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Dynamics within a tunable harmonic plus quartic waveguide

Rudolph N. Kohn, Jr. * and James A. Stickney
Space Dynamics Laboratory, Albuquerque, New Mexico 87106, USA

(Received 26 February 2020; revised 25 August 2020; accepted 26 August 2020; published 17 September 2020)

We present a method for measuring nonharmonic contributions to the trapping potential of a cold atomic
gas by measuring the dynamics of the cloud. This method can be used to minimize the anharmonicity of a
trap, or to tune the quartic anharmonicity to some desired level in a sufficiently tunable trap. We present an
approximate solution to the dynamics of a classical noninteracting cloud of thermal atoms in a cigar-shaped
harmonic trap with a quartic perturbation along the weakly confined axis which is analytical and closed form.
We calculate the first and second moments of position along the weak axis as functions of time, which is sufficient
to characterize the trap. The dynamics of the thermal cloud differ notably from those of a single particle, with
an offset to the oscillation frequency that persists even as the oscillation amplitude approaches zero. We also
present some numerical results that describe the effects of time of flight on the behavior of the cloud in order to
better understand the results of a hypothetical experimental realization of this system.
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I. INTRODUCTION

Cold atom interferometers have proven themselves invalu-
able tools for examining a variety of phenomena by leveraging
the wave nature and large rest mass of atoms to make
extremely precise measurements. They have been used to
measure gravity [1–4], multiaxis accelerations [5–7], rotations
[8–10], electric polarizability [11], fundamental quantities
such as the fine structure constant [12], and to test predic-
tions of general relativity [13]. Typically, free space atom
interferometers use controlled light pulses to apply coherent
momentum kicks to separate clouds into subsets with different
momenta and reflect them back toward each other. Between
kicks, the atoms evolve in free space. Acceleration due to
gravity limits the sensitivity of these devices, because the vac-
uum chamber must grow with the square of the interrogation
time.

This limitation can be overcome by supporting the atomic
gas against gravity using external potentials. As a re-
sult, interferometers using trapped atoms can be smaller
than their free space counterparts. The potentials typi-
cally have a preferred axis which makes precise alignment
of the excitation beams critical [8]. In addition, if the
trapped atomic cloud is reflected with a laser pulse, both
mean-field pressure and residual curvature reduce the visi-
bility of the interference fringes [8,9,11,14]. One promising
method for overcoming these limitations is to allow the
atoms to complete a full oscillation in the confinement
potential [15,16].

Using the potential to reflect the clouds means that, for a
given separation, the interrogation time can be longer. How-
ever, uncontrolled variation in the trap potential and induced
excitations can cause unwanted loss of interference contrast
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[15]. Mean-field effects can be mitigated by reducing the
atomic density. However, any realistic trapping potential will
depart somewhat from the desired shape, if only because of
errors introduced in the fabrication process. Therefore, it is
extremely valuable to be able to identify and compensate for
unwanted deviations in the trap shape, especially if it can be
done without altering the hardware.

In a previous work [17], we developed a method for pro-
ducing atom chip traps with a potential that tightly confines
the atoms in two dimensions and enables fine control of the
potential along the third, weakly confined direction. This is
carried out by tuning currents in several parallel wires. The
spacing of the wires can be chosen to minimize higher order
contributions. These tunable atom chip traps can generate
carefully tailored potentials, including tuning out imperfec-
tions caused by the manufacturing process.

To enable these adjustments, a method for gauging the
undesirable contributions to the potential is crucial. We will
show that this can be accomplished by measuring the dynam-
ics of a trapped thermal atomic cloud, and comparing them
to a theoretical model. The primary goal of this paper is the
presentation of such a model. Of note is that comparison to
the model also provides an estimate to the quartic contribu-
tion to the trap, which can be useful if a certain amount of
anharmonicity is desired for an experiment.

