fringe
corresponding to ¢ = 1 /2) can be easily identified due to the
symmetric nature of the interference pattern shown in Fig. 3, it
enables one to recognize the order of interference fringe which
can be used to indicate the synthetic magnetic flux ¢. In this

sense the Stiickelberg interferometer demonstrated here also
provides a new opportunity to measure the synthetic gauge
field.

B. Dynamics: Floquet-Bloch theory

The dynamics considered here is mathematically similar
to Bloch oscillation in a two-band system with interband cou-
pling, however, many previous works have dealt with this kind
of problem [67,68] without SO coupling. Here we perform
the analysis in terms of the Floquet-Bloch operator [32,69].
We can start from Hamiltonian (1) with an additional term
—FdY 1 676, describing that the lattice is tilted with on-site
energies —/Fd. This term can be removed by making a unitary
transform with the operator exp (iFdt ), | 6; ¢;). Then follow-
ing the same process as performed in Sec. I, we obtain the
resulting periodic Hamiltonian in the Bloch basis as

H,(t) = —Acos ¢ cos[(q + F)d] + %a—x
+ {— g + Assin ¢ sin[(g + Ft)d]}&z. )

Introducing  c4(3)(q, 1) = &(y)(q, 1) exp{idt /2 + iA [y dt’
cos[(qg + Ft')d £ ¢]} to remove the diagonal terms in the
equations of motion, we have

— 9 A 3 A 5?(% t)
o Q(q’t)) =3 [cos (¢p)by + sin (¢D)Uy]< )

¢ (g, 1)
(10

where ¢p(q,t) =t + (2Asing/Fd){cos[(q + Ft)d] — cos
(gd)} is the dynamical phase between the two legs. In the case
of weak interleg coupling 2 (which is indeed the case we are
studying), one can have

<ZEZ: 2) = exp{ — l%/o dt'[cos [¢p(gq,t')]6,

. INT A 5?(‘17 O)
+sin[¢p(q, t )]Gy]} <5l @ O))’ (11)

which can be recognized as Magnus expansion to the first
order [32]. For atoms initially prepared in the spin-1 leg,
the spin transition probability is given by P, = sin® (Q|x|/2)
with

t
i = / ' 0@
0

=2 (g intad+n Dizcos ) Si“—(g”t/ 2 1

n n

where z = 2(A/Fd)sin¢g, 6, =6 +nFd, and J,(z) is the
nth-order Bessel function of the first kind. Without loss of
generality here we assume gd = —m /2, which can always
be achieved by shifting the starting time. Then the transition
probability P| reads

i|. (13)

Py (1) = sin’ [sz

i Sin (8,1 /2)
Xn:Jn(z)e ot — /
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FIG. 4. Contour plot of the averaged probability P, in the (8, ¢)
parameter plane with Q = 0.2Fd and (a) A = 0.5Fd and (b) A =
2Fd. The numerical simulations were performed with Eq. (13).

At some specific values of n =m with §,, ~ 0 an interleg
coupling is on resonance; then Eq. (13) becomes
}, (14)

which typically represents a large-period [determined by
27 /Q2J,,(2)] oscillation with low-amplitude, high-frequency
oscillations superimposed on it. Equation (14) indicates that
in the long run the first term will dominate over other interleg
couplings, thus the averaged probability P, = 1/2. In the case
where no resonance takes place, and in the meanwhile if
z < 1, the n = 0 term will dominate and then one has

QJy(z) . (5I)i|
sin | —
) 2
- 2
= iZZ‘IZH—I(VO)Sin |:('l— —>3f:|} ) (15)

n=1

J (Z) +ZJ( o lS,sm(S t/2)

n#m n

Py(t) = sin’ [

Py (1) ~ sin [

which can be approximately reduced to V{ sin? (8¢/2) if
[Vo| = |Q2J0(2)/8| <« 1. This will lead to an averaged proba-
bility of E = VO2 /2. Combining all the discussion above, one
can understand that the averaged transition probability P; will
vanish at large values of § unless resonances take place at
8 =nFd.

