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Recent experimental advances to create tunable synthetic spin-orbit coupling (SOC) in ultracold gases
provide new possibilities to access fruitful spin-orbit coupled quantum many-body physics. In this paper,
we demonstrate that the combined effect of two-dimensional (2D) SOC and one-dimensional (1D) optical
lattice in interacting bosons can provide an alternative scheme in ultracold gases to achieve the crossover of
the commensurate-incommensurate supersolid ground state “with respect to the background optical lattice.”
Interestingly, it is shown that the anharmonicity arising from the lattice potential leads to the “pin” effect and
make the ground-state break the continuous translational symmetry along the direction perpendicular to the
1D lattice, whereas the competition between the lattice period and the SOC length results in the crossover
of commensurate-incommensurate ground state along the direction of 1D lattice with discrete translational
symmetry breaking. Such a combined effect of SOC and optical lattice, thus, induces a new 2D periodic pattern
in the ground state, accompanying with nonzero 2D superfluid density characterizing the supersolid nature in
2D of the ground state. Furthermore, a skyrmion-anti-skyrmion lattice is found associated with the appearance
of such supersolid ground state, indicating its topological nontrivial properties. Experimental signature of our
proposed supersolid ground state is also predicted by means of the time-of-flight measurement.
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I. INTRODUCTION

The supersolid, a fascinating quantum state of matter,
is characterized by two independent spontaneously broken
symmetries, i.e., U (1) and translational symmetries with cor-
responding superfluidity and density order [1,2]. Such a long-
sought quantum state of matter shows a variety of novel
properties, such as the nonclassical rotational inertia and other
anomalous transport features [3–6]. It, thus, has attracted
tremendous interests in both theoretical and experimental
studies in solids and atomic matter systems. For example,
a supersolid was predicted to exist in bulk helium, but to
prove its existence is still an open question in recent exper-
iments [7–15]. Thanks to the high controllability in ultracold
atomic gases, there have been great interests in searching
such supersolids via ultracold atoms in both experimental and
theoretical studies. It was previously predicted to appear in po-
lar molecules, magnetic, and Rydberg atoms [16–21]. There
have recently been some exciting experimental progresses in
exploring supersolid properties of Bose-Einstein condensates
(BECs) of highly magnetic atoms [22–24]. Besides that, a
stripe phase with supersolid properties has also been observed
in spin-orbit-coupled BECs, which links the SOC with super-
solidity [25,26]. Recent experimental realization of synthetic
SOC in cold atomic gases [27–31] possesses highly tunable
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parameters, such as the form and strength of the SOC, and
system geometry tuned by the confined potential. Such flexi-
ble control greatly extends the horizon of quantum simulation
of supersolidity in cold atomic gases.

Here, we report the emergence of the crossover of
commensurate-incommensurate supersolid ground state, in-
duced by the combined effect of two-dimensional (2D) SOC
and one-dimensional (1D) optical lattice in interacting bosons.
The key idea, here, is to utilize the effect of mixed di-
mensionality engineered from the combination of the con-
fined potential and SOC. Interestingly, it is shown that in a
2D spin-orbit coupled interacting boson gas, the anisotropic
confinement resulting from the 1D lattice potential leads
to the “pin” effect and the ground state, thus, breaks the
continuous translational symmetry perpendicular to the tightly
confined spatial dimension along the 1D lattice. On the other
hand, along the direction of the 1D lattice, the competition
between the lattice period and the SOC length results in
the crossover of the commensurate-incommensurate ground
state with discrete translational symmetry breaking. Such a
combined mixed-dimensionality effect of the 2D SOC and
the 1D optical lattice, thus, induces a new 2D periodic pat-
tern in the ground state, accompanying with the nonzero
2D superfluid density characterizing its supersolid nature.
Furthermore, such a supersolid ground state also possesses
an exotic topological spin texture where a skyrmion-anti-
skyrmion lattice is formed associated with the appearance of
supersoildity.
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II. TWO-DIMENSIONAL SUPERSOLID GROUND STATE

Let us consider a trapped quasi-two-dimensional spin-1/2
interacting Bose gas in the presence of both a Rashba-type
SOC and a one-dimensional optical lattice. Such a system can
be described by the following model Hamiltonian:

Ĥ =
∫

d2r �†

[
k2

2m
+ Vtrap(r) + VOL(r) + κ

m
k · σ̂

]
�

+
∫

d2r(g1n̂2
↑ + g2n̂2

↓ + 2g12n̂↑n̂↓), (1)

where VOL(r) = V0 sin2(kLx) is a 1D optical lattice along the
x direction. V0 is the lattice depth, and kL is the wave vector of
the laser field with the corresponding lattice constant defined
as aL = π/kL. � = (�↑, �↓)T labels the Bose field operators

for two pseudospin bosons. κ describes the strength of the
Rashba-type SOC, and σ̂ is the Pauli matrix. The density
operators for two pseudospin bosons are defined as n̂↑ =
�

†
↑�↑, n̂↓ = �

†
↓�↓, respectively. g1 and g2 characterize the

intraspecies contact interaction strength, whereas g12 labels
the interspecies contact interaction strength. Those are deter-
mined by the effective intraspecies and interspecies s-wave
scattering length, respectively. In this paper, we will focus
on the case with g1 = g2 > 0. Vtrap(r) = 1

2 mω2(x2 + y2) is
an isotropic harmonic trap mimicking the practical situation
in cold atom experiments. Here, we choose h̄ω,

√
h̄/mω,

and 1/ω as the units of energy, spatial length, and time,
respectively. Then, the ground state can be found numerically
by minimizing the following dimensionless energy functional
constructed under the Gross-Pitaevskii mean-field theory,

ε =
∫

d2r
∑

σ=↑,↓
ψ∗

σ

[
−1

2
∇2 + 1

2
(x2 + y2) + V ′

0 sin2(k′
Lx)

]
ψσ + κ ′[ψ∗

↑(−i∂x − ∂y)ψ↓

+ψ∗
↓ (−i∂x + ∂y)ψ↑] + c′

0

2
(|ψ↑|2 + |ψ↓|2)2 + c′

2

2
(|ψ↓|2 − |ψ↑|2)2, (2)

where V ′
0 = V0/h̄ω is the dimensionless lattice depth and

the dimensionless wave vector is defined as k′
L = kL

√
h̄/mω.

The dimensionless interaction strength is defined as c′
0 =

β1 + β12 and c′
2 = β1 − β12, where β1 = g1Nm/h̄2 and β12 =

g12Nm/h̄2 with the total particle number N . And the dimen-
sionless SOC strength is κ ′ = κ/

√
h̄mω.

Through numerically computing the ground state via min-
imizing the dimensionless energy functional in Eq. (2) by
using the imaginary time-evolution method, the phase dia-
gram is obtained as shown in Fig. 1(a). Note that the phase
diagram, here, is constructed in the weakly interacting regime
where the kinetic energy is much larger than both intraspecies
and interspecies interaction energies. It is confirmed in our
numerics that the interaction energy is typically smaller than
the kinetic energy by two orders of magnitude. Therefore,
in such a region, the Gross-Pitaevskii mean-field theory is
valid. As shown in Fig. 1(a), there are two different regions
in the phase diagram, which consists of a superfluid stripe
and a supersolid ground state. A threshold of lattice depth
separates the above two different regions when considering a
fixed Rashba SOC strength. Below that lattice depth threshold,
the ground state of the system is a superfluid stripe. Whereas
further increasing the lattice depth above the critical value, a
supersolid ground state will be favored.

Here, we would like to stress the significant effect of mixed
dimensionality engineered from the combination of lattice
potential and SOC to explain the appearance of our proposed
supersolid ground state. When increasing the lattice depth,
the 1D optical lattice in the two-dimensional system can be
considered as an array of tubes, and each one of them is
elongated along the direction perpendicular to the 1D lattice.
Such highly anisotropic confinement leads to the pin effect
in a 2D spin-orbit coupled interacting boson gas (see details
in the Appendix) and a periodic density modulation along
the vertical direction as shown in Fig. 1(b) is spontaneously