To this end, we examine the dynamics of a cold but classi-
cal cloud of atoms in a one-dimensional trap with harmonic
and quartic components. It will be assumed that the other
two axes are well confined and separable. The harmonic and
quartic terms are particularly interesting because the harmonic
term is solvable and the quartic term is often the leading
unwanted contribution in trapped atom interferometers [15].
The solution described here may also see utility in exper-
iments that create multiple potential wells, as in Berrada
et al. [18], as the resulting traps may have significant anhar-
monic contributions. Optomechanics experiments have also
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dealt with anharmonic contributions, which affect the be-
havior of the trapped particle with some similarities, such
as frequency shifts, compared to what we will show below
[19–21]. With a few minor approximations, we will derive
analytical, closed-form solutions for the behavior of single
particles and ensembles and show that there are qualitative
differences between them.

The purely harmonic case can be thoroughly described
using Boltzmann’s kinetic theory. One of the more counter-
intuitive results of that theory involves the behavior of the
cloud at long times. While it might be assumed that a system
of atoms in a perfectly harmonic trap would eventually reach
some kind of thermal equilibrium, certain excitation modes,
such as the monopole breathing mode, actually persist indef-
initely, even in the presence of isotropic, energy-independent,
elastic collisions. In fact, it can be shown that for the dynam-
ical quantities that describe a monopole breathing mode in a
perfectly harmonic trap, the collisional integral is exactly zero,
and the oscillations persist indefinitely [22]. In contrast, the
dynamical quantities which describe a quadrupole oscillation
do not satisfy the requirements for a zero collisional integral,
and such oscillations damp out on the collisional time scale.
The persistence of the monopole breathing mode and decay
of quadrupole motion were demonstrated experimentally in a
system of cold atoms by Lobser et al. [23] in 2015.

Some simple substitutions show that, in addition to
monopole breathing, center-of-mass oscillations of a small
cloud along the weak axis of a cylindrically symmetric har-
monic trap will also persist indefinitely, so long as the axes
are separable, and collisions are isotropic, elastic, and energy
independent [22]. We will show below that the dynamical
quantities involved in such oscillations are similarly un-
damped. We will refer to this particular type of motion, which
resembles a small amount of liquid moving back and forth in
a bowl after shaking it, as “sloshing.” As we will show, the
addition of a quartic perturbation has several effects. Most
importantly, the quartic perturbation causes initially close
atoms with slightly different energies to gradually separate,
effectively randomizing their polar angles in phase space and
resulting in the gradual decay of sloshing and the spreading
out of the cloud in an equilibriumlike state at the center of
the trap, even in the absence of collisions. The time scale for
this apparent equilibration is unrelated to the collision rate and
can be used to characterize the anharmonic contributions to
the trapping potential. In a real world application for sensing,
the cloud would be prepared in a low collision regime anyway
[24], but even if collisions have a effect on the damping of
sloshing motion, that motion can be effectively damped much
more quickly by the phase shifts between atoms with differ-
ent energies, although this apparent equilibration is different
from thermalization in the sense that it is deterministic and
therefore may be reversible to some degree.

In one of our tunable atom chip traps, the parameters
can be adjusted to minimize this apparent equilibration and
iteratively approach a perfectly harmonic potential. If the
trap is designed to minimize higher order terms, the quartic
contribution can be tuned to some desired value as well.
In addition, we will see below that the quartic contribution
alters the frequency of the trap for clouds of atoms, even at
infinitesimally small sloshing amplitudes. Finally, the use of

two independent parameters to describe our traps necessitates
the measurement of two independent characteristics of the
cloud. The first two moments of position, 〈x〉 and 〈x2〉, serve
this purpose. In practice, the center-of-mass position and size
of the cloud are easily measured and can be expressed in terms
of these two moments.

This paper is divided into several sections. In Sec. II,
we will proceed through the analytical solution of the one-
dimensional harmonic plus quartic trap. Section III describes
the results of the theory and examines some of the finer details.
In Sec. IV, we use numerical methods to calculate the behav-
ior of the clouds after some time of flight. In an experimental
realization of this system, it is likely that time of flight will be
used to more easily image the atoms. Therefore, some basic
understanding of the behavior of the cloud after time of flight
will show how various parameters are qualitatively expected
to change, and will show that the general form of the solution
is still applicable. Finally, we will summarize our conclusions
and describe some future paths for inquiry in Sec. V.