We plot the averaged probability P| as a function of § and
¢ in Fig. 4 based on Eq. (13). Figure 4(a) represents z < 1;
Fig. 4(b), z > 1. In both cases the resonances around § = nF'd
can be clearly observed, indicating that the system can be
used for force detection. The precision of force detection is
related to the uncertainty of two-photon detuning §, which can
be restricted, for example, by performing Pound-Drever-Hall
laser frequency stabilization on the Raman beams. Figure 4(a)
shows a weak dependence of E on ¢, however, at z > 1 one
can still expect differences while varying ¢, as displayed in
Fig. 4(b). In this figure one can even observe that on the § = 0
resonance ITL vanishes at some specific values of ¢, which
correspond to the points with Jo(z) = 0

IV. CHIRAL BLOCH OSCILLATION

In the case of a weak force F' and large interleg coupling €2,
i.e., no interband transitions, the traditional Bloch oscillation
takes place in the present system with a period Tp = 27 /Fd
and an amplitude proportional to the bandwidth [70,71]. For
Hamiltonian (2), at zero detuning § = O the eigenstate of the

1.0
(a)
(6.)] 05
0.0
0 4 8
Q (in units of A) qd (in units of 7)

FIG. 5. (a) |(6;)| of the ground state as a function of 2. From
dark to light, 6 = 00.05A, 0.1A, 0.15A, and 0.2A, respectively.
(b) (6.) of the lowest band. The darkest line is for 6 =0 and
© = 0.5A, indicating that the eigenvectors in the whole band have
negative chirality. The other lines, from dark to light, are for § =
0.63A and Q2 = 0.5A, A, 1.5A, and 2A. The synthetic magnetic flux
¢ =m/3.

lowest (highest) energy band has negative (positive) chirality.
The chirality can be defined as C = q((éjné,ﬁ) — (6;¢éq¢)) =
q(6.). Then in the approximation under which the atoms move
adiabatically along the energy band, the Bloch oscillation
will exhibit chiral characteristics [49]. For an atomic wave
packet moving along the lowest band with negative chirality,
the positive (negative) momentum will tend to associate with
spin-J, (spin-1) atoms, signaling spin-momentum locking. In
addition, at § = 0 and a small interleg coupling €2, the lowest
energy band can have two energy degenerate minima, charac-
teristic of spin-orbit-coupled systems. Increasing 2 beyond a
critical value, the two minima will merge into one minimum,
signaling a quantum phase transition from the vortex phase
to the Meissner phase, which was experimentally observed in
[38]. This band curvature change upon the phase transition
can also be captured via Bloch oscillation [49].

At any finite §, the energy band is asymmetric with respect
to inversion in the Brillouin zone (¢ — —¢g), which breaks
time-reversal symmetry. As a result of time-reversal symmetry
breaking, Kramers degeneracy does not hold here. However,
the lowest energy band can still exhibit two nondegenerate
local minima, typical of SO-coupled systems such as those
demonstrated in [39]. In Fig. 5(a), where |(6.)| of the ground
state is plotted as a function of €2, the first-order derivative
discontinuity disappears at any finite &, indicating that no
quantum phase transition exists. In the meanwhile, chirality
is not always negative for all the eigenstates in the lowest
energy band, as shown in Fig. 5(b). For the parameters con-
sidered here, at finite detuning one can have negative chirality
in the quasimomentum region [—, 0] and [ga, gg], Where
qa) are the same as defined in Sec. III, while in the rest
of the first Brillouin zone the chirality becomes positive for
ground eigenstates. This chirality change will be reflected in
the Bloch oscillation dynamics.