formed in the ground state and, thus, breaks the continuous
translational symmetry. On the other hand, along the direction
of the 1D lattice, the combined effect of SOC and lattice
potential not only causes a periodic density modulation co-
incided with the lattice period as shown in Fig. 1(b), but also
introduces an additional phase modulation of the ground-state
wave function. For instance, as shown in Fig. 1(c), there is
an additional π -phase modulation in the ground-state wave
function along the direction of the 1D lattice because the
interplay of SOC and the lattice potential leads bosons to
condensate at ± π

aL
in that direction. Therefore, such a ground

state breaks the discrete translational symmetry of the back-
ground lattice. The combined mixed-dimensionality effect of
the 2D SOC and the 1D optical lattice, thus, induces a new
symmetry-breaking ground state in 2D, i.e., continuous and
discrete translational symmetry breaking along the vertical
and horizontal directions, respectively. Combined with the
U (1) gauge symmetry breaking, such a ground state can,
thus, be considered as a supersolid state. To further capture
the superfluid property of our proposed supersolid ground
state as shown in the inset of Fig. 1(a), there is a finite
superfluid density (see the details in the Appendix), implying
the existence of off-diagonal long-range order. The nonzero
SOC will suppress the superfluid density, which may be
understood from the softening of the low-energy excitation
modes [32,33]. The transition between the superfluid and the
supersolid is characterized by a discontinuous jump in the
superfluid density as shown in the inset of Fig. 1(a), that
reflects its first-order nature.

More interestingly, the significant effect resulting from the
interplay of the SOC and the lattice characteristic lengths is
also unveiled in our scheme. As shown in Fig. 1(a), there
are two regions of the supersolid ground state. When the
strength of SOC is large enough, i.e., the SOC length is much
smaller than the optical lattice period aL, we find that the
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FIG. 1. (a) Zero-temperature phase diagram of the model Hamiltonian in Eq. (1) as a function of the SOC strength κ ′ and lattice depth
V0/Er . Er is the recoil energy. For certain SOC, there is a threshold of the lattice depth, beyond that the supersolid ground state appears.
There are two regions of the supersolid ground state. SS-I stands for the region where the period of the supersolid ground-state wave function
along the horizontal direction is fixed by 2aL . Whereas in SS-II, the supersolid ground-state wave function has a continuously changed period
along the horizontal direction. The inset shows that there is a jump in the superfluid density (see details in the Appendix) when the transition
from the superfluid to the supersolid ground state occurs. Panels (b) and (d) show the density profile of the supersolid ground state for the
spin-up component. In (b), it is shown that a spatially periodic rectangle density distribution is formed. The periodicity of such a density
profile is determined by the period of lattice potential and SOC for the horizontal and vertical directions, respectively. In (d), the corresponding
momentum density distribution with respect to (b) is shown. To demonstrate the periodic structure, in (d), we just show the oscillatory portion of
the density distribution by eliminating the effect of the background average density profile. Panels (c) and (e) show the supersolid ground-state
wave function (real part) for the spin-up component. There is an additional π -phase modulation in the ground-state wave function along the
direction of the 1D lattice because of the existence of finite-momentum BECs and the period of ground-state wave function along the horizontal
direction is 2aL . Therefore, such a ground state breaks the discrete translational symmetry of the background lattice. In (e), the corresponding
wave function in momentum space with respect to (c) is shown. In (b)–(e), we choose V0/Er = 2.98, κ ′ = 10.8, whereas in the inset of (a),
V0/Er = 0.17. Other parameters are chosen as c′

0 = 10, c′
2 = −0.8c′

0, and k′
L = 3.5π. ay is the spatial periodicity of the density distribution

along the y direction.

length scale of the optical lattice takes the dominant effect on
the system and the period of the ground-state wave function
along the horizontal direction is, thus, fixed by 2aL. Whereas
decreasing the strength of SOC, being comparable to the lat-
tice period, the competition between the optical lattice period
and the SOC length plays an important role and surprisingly
makes the ground-state wave function have a continuously
changed period along the horizontal direction. As shown in
Fig. 2 for the fixed lattice depth, the period of the ground-
state wave function along the horizontal direction becomes
a continuous function of the strength of SOC, leading to
a smooth crossover between the commensurate and the in-
commensurate supersolid ground state. Through numerics, we
confirm that the ground-state energy is a continuous function
when changing the strength of SOC, indicating its crossover
nature rather than a transition. Furthermore, a characteristic
feature of the wave function in momentum space can be
used to distinguish a supersolid ground state. Specifically,
as shown in Fig. 1(e), there are peaks of the ground-state
wave function in momentum space located at (± π