II. THEORY

To start, we review some results from Guéry-Odelin et al.
[22] and apply them to our system. In a cigar-shaped harmonic
trap, the potential energy is

U = mω2

2
x2 + mω2

⊥
2

(y2 + z2). (1)

The expectation values of certain dynamical quantities χ are

d〈χ〉
dt

− 〈v · ∇rχ〉 −
〈−∇rU

m
· ∇vχ

〉
= 〈χ Icoll〉. (2)

The value of the collisional integral, 〈χ Icoll〉, is zero as long as

χ = a(r) + b(r) · v + c(r)v2. (3)

This is because values of χ that satisfy Eq. (3) are unchanged
by elastic, isotropic, energy-independent collisions [22]. By
calculating Eq. (2) for a few different values of χ , we find so-
lutions for the dynamics of 〈x〉 and 〈x2〉 which are independent
of the behavior in the other two axes and have the form,

〈x〉 ∝ Re(exp(iωt + φ)) and 〈x2〉 ∝ Re(exp(2iωt + 2φ)),

(4)

where φ is some angle to match initial conditions. Thus, the
dynamics in the weak axis of the purely harmonic cigar-
shaped trap resemble sloshing as described above: A small
cloud oscillates periodically in the trap, with its size oscillat-
ing at twice that frequency. Neither oscillation is damped in
the harmonic case. The other two axes exhibit similar oscilla-
tory motion, with the frequency ω⊥ substituted for ω.

We will assume going forward that the motion of the
atomic gas in the x direction can be decoupled from the
motion in the y and z directions, i.e., Ht = H (x, px ) +
H⊥(y, z, py, pz ). We now add the perturbation along the x axis,
leaving it mostly harmonic, with a small quartic term. Thus,
the Hamiltonian,

H = p2

2m
+ mω2

(
x2

2
+ x4

4x2
4

)
, (5)
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governs the dynamics, with m as the atomic mass, ω as
the harmonic trap frequency, and x4 describing the quartic
contribution. We have also used p as shorthand for px and
will continue to do so going forward. The magnitude of x4

corresponds to the value of x for which the forces due to
the harmonic and quartic terms are equal. However, to allow
for both postive and negative quartic contributions, x2

4 can be
either positive or negative, corresponding to purely real or
purely imaginary values for x4.

In the limit where the oscillation amplitude A is small,
i.e., A � |x4|, the dynamics of a particle in the Hamiltonian
given by Eq. (5) can be approximated by a sinusoid with an
amplitude-dependent frequency. The position of the particle is
approximately

x(t )

A
= cos(�t − φ0) + 1

32

A2

x2
4

cos(3�t − 3φ0), (6)

where A is the amplitude and φ0 is the initial polar angle of the
particle in phase space. The amplitude-dependent frequency is

�

ω
= 1 + 3

8

A2

x2
4

, (7)

and does not depend on φ0. We neglect the part of the dynam-
ics which oscillates at the frequency 3� in later calculations
because its magnitude is small compared to the � term. We
note that this approximation does result in a deviation from
conservation of energy for a single particle. This deviation
is oscillatory and scales as A/x2

4. Since A � x4 is already a
requirement of the approximation, this quantity will be small.
For a system with A = 2.8, ω = 100 and x4 = 8, the peak-
to-peak energy variation divided by the average energy is
about 3.4%.

Since the real world application will likely involve very
cold, trapped atoms, we estimated the magnitude of quantum
effects and find that they can be neglected so long as

h̄2

mx2
4kBT

� 1. (8)

For a realistic implementation, e.g., T = 10−7 K, m = 1.44 ×
10−25 kg, and x4 = 1 mm, the relevant quantity is less than
10−7. We also estimated mean-field effects, and they will be
negligible as long as

h̄2asω
2
⊥

(kBT )2σx
� 1, (9)

where as is the scattering length of the particle and ω⊥ is the
frequency of oscillation in the unperturbed axes, as used in
Eq. (1). In a realistic implementation, e.g., σx = 10−5 m, as =
100a0 (where a0 is the Bohr radius and as here is comparable
to 87Rb′s scattering length), T = 10−7 K, and ω⊥ = 103 s−1,
this is about 3 × 10−4. Therefore we also neglect mean-field
effects.

