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Accurate classification and selective observation of Rosen-Zener-Stückelberg resonances
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Rosen-Zener-Stückelberg (RZS) interferometry has provided an important tool for presenting and describing
the quantum coherence in many systems, especially in ultracold atomic systems. In this paper we propose a
Floquet matrix method to recognize the resonances induced by destructive RZS interference of a periodically
driving two-level system with a sin2-type field. It is shown that the RZS resonances can be precisely distinguished
into two classes: Regular resonance and accidental resonance. The former corresponds to the degenerate points
in quasienergy spectrum and can be divided into integer resonance and half-integer resonance, while the latter
is characterized by the eigenstate of a Floquet matrix with half of the components equaling to zero. We further
discuss the possibility of experimentally observing these resonances. Particularly, it is found that a selective
observation of different types of resonances can be realized in most cases by adjusting the time interval of
periodic measurements.
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I. INTRODUCTION

Quantum interference is one of the most fascinating and
essential phenomena in quantum mechanics, which has been
widely used in many fields such as quantum coherent con-
trol [1], precision measurement [2], and quantum metrology
[3]. To demonstrate the physical characteristics of quantum
interference, driven quantum two-level systems have been
extensively studied because some of them can be solved ana-
lytically. Due to the rapid development of atomic cooling and
control technology, the research on the coherent dynamics of
two-level systems has set off a new upsurge in the field of
ultracold atoms and molecules [4–9]. For the two-level model
with a time-dependent energy difference, the most interesting
signatures of quantum coherence are the interference patterns
or the resonance structures that are formed by a distribution
of the population probabilities in final state when a periodic
driving field is imposed on the system. This famous scheme is
often known as Landau-Zener-Stückelberg-Majorana (LZSM)
interferometry [10–16], which can be observed in atomic and
optical systems [17–19] or in superconducting qubit systems
[20]. Recently, LZSM interferometry has been extended to
nonlinear [21] and non-Hermitian [22] situations.

Another important interference scheme of two-level sys-
tems is Rosen-Zener (RZ) interferometry [23] based on the RZ
tunneling process [24], which is characterized by a constant
energy bias and a periodically time-varying coupling in con-
trast to the LZ interference scheme [15]. The RZ model was
first proposed to investigate the spin-flip of two-level atoms in-
teracting with a rotating magnetic field and used to explain the
double Stern-Gerlach experiments [25]. The simple linear RZ
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model [26] was then generalized to the nonlinear case [24] and
has been used to study the formation of cold molecules [27].
Two RZ pulses can be used to build a Ramsey interferometer
[28] with a two-component Bose-Einstein condensate (BEC)
[29] or a double-well BEC in an optical cavity [30]. This type
of interferometry has potential applications in calibrating the
atomic parameters or allows nondestructive observations of
atomic Ramsey fringes via the cavity transmission spectra.
When applying a sequence of RZ pulses to double-well BEC,
we constructed a new type of interference scheme, namely,
Rosen-Zener-Stückelberg (RZS) interferometry [31], which
can be realized by periodically changing the height or width
of the barrier between two wells [32,33].

In this paper we develop a method based on Floquet theory
to accurately identify the key information in RZS interference
patterns without solving the Schrödinger equation. A similar
approach called Floquet determinant method has been suc-
cessfully used to characterize LSZM resonances [16]. For our
quantum two-level RZS interferometry with a periodic sin2-
type coupling field, the key information directly correspond to
the points of destructive interference in the parameter space,
also known as coherent destruction of tunneling [34,35], and
for consistency we call them RZS resonances. We focus on
classifying the resonances into different kinds and explore the
possibility of their experimental observation. By establishing
the relation between the parameter values of resonance points
and the eigenvalues or eigenstates of the corresponding infi-
nite Floquet matrices (FMs), we find that the FM approach
can exactly give all RZS resonance positions so that we can
better understand the nature of RZS interferences.