aL
,± π

ay
),

indicating the periodic structure of our proposed supersolid

ground state in 2D. Here, ay is the spatial periodicity of
density distribution along the y direction. Such a character-
istic feature of the supersolid ground-state wave function,
i.e., peaks in momentum space, can be detected using con-
ventional time-of-flight imaging technique, for instance, as
shown in Fig. 3 where the expansion image after a time t is
given by ñσ (x) = (m/h̄t )2Gσ (k̃) with k̃ = mx/h̄t, Gσ (k̃) =∫

eik̃·(r−r′ )ψ∗
σ (r)ψσ (r′)d2r d2r′, and atom mass m.

The supersolid ground state proposed here also exhibits
exotic spin textures, which will be discussed below. To
demonstrate that, let us first define a spin density vector for the
spin-1/2 bosons as S = �†σ�/|�|2 with σ representing the
Pauli matrix. As shown in Fig. 4(a), the spin texture represents
a periodic magnetic structure accompanying with the emer-
gence of the supersolid. If we zoom in on such a spin texture,
there are two different structures. As shown in Figs. 4(b)
and 4(c), the vector S wraps around a sphere, and it points to
the south (north) pole in the center, whereas with increasing
radius, it varies continuously and eventually points to the
north (south) pole. Therefore, the vector S forms skyrmions
(antiskyrmions). It is also shown that the skyrmion and
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FIG. 2. The period of the supersolid ground-state wave func-
tion along the horizontal direction as a function of the strength
of SOC with certain lattice depth. Here, kpeak

x labels the positive
condensate momentum along the horizontal direction. It is shown
that such period behaves as a continuous function of the strength
of SOC, leading to a smooth crossover between the commensurate
and the incommensurate supersolid ground states. The insets show
the commensurate supersolid ground-state wave function (real part)
in the momentum space with the horizontal periods 2aL and 3aL ,
respectively. The incommensurate supersolid ground state is shown,
for example, by the red mark with horizontal period 6/

√
5aL . The

other parameters are chosen as c′
0 = 10, c′

2 = −0.8c′
0, k′

L = 3.5π ,
and V0/Er = 2.65.

FIG. 3. The expansion image of the supersolid ground state for
the spin-up component. It is shown that the location of peaks coincide
with the results as shown in Figs. 1(c) and 1(e). The appearance of
larger periodicity with respect to the lattice period in the x direction
is indicative of the broken discrete translational symmetry of the
background lattice. The other parameters are the same as in Fig. 1(c).

FIG. 4. The skyrmion-anti-skyrmion lattice spin texture of the
proposed supersolid ground state. (a) Illustration of the skyrmion-
anti-skyrmion lattice configuration formed by the vector S defined in
the main text. It is shown that the x and y components of S form a
vortex-anti-vortex lattice structure on the xy plane. (b) and (c) show
the skyrmion and antiskyrmion, respectively. Here, the arrows show
(Sx, Sy) and the colors index the z component of S. Other parameters
are chosen as c′

0 = 20, c′
2 = −0.8c′

0, k′
L = 8π, κ ′ = 30, V ′

0 = 7.

antiskyrmion spin textures appear at where the spin-down and
spin-up components are centralized, respectively. The cores
of the spin structure as shown in Fig. 4(a) are correspond-
ingly centered around the minimum of density distributions
for spin-up and spin-down components along the horizontal
direction. Such spin textures are, thus, formed by a skyrmion-
anti-skyrmion lattice coinciding with the appearance of the
supersolid. Our scheme, hence, provides an alternative way
to create and manipulate exotic spin textures in spin-orbit
coupled ultracold gases. The topological nature of the above
spin structures can be characterized by the topological charge
Q, which can be defined as a spatial integral of the topological
charge density,

Q =
∫

d2r
1

4π
S ·

(
∂S
∂x

× ∂S
∂y

)
. (3)

Since the PT symmetry, associated with the operations T =
iσyC with C taking the complex conjugate and P = σzI
with spatial inversion operator I, is broken in our proposed
supersolid ground state, its topologically nontrivial property
can be captured by a Z2 topological invariance. Therefore,
the associated topological invariants do not depend on the
superfluid fraction. It is confirmed from our numerics where
we find that a skyrmion carries a topological charge 1,
whereas an antiskyrmion carries a topological charge −1,
distinguished from the topologically trivial case where the
topological charge is zero.