The effect of the perturbation on the dynamics of a single
particle becomes dependent on only the amplitude of oscilla-
tion. It is convenient to recast this in terms of the unperturbed
energy,

E ≡ p2
0

2m
+ 1

2
mω2x2

0, (10)

where x0 and p0 are the initial position and momentum.

Using the unperturbed energy and the other composite
variables described above, we can describe the dynamics of
a single particle as

x(t ) =
√

2E

mω2
cos(�t − φ0), (11)

where tan φ0 = p0/mωx0 and

�

ω
= 1 + 3

8

2E

mω2x2
4

. (12)

In short, a particle sloshes back and forth in the perturbed po-
tential, and its frequency depends on its energy. However, the
sloshing of a small cloud will be shown to have some specific
quantitative differences from a single particle, even in the limit
of small oscillation amplitude. From these expressions, we see
that any particle can be placed on a closed ellipse in phase
space and traces out that ellipse with a frequency that depends
only on energy. Figure 1 illustrates this effect by plotting the
phase space distribution of a cloud in a harmonic plus quartic
trap at several different times.

A classical cloud of atoms can be described by its phase
space density f (x, p, t ). The nth moment of position of the
cloud is

〈xn〉 =
∫ ∞

−∞

∫ ∞

−∞
dxd p xn f (x, p, t ). (13)

In general, the phase space density f (x, p, t ) evolves in time,
but in a noninteracting, conservative system each element of
phase space moves independently from all others. The sta-
tionary and comoving frames are identical at t = 0 but not
at other values of t . If functions that transform between the
stationary and comoving frames are X (x, p, t ) and P(x, p, t ),
then we define X (x, p,−t ) = xR and P(x, p,−t ) = pR, with
xR and pR representing the point in phase space at t = 0 which
corresponds to (x, p) at time t . We can write

f (x, p, t ) = f (X (x, p,−t ), P(x, p,−t ), 0)

= f (xR, pR, 0) = f0(xR, pR), (14)

where f0(x, p) = f (x, p, 0) is time independent. Then, this
change of variables applied to Eq. (13) leads to

〈xn〉 =
∫ ∞

−∞

∫ ∞

−∞
dxd p xn

R f0(x, p), (15)

where the time dependence is now implicitly part of xR and
the phase space density is time independent.

In a real world implementation of a system like this, a cold
atom ensemble would be prepared by evaporatively cooling a
large cloud of atoms in a tight magnetic trap. This is required
to increase the thermalization rate and cool efficiently. The
resulting cloud is thermal. After cooling, the atoms are adia-
batically transferred into a weaker trap with a relatively low
collision rate. As a result, it will be assumed the initial state of
the atomic ensemble is given by a thermal distribution in the
purely harmonic trap, with temperature T .

For a thermal distribution, the relation between position
and momentum is known and it is convenient to transform
Eq. (15) into a polar coordinate system such that

x =
√

2ξσx cos φ and p =
√

2ξσp sin φ, (16)
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FIG. 1. An illustration showing how an energy-dependent frequency shift results in a gradual approach to pseudoequilibrium, even in the
absence of collisions. An initial cloud is produced with parameters m = 1 kg, ω = 1 s−1, x2

4 = 20 m2, xD = 5 m, pD = 0 kg m−1 s−1, and
σx = σp = 1.5 m. These values are chosen for their compactness and simplicity and not to resemble any realistically achievable system. We
allow the cloud to evolve, and snapshots are taken at several times to illustrate the gradual spreading out of the cloud. The particular times
illustrated are chosen because they have the center of mass of the cloud near the center of the trap, so that the spreading out of the cloud in
space over time is clearly visible. Additionally shown is a phase-space diagram for each point in time showing how the clean 2D Gaussian at
t = 0 becomes an increasingly long spiral, as atoms with different energies accumulate relative angles in phase space so that atoms that started
near each other with different energies drift apart.