Compared with the results obtained from previous study
on LZSM interferometry with a sin-type field [16], we have
two main points. (i) By accurately diagonalizing the fi-
nite FMs, we can strictly divide all RZS resonances with
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sin2-type field into two categories, namely, regular resonances
and accidental resonances. The regular resonances correspond
to the degenerate points in quasienergy spectrum composed
of the eigenvalues of FM, which can be further subdivided
into the integer and half-integer resonances according to the
relation between degenerate energy and driving frequency. In
short, our two kinds of normal resonances are real resonances
and our accidental resonances are insensitive to the phase of
the driven field. However, in Ref. [16] both real and complex
resonances were found, and they showed that the accidental
resonances are sensitive to the phase of the field. (ii) More
importantly, all types of our RZS resonances identified by FM
method can be observed experimentally by periodically mea-
suring the population probability in final state. In particular, in
most parameter regions we can achieve a selective observation
of different types of RZS resonances by adjusting the time
interval of periodic measurements. Unfortunately, both the
complex resonance and the accidental resonance mentioned
in the literature [16] cannot be observed experimentally.

The rest of the paper is organized as follows. Section II
contains the main results of the paper. We introduce RZS
interferences and resonances, we present our analysis based
on FM method, we discuss the relevant classes of RZS res-
onances, and we show how to observe different kinds of
resonances. Section III summarizes the paper.

II. CLASSIFICATION AND OBSERVATION
OF RZS RESONANCES

A. RZS resonances

The quantum two-level RZS interferometry scheme is
characterized by the following time-dependent Hamiltonian
[24,29]:

H (t ) = �

2
σ̂z + V (t )

2
σ̂x, (1)

where σ̂x,z represent Pauli matrices; V (t + T ) = V (t ) = V0 +
A sin2(2ωt ) denotes a continuous RZ-pulse driving field with
amplitude A, offset V0, and frequency 2ω or period T = π

2ω
;

and the constant � is the energy bias between the two states
labeled by |a〉 and |b〉 with a and b being the population
probabilities for the system to be in these states. A typical
physical system described by this simple two-level model is
a spin- 1

2 particle in a static magnetic field with a continuous-
pulse-magnetic field applied perpendicular to the static field
[36]. Another physical system is two-component BEC without
atomic interaction [29] or two-mode interaction-free ultra-
cold atoms trapped in a double-well potential with a periodic
modulation barrier [31]. For convenience, we write the time-
dependent Schrödinger equation in matrix form (h̄ = 1)

i
d

dt
X (t ) = H (t )X (t ), X (t ) =

(a(t ) −b∗(t )
b(t ) a∗(t )

)
, (2)

with normalization condition |a|2 + |b|2 = 1. Initially, the
system is prepared in state |a〉, i.e., a(0) = 1 and b(0) = 0,
then Pb = |b|2 represents the transition probability to state |b〉,
and is a function of t , A, ω, and �. The probability Pb after N

(a) (b)

FIG. 1. (a) Periodic-averaged population probability P̄b(nτ ) as
a function of driving amplitude A and energy detuning � from
numerical solution of Schrödinger equation with V0 = 5ω, τ = 4T ,
and n = 10. (b) Red circles, green squares, and purple triangles
mark zero-value degenerate eigenenergies, nonzero-value degenerate
eigenenergies, and zero-value eigenstates of FM, respectively.

RZ pulses is [14,16]

Pb(NT ) = sin2(N cos−1{Re[a(T )]})

1 − Re[a(T )]2
|b(T )|2. (3)

Consider in experiments the final probability Pb(t ) is averaged
over many pulses, we mainly focus on the quantity P̄b(nτ ) =
1
n

∑n
m=1 Pb(mτ ) for n measurements with periodic interval τ

being integer multiples of T . It must be mentioned that the av-
erage operation only narrows the interference fringes but does
not change the density and position of fringes. In this paper we
choose n = 10, τ = T , 2T , and 4T , to show the resonances
induced by destructive RZS interference [31]. Here we label
the position where the periodic-averaged probability P̄b(nτ )
vanishes in the parameter space spanned by (A, ω,V0,�)
as a RZS resonance. RZS interference patterns are formed
by the collections of such resonances. Figure 1(a) illustrate
the interference pattern for n = 10, τ = 4T , and V0 = 5ω as
an example. For � = 0, the analytically periodic solution of
Eq. (2) reads

Pb(τ ) = sin2 θ (τ ), θ (τ ) = 1
4 (A + 2V0)τ. (4)

Thus, the resonance positions shown in Fig. 1(a) are de-
termined by θ (4T ) = (A+10ω)π

2ω
= kπ (with integer k), i.e.,

A = (2k − 10)ω with k � 5, which are in good agreement
with the numerical results obtained from solving Schrödinger
equation.