III. CONCLUSION

To summarize, we have demonstrated an alternative ap-
proach to achieve 2D supersolidity via the combined effects of
the 2D SOC and the 1D optical lattice in interacting bosons.
The significant effect resulting from the competition between
the optical lattice period and the spin-orbit coupling length is
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unveiled, which leads to the crossover of the commensurate-
incommensurate supersolid ground state. Our proposed su-
persolid ground state also possesses a nontrivial topological
property, characterized by an associated exotic spin texture,
i.e., a skyrmion-anti-skyrmion spin lattice. Our approach is
rather generic to the spin-orbit coupled quantum gases than
restricted to the setup considered in this paper. Its principle is
readily generalizable to the spin-orbit coupled systems with
higher spin.
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APPENDIX A: ANHARMONICITY INDUCED PIN EFFECT

In this Appendix, we will provide a detailed description of
the pin effect resulting from the anisotropic confinement in-
duced by the 1D lattice in a 2D spin-orbit coupled interacting
boson gas. Let us consider a trapped quasi-two-dimensional
spin-1/2 interacting Bose gas in the presence of a Rashba-type
SOC. It can be described by the following model Hamiltonian
Ĥ = Ĥ0 + Ĥint , where

Ĥ0 =
∫

d2r �†

[
k2

2m
+ Vtrap(r) + κ

m
k · σ̂

]
� (A1)

is the single-particle Hamiltonian with � = (�↑, �↓)T denot-
ing the Bose field operators for two pseudospin bosons. The
Rashba-type SOC is captured by the last term in Ĥ0 with κ

describing the strength of SOC, and σ̂ being the Pauli matrix.
The interaction part of Ĥ can be expressed as

Ĥint =
∫

d2r(g1n̂2
↑ + g2n̂2

↓ + 2g12n̂↑n̂↓). (A2)

In this paper, we will focus on the case with g1 = g2 >

0. When further considering the presence of an isotropic
harmonic trap Vtrap(r) = 1

2 mω2(x2 + y2) mimicking the prac-
tical situation in cold atom experiments, it is known that
the ground state is a superfluid stripe phase in the region
where c2/c0 < 0 with c0 = g1 + g12 and c2 = g1 − g12. Due
to the spatially isotropic property of the harmonic trap, the
stripe phase along different directions is energetically degen-
erate where the direction of the stripe phase is determined by
the condensate momentum. To break this spatially rotational
symmetry, one can consider utilizing the anisotropy of the
trapping potential. Interestingly, we find that the anharmonic
trap, i.e., anisotropic confinement, will pin the direction of
density stripe.

To demonstrate this, let us consider compressing the
isotropic harmonic trap into a cigar shape, and the corre-
sponding trapping potential can be written as VAtrap(r) =

FIG. 5. The expectation value of the energy E contributed from
the anharmonic trap VAtrap,θ0 (r) for different superfluid stripe phases
pointing along the direction located at angle θ with respect to the
vertical direction. Here, we choose the long axis of the anharmonic
trap located at angle θ0 = π/6. It is shown that the stripe phase point-
ing along the long axis of the trapping potential mostly minimizes
the energy cost compared to all the other direction-pointing stripe
phases. The inset shows the stripe phase pointing along θ = π/6
where the dashed line indicates the direction determined by the polar
angle of the condensate momentum. The polar axis, here, is set as
the positive y axis. Other parameters are chosen as γ = 15, κ ′ =
14, c′

0 = 2, and c′
2 = −0.8c′

0.