where ξ = E/kBT is the ratio between phase space energy,
Eq. (10), and thermal energy kBT . Both position and momen-
tum are scaled by the thermal standard deviations,

σp =
√

mkBT and σx =
√

kBT/mω2, (17)

to make them unitless. The angle tan(φ) = σx p/σpx is the
initial polar angle of some point (x, p) at t = 0. In this new
coordinate system,

xR =
√

2ξσx cos(�t + φ), (18)

and Eq. (15) becomes

〈xn〉
(
√

2σx )n
=

∫ ∞

0

∫ 2π

0
dξdφσxσpξ

n/2 cosn(�t + φ) f0(ξ, φ),

(19)

where f0(ξ, φ) is simply the initial phase space density distri-
bution converted to the new coordinate basis.

At the initial time, the atoms are given a kick that affects
each atom equally, changing their positions and momenta.
This can be accomplished in a variety of ways, for example,
by adding a short gradient to the potential. After the kick the

mean momentum and position are

pD =
√

2ξDσp sin φD and xD =
√

2ξDσx cos φD. (20)

ξD and φD are defined with respect to xD and pD in the same
way that ξ and φ are defined in terms of x and p, such that

ξD = x2
D

2σ 2
x

+ p2
D

2σ 2
p

and tan(φD) = σx pD/σpxD. (21)

We assume that the kick results in a maximum phase-space
displacement much larger than the thermal width of the cloud,
such that

√
2ξD > 1, (22)

and the maximum displacement in position is much less than
x4. Such a kick will cause the cloud to slosh in the trap.

Using the above conditions, the initial distribution will be

f0(ξ, φ) = 1

2πσxσp
exp(−ξ − ξD + 2

√
ξξD cos(φ − φD)).

(23)
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Substituting Eq. (23) into Eq. (19) and converting the integral
to the new coordinate system yields

〈xn〉
(
√

2σx )n
= e−ξD

2π

∫ ∞

0
dξξ n/2e−ξ

∫ 2π

0
dφ cosn(�t + φD + φ)

× exp(2
√

ξξD cos φ). (24)

The trigonometric power law reduction formula, cosn θ =∑
m cnm cos mθ , permits further simplification. Analytic ex-

pressions for the coefficients cnm can be found in Gradshteyn
and Ryzhik [25], on page 31. In this case, the three elements
of interest are c11 = 1, c20 = 1/2, and c22 = 1/2.

Perhaps surprisingly, Eq. (24) can be solved analytically
without further approximation. To simplify the notation, the
moments can be rewritten as

〈xn〉
(
√

2σx )n
= 1

2

∑
m

cnm(ϒnm + c.c.), (25)

with the ϒnm given as

ϒnm = e−ξD+im(ωt+φD )
∫ ∞

0
dξξ n/2

× exp [−(1 − im�t )ξ ]Im(2
√

ξξD), (26)

where � ≡ 3ωσ 2
x /8x2

4 and Im is the modified Bessel function
of the first kind. The integrals in ϒ20, ϒ11, and ϒ22 must be
solved to calculate closed-form expressions for 〈x〉 and 〈x2〉.
ϒ11 and ϒ22 can be solved in terms of Gradshteyn and Ryzhik
[25], section 6.631, equation 4. ϒ20 can be solved in terms of
Gradshteyn and Ryzhik [25], section 6.631, equation 1. The
results are

ϒ20 = 1 + ξD, (27)

ϒ11 =
√

ξD

(1 − i�t )2
exp

[
− ξD + ξD

(1 − i�t )
+ i(ωt + φD)

]
,

(28)

and

ϒ22 = ξD

(1−2i�t )3
exp

[
−ξD+ ξD

(1 − 2i�t )
+i(2ωt +2φD)

]
.

(29)

With these solutions, it is possible to calculate the center-
of-mass position and effective size of the cloud as a function
of time for any chosen set of parameters that satisfies the
approximation requirements described above.