We simulate the Bloch oscillation dynamics using the
method of eigenstate expansion developed in [71]. Initially
the atoms are assumed to be prepared in a state |{) =

Yoo Vi @,T,U |0) with

1 20 1
— — —(I=1p)" /2w +iqold
wl(t_o)_ewﬁ)l”e e (1) (1o

033332-5



LIANG, LI, ZHANG, ZHOU, AND LAN

PHYSICAL REVIEW A 102, 033332 (2020)

0=0 0=0.63A
50 I0.8
I —— — | —— —
-50 0
50 po3
/ G, G, — | [ LTI LT
Bos
um
™

1), ("
-

1.0 20

b \
[[T—rl

2.0
t (in units of T;)

FIG. 6. Bloch oscillation dynamics of |, 4 1> + |1p,‘¢|2 (top row),
[W41* — 14, |* (middle row), and 3, [, |* (bottom row). The left
column corresponds to § = 0, while the right column corresponds
to 6 = 0.63A. The other parameters are set as Q2 = 2A, ¢ = /3,
and Fd = 0.08A. The initial state is given by Eq. (16) with w = 5,
lo =0,and go = 0.

representing a spin-balanced Gaussian wave packet with
width w, center /y, and initial quasimomentum ¢gy. The re-
sults are shown in Fig. 6. The left column represents § = 0.
The Bloch oscillation in the top row clearly reflects the two-
degenerate-minima nature of the lowest band in the regime
of the vortex phase. In the meanwhile the middle and bottom
rows also show clear evidence of chiral Bloch oscillation and
spin-momentum locking. The case of nonzero § is shown in
the right column. Despite the fact that the initial state, (16),
is not exactly the eigenstate, the atoms can still adiabatically
follow the lowest band and exhibit its curvature with two
local minima. This process is associated with chirality change,
as shown in the middle and bottom rows. Spin-momentum
locking still exists, however, it becomes nonmonotonic: The
spin-1 (spin-|) atoms do not simply associate with negative
(positive) momentum, but now they are associated with a
certain momentum range, which can be tuned by varying the
detuning §.

V. SUMMARY AND OUTLOOK

We note that physically the Raman lasers inducing SO
interaction also inevitably couple atoms to high-lying bands,
which will affect the single-particle physics [72,73] such as
dynamical instability [39]. This heating problem can be cir-
cumvented with an optical clock transition [34-36], which

connects the long-lifetime states with a momentum transfer.
One can perform a gauge transformation in the quasimo-
mentum space and work with a quasimomentum-shifted band
structure. Taking atom collisions into account will lead to
nonlinear LZ tunneling [74] and deformation of interference
patterns [75], which will be left for future investigation. The
Stiickelberg interferometer can still be implemented at a low
interaction energy per site («kHz), which can be tuned by
means of Feshbach resonance [76].

Besides the Stokes phase accumulated at the LZ transitions
and the dynamical phase accumulated during adiabatical evo-
Iution between the LZ transitions, Stiickelberg interference
also depends on a noncyclic geometric phase. This noncyclic
geometric phase is nonvanishing in special energy spectral
configurations such as those with Dirac cones [77]. The geo-
metric phase can also be made gauge dependent, for example,
as proposed in a periodically driven two-level system [78,79].
A recent experiment has also tested theory for the noncyclic
geometric phase [80]. It would be interesting to consider the
geometric Stiickelberg interferometer in future work and ex-
tend the discussion to the non-Hermitian case [81].

In summary, we have shown that SO-coupled cold atoms
trapped in an optical lattice can be used to implement Stiick-
elberg interference. It represents atom interferometry with
synthetic gauge fields and provides new opportunities to
measure the synthetic gauge field. The time-dependent and
time-averaged spin probability is derived using Floquet-Bloch
theory. Based on this the interference patterns are computed
in the parameter space directly accessible in experiments
and resonances are found. Finally, we studied chiral Bloch
oscillation and found that the system can display a rich
spin-momentum locking upon varying the detuning. The phe-
nomena predicted in this work can be readily observed in
current available experiments on atomic flux lattices.
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