1
2 mω2(γ x2 + y2) with γ describing the anisotropy. When γ >

1, the trapping potential becomes elliptical with the long axis
residing in the y direction (vertical direction), and the short
axis along the x direction. Without loss of generality, we
further set the long axis of the elliptical trapping potential
located at a certain angle θ0 with respect to the y axis. Then,
the ground state can be found numerically by minimizing the
following dimensionless energy functional constructed under
the Gross-Pitaevskii mean-field theory,

ε =
∫

d2r
∑

σ=↑,↓
ψ∗

σ

[
−1

2
∇2 + VAtrap,θ0 (r)

]
ψσ

+ κ ′[ψ∗
↑(−i∂x −∂y)ψ↓+ψ∗

↓ (−i∂x + ∂y)ψ↑] + c′
0

2
(|ψ↑|2

+ |ψ↓|2)2 + c′
2

2
(|ψ↓|2 − |ψ↑|2)2. (A3)

Here, we choose h̄ω,
√

h̄/mω, and 1/ω as the units of
energy, spatial length, and time, respectively. VAtrap,θ0 (r) =
1
2 [γ (cos θ0x + sin θ0y)2 + (cos θ0y − sin θ0x)2] represents
the anharmonic trap with the long axis located at the angle θ0

with respect to the vertical direction. The dimensionless
interaction strength is defined as c′

0 = β1 + β12 and
c′

2 = β1 − β12, where β1 = g1Nm/h̄2 and β12 = g12Nm/h̄2

with the total particle number N . And the dimensionless SOC
strength is κ ′ = κ/

√
h̄mω. What we found is shown in Fig. 5.

For example, in the presence of an anharmonic trap with
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FIG. 6. Superfluid density nx as the function of strength of SOC.
There is a jump in the superfluid density when the transition from the
superfluid to the supersolid occurs. The other parameters are chosen
as c′

0 = 10, c′
2 = −0.8c′

0, k′
L = 3.5π , and V0/Er = 0.17.

the long axis located at the angle θ0 = π/6, the stripe phase
pointing the long axis of the trap mostly minimizes the energy
resulting from the trapping potential compared to all the other
direction-pointing stripe phases. Since the kinetic energy and
interaction energy are the same for the stripe phases pointing
along different directions, the anharmonic trap will pin the
direction of the stripe phase along the long axis of the trap
where the system will be energetically favored.

When the lattice depth is deep enough, the 1D optical
lattice in the two-dimensional system can be considered as an
array of tubes. Each one of them is elongated along the direc-
tion perpendicular to the 1D lattice. Such highly anisotropic

confinement, thus, leads to the pin effect as described above
and a periodic structure along the vertical direction is formed
in the ground state.

APPENDIX B: SUPERFLUID DENSITY

The superfluid density can be understood as the stiffness
of the system responding to the phase twists. Then, from
the response function of phase twists, the superfluid fraction
can be obtained. We consider to impose a phase twist Q =
Qxêx + Qyêy, i.e., a supercurrent as ψσ (r) → eiQ·rψσ (r). This
imposed phase gives the system a kinetic energy, which corre-
sponds to the free-energy difference F (Q) = F (Q) − F (0),
where F (Q) is the free energy within the phase variation, and
F (0) is the free energy without the phase variation. In the
limit Q → 0, such variation of free energy is approximately
determined by the extra kinetic energy resulting from the
imposed supercurrent,

F (Q) ≈
∑

i, j=x,y

QiQj

2
lim

Qi, j→0

d2F (Q)

dQidQj

≡
∑
i, j

1

2
n(i, j)

s mv(i)
s v( j)

s S, (B1)

where vs = h̄Q/m is the velocity of superfluid and S is the
area of the 2D system. We, then, can define the ratio of the
superfluid density over the total density n̄ = N/S as

n(i, j)
s

n̄
≡ m

N
lim

Qi, j→0

d2F (Q)

dQidQj
, i, j = x, y. (B2)

Due to the reflection symmetry of the Hamiltonian, when
i �= j, n(i, j)

s vanishes. We, thus, introduce nx(y) ≡ n[x(y),x(y)]
s

to denote superfluid fraction along the x and y directions,
respectively. As shown in Fig. 6, there is a nonzero superfluid
density, characterizing the supersolid nature of the ground
state. Furthermore, we also find that there is a jump in the
superfluid density when the transition from the superfluid to
the supersolid occurs, indicating its first-order nature.
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