III. RESULTS

Having calculated the values of ϒnm, we can combine them
into expressions for the first two moments of position. The
first moment is the center-of-mass position of the cloud. The
first and second moments together can be used to calculate
the effective size of the cloud. The center-of-mass position
and size of the cloud are, in general, easily observed and
calculated from absorption images in a cold atom realization
of this system.

FIG. 2. 〈x〉 as a function of time. Most of the decay to quasither-
mal equilibrium is shown. The plot uses parameters ξD = 8, φD = 0,
ω = 100 s−1, σx (t = 0) = 1 m, and x4 = 8 m. For these parameters,
� ∼= 0.586.

ϒ11 leads to the center-of-mass position of the atomic cloud
as a function of time.

〈x〉 = σx
√

2ξD

[1 + (�t )2]2
exp

[−(�t )2ξD

1 + (�t )2

]
(cos(�1)

− 2�t sin(�1) − (�t )2 cos(�1)), (30)

where �1 = ωt + φD + �tξD/(1 + (�t )2). The first moment
resembles a decaying sinusoid. The initial decay is Gaussian,
but at later times the denominator of the first term takes over.
An example of the behavior of the first moment as a function
of time appears in Fig. 2.ϒ20 and ϒ22 combine to give the
second moment,

〈x2〉 = σ 2
x (1 + ξD) + σ 2

x ξD

[1 + (2�t )2]3
exp

[−(2�t )2ξD

1 + (2�t )2

]

×(cos(�2) − 6�t sin(�2) − 12(�t )2 cos(�2)

+ 8(�t )3 sin(�2)), (31)

where �2 = 2ωt + 2φD + 2�tξD/(1 + (2�t )2). This has a
similar form to 〈x〉, but it oscillates about twice as rapidly,
and decays faster as well, as seen in Fig. 3. In fact, the second
moment is less illustrative of the dynamics than the size of the
cloud as a function of time because the position and size of the
cloud are more directly measurable. The standard deviation of
the cloud’s position distribution is σx(t ) =

√
〈x2〉 − 〈x〉2 and

an example is shown in Fig. 4. Examination of Figs. 2 and
4 shows why we refer to the motion as sloshing: The atoms
move back and forth along the weak axis of the trap and the
size of the cloud oscillates at about twice the frequency. The
decay rates are indicators of the anharmonicity of the trap, and
in an experimental realization, adjusting the trap parameters to
minimize the decay rate leads toward a maximally harmonic
trap. The center-of-mass oscillations gradually decay to zero,

033327-5



RUDOLPH N. KOHN, JR. AND JAMES A. STICKNEY PHYSICAL REVIEW A 102, 033327 (2020)

FIG. 3. 〈x2〉 as a function of time for the same parameters as used
in Fig. 2. Note the more rapid oscillations as well as the more rapid
decay of the oscillations.

and the size of the cloud increases as it oscillates, eventually
approaching an asymptotic maximum. As discussed previ-
ously, this model does not take collisions into account, so the
apparent equilibration is purely a result of the relative motion
of parts of the cloud with different energies.

Recalling the issue with the single-particle conservation
of energy, we examined the energy of a cloud described
by these equations. The majority of the energy deviation is
oscillatory, so that as the particles’ polar angles in phase
space spread out, much of that deviation cancels out. An
analytical estimation of the energy of a cloud at t = 0
compared to t → +∞, assuming that the energy of the
cloud as t → +∞ was the same as a thermal cloud with
identical values for 〈x(t )〉 and σx(t ), showed two deviation

FIG. 4. The size of the cloud as a function of time, using the same
parameters as Figs. 2 and 3.

terms.

〈E0〉 − 〈Eeq〉 = 3mω2σ 4
x0ξD

2x2
4

+ mω2σ 4
x0ξ

2
D

4x2
4

. (32)

These deviations are small compared to the total energy,
which is proportional to (1 + ξD)σ 2

x . The approximations we
have used all require ξD � x2

4 and σx <
√

ξD, so these dif-
ferences are quite small by comparison. Also notable is that
the energy difference depends on the sign of x2

4, which can be
positive or negative, as described in Sec. II. For the system
described and plotted in Figs. 2–4, the error is about 4%.

There is an alternative formulation for the first two mo-
ments that works for �t � 1 and converts the oscillatory part
into a single cosine. For the first moment, the approximation
yields

〈x〉 =
√

2ξDσx

(1 + (�t )2)2
exp

[−(�t )2ξD

1 + (�t )2

]

× cos

(
ωt + φD + 2�t + �tξD

1 + (�t )2

)
. (33)

Of particular note is the argument of the cosine. The usual
ωt + φD is present, and there is a term proportional to ξD,
representing the frequency dependence on the strength of
the initial sloshing, but the 2�t term is independent of the
kick strength. In other words, the frequency of oscillation for
a cloud is different from that of a single particle, even as
the oscillation amplitude approaches zero. Contrast this with
Eq. (11), where the value of � for a single particle approaches
ω as the amplitude tends to zero.

Next, the same approximation applied to ϒ22 leads to an
approximate expression for the second moment of position.

〈x2〉 = σ 2
x (1 + ξD) + σ 2

x ξD

(1 + (2�t )2)3
exp

[−(2�t )2ξD

1 + (2�t )2

]

× cos

[
2ωt + 2φD + 6�t + 2�tξD

1 + (2�t )2

]
. (34)

These two moments can similarly be combined to approxi-
mate the cloud size as a function of time.

IV. TIME OF FLIGHT

In an experimental setting, it is likely that the atomic clouds
will be imaged after a period of free fall, in order to improve
optical access and increase the size of the cloud and the range
of its motion. In such a case, it is important to understand
how the system changes during free fall and whether the time
of flight drastically changes the form of the results. We will
show below that the addition of time of flight increases the
amplitude of oscillation of 〈x〉 and causes a phase shift, based
on an approximate form for 〈x〉. We will also see that the
size of the cloud changes and the envelope of oscillations in
σx changes shape somewhat. However, the overall trends are
maintained.

The evolution of the atoms in phase space in free fall can
be easily understood as shearing of the phase-space density
after the trap is turned off. The evolution of the center-of-mass
position can be calculated by looking at the center-of-mass
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position and its time derivative at the start of free fall. How-
ever, the evolution of the cloud size is difficult to express
in a compact analytical form. Instead, numerical simulations
are a much easier way to show this evolution, and numerical
simulations can show that the behavior of the cloud after a
time of flight is qualitatively similar enough that the same
equations can still be used for the fit.

Time of flight affects the first moment by changing its
amplitude and adding a phase shift that depends on the time
of flight. Looking at the form of the first moment, Eq. (30),
its general behavior is that of a sinusoid with a slowly varying
amplitude. This functional form can be approximated by

〈x〉 ≈ M(t ) cos(�t + φ1), (35)

where M(t ) is the decay function, � represents the real oscil-
lation frequency of the cloud, and φ1 represents some initial
phase.

Taking the derivative of this expression, assuming that the
variation of M(t ) is slow compared to the sinusoid, results in

∂〈x〉
∂t

≈ −�M(t ) sin(�t + φ1), (36)

which has the same frequency of oscillation and a similar
decay rate, insofar as the variation of M(t ) is slow, to the
dynamics without time of flight. Assuming the x axis is per-
pendicular to gravity, the horizontal velocity of the cloud is
constant after the trap is released. The result is an expression
that oscillates with the same frequency, but with a different
phase and amplitude that depend on the time of release and
the elapsed time of flight. Since the amplitude decay function
M(t ) carries over virtually unchanged, and since the velocity
of the center of mass also decays at about the same rate, the
effective value of � will be very similar even after time of
flight.

The behavior of the cloud size is more difficult to describe
analytically. Since the cloud is oscillating in a potential much
larger than the cloud, the cloud may experience dispersion
which can cause the cloud to expand more or less quickly after
the trap is released, depending on the phase of the oscillation
at the time of release. This complication makes writing a
compact analytical solution, even an approximate one, to σx

after free fall very difficult. In this case, numerical simulations
are a better tool for examining the system’s evolution.

Figure 5 shows the results of a numerical model for the
behavior of 〈x〉 and σx, in conditions chosen to be similar to
the parameters used in Figs. 2–4. Fourth-order Runge-Kutta
integration was used to produce the results. We observe that
the behavior with and without time of flight are similar but the
time-of-flight data has a larger amplitude of oscillation and a
larger cloud size in general. The time of flight exaggerates the
oscillations in σx, changing the shape of the curve, with more
exaggerated size oscillations at intermediate times. However,
the shapes of the two curves are very similar to our analytical
solution, so it should be possible to fit the same parameters
to the time-of-flight data and reach similar conclusions. For
example, it should still be possible to fit � to the data and
minimize it in order to achieve a maximally harmonic trap,
though the values for � in time of flight may be slightly
different than if observed without time of flight. The overall
trends are preserved.

FIG. 5. Pictured here are the results of a Monte Carlo numerical
simulation of sloshing in a harmonic plus quartic trap. Along the
vertical axis, the top subplot describes the center-of-mass position of
the cloud and the bottom subplot shows the cloud size. The horizontal
axis in both subplots describes how long the cloud was allowed to
slosh in the trap before turning off the trapping potential for time
of flight. The black curves represent the position and size of the
cloud without time of flight. The dotted curves (red online) show
the position and size of the cloud after a time of flight of 0.015 s.
The other simulation parameters are m = 1 kg, ω = 100 s−1, and
x4 = 8 m. The value of kBT is 10000 J. The clouds were generated in
a harmonic potential, then given a kick by introducing a gradient of
−2.4x J/m for 0.021 s. These values were chosen to make the results
without time of flight similar to the results in Figs. 2–4, in order to
ease comparison between the analytical solution and the simulation.

V. CONCLUSIONS AND OUTLOOK

The oscillations along the weak axis of a small cloud
in a perfectly harmonic cigar-shaped trap are not expected
to decay significantly over time, based on a straightforward
extension of the calculations in Guéry-Odelin et al. [22]. The
addition of nonharmonic terms causes the cloud to gradually
spread out and reach a state that looks like equilibrium even
without interactions, as atoms with different energies gradu-
ally drift apart.

Our analytical model describes the dynamics of a clas-
sical cloud of noninteracting particles in a harmonic trap
with a quartic perturbation. We make some minor approx-
imations and assumptions about the initial conditions and
single-particle dynamics. With these few conditions, the sys-
tem is analytically solvable. The analytical expressions can
be used as fitting functions for the observed behavior of
ensembles of cold atoms in a harmonic plus quartic trap,
even after a short time of flight. The motion of the ensem-
ble’s center of mass and the evolution of its size permit easy
determination of trap anharmonicity, and, given the right ar-
chitecture, the anharmonic parts can be tuned to some desired
value by observing the value of �. Minimizing � results
in a maximally harmonic trap, and if some specific quartic
contribution is desired, � can be used to approach that value.
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Time-of-flight imaging makes small changes to the observed
values of the variables but does not qualitatively change the
behavior of the ensemble. Even with time-of-flight imaging,
the fit parameters for the trap still maintain the same relative
trends.

The construction of a trap geometry which can control
various polynomial terms while minimizing unwanted terms
is discussed in Stickney et al. [17]. The specific calculations
for a trap allowing adjustment of harmonic and quartic terms,
while canceling polynomial terms out to sixth order are also
detailed there. Experimental realization of such an atom chip
trap is expected to lead to measured dynamics similar to our
analytical model, and may be worth exploring. Dynamic con-
trol of the shape of the trap is expected to produce additional

interesting results. For instance, because the equilibrium is
deterministic and not a true thermal equilibrium, it should
be possible to reverse the apparent equilibration of the cloud
somewhat by changing the sign of the quartic perturbation
as long as the collision rate is not too high, and it may even
be possible to engineer “pauses” in the apparent equilibration
by turning off the quartic contributions. These qualities make
the dynamically controlled trap an additional interesting topic
worthy of experimental examination.
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