B. Floquet matrix method

According to Floquet’s theorem, the solution of Eq. (2)
can be expressed as X (t ) = �(t ) exp(−iEt ), where �(t ) is a
matrix of periodic functions of t and E is a constant diagonal
matrix with diagonal elements ±ε called quasienergy. Then
the time-evolution operator can be written as follows:

U (t ) = �(t )e−iEt�(0), � =
(
φaa −φ∗

ba
φba φ∗

aa

)
, (5)

where φaa(t + T ) = φaa(t ) and φba(t + T ) = φba(t ) are pe-
riodic functions with |φaa|2 + |φba|2 = 1. Combing Eqs. (2)
and (5) at t = τ gives the transition probability after several
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RZ pulses

Pb(τ ) = 4|φaa(0)|2|φba(0)|2 sin2(ετ ). (6)

This equation implies that the transition probability Pb(τ ) [and
hence P̄b(nτ )] is equal to zero only when ετ = kπ corre-
sponding to periodic evolution, or when |φaa(0)||φba(0)| = 0
corresponding to nonperiodic motion in general [16]. As a
result, we can divide RZS resonances into two natural classes:
The regular resonances determined by ετ = kπ and the ac-
cidental resonances associated with |φaa(0)||φba(0)| = 0. It is
worth noting that, in rare cases, both two conditions are satis-
fied, the resonances will be referred to as regular resonances.

We emphasize that it is necessary to classify RZS reso-
nances into different types because in many cases we can
selectively observe different resonances in experiments. The
regular resonances reflect the global properties of the system
and only depend on the quasienergy spectrum. The accidental
resonances are different, they are closely related to the selec-
tion of initial conditions and thus they only display the local
characteristics of the system [16]. Amazingly, we find that,
for the periodic field we adopted, the accidental resonances
are not sensitive to the phase of the field, and therefore they
can be clearly observed in experiments. Moreover, we show
that the regular resonances are not weakened after averaging
over many periodic measurements and we can narrow the
resonance dips by increasing the number of periodic measure-
ments to enhance the observation accuracy. These results are
different from those for LZSM interferometry with a sin-type
field [16].

There are two advantages of using the Floquet method
to study resonances: (i) we do not need to solve the time-
dependent Schrödinger equation; and (ii) we can obtain
the exact locations of the resonances. The fact that the
regular resonances are determined solely by the special
quasienergy values allows us to accurately identify RZS res-
onance positions by Floquet quasienergy spectra. To this
end, we expand the periodic functions φaa(t ) and φba(t ) in
Fourier series, i.e., φaa(t ) = ∑

nF
xnF

aa exp(inF ωt ) and φba(t ) =∑
nF

xnF
ba exp(inF ωt ). Then the matrix elements of the solution

X (t ) can be expressed as follows:

a(t ) =
+∞∑

nF =−∞
xnF

aa einF ωt e−iεt , (7)

b(t ) =
+∞∑

nF =−∞
xnF

ba einF ωt eiεt . (8)

For consistency we have used subscripts a and b to denote the
matrix elements. Similarly, we expand the matrix elements of
Hamiltonian (1) in Fourier series as

(H )ab =
∑
nF

hnF
ab einF ωt . (9)

It must be mentioned that, when we expand the above quan-
tities in Fourier series we do not use the frequency of the
periodically driving field (i.e., 2ω), but half of it (i.e., ω). This
operation is crucial to the selective observation of different
types of RZS resonances discussed later and differs from that
in Ref. [16]. Substituting the expansions (7), (8), and (9) back

into Schrödinger equation (2), we can obtain a set of recursion
relations between the Fourier coefficients xnF

ab , which are
∑
c,mF

(MF )anF ,cmF xmF
ca = εxnF

aa , (10)

∑
c,mF

(MF )anF ,cmF xmF
cb = −εxnF

ab , (11)

with c = a, b, and mF = −∞, . . . ,+∞; where MF is an infi-
nite Hermitian matrix with elements being

(MF )anF ,bmF = hnF −mF
ab + nF ωδabδnF mF . (12)

C. Accurate classification

For convenience, we order the matrix elements so that a
runs over two states labeled by a and b before each change
in Fourier index nF . We refer to MF as a FM associated with
the quantum Hamiltonian (1). Finally, we can derive a matrix
eigenvalue equation

MF XF = �XF , (13)

where XF = (. . . , x−1
aa , x−1

ba , x0
aa, x0

ba, x+1
aa , x+1

ba , . . . )T is a col-
umn vector composed of Fourier coefficients; � is a diagonal
matrix with the diagonal elements cyclically arranged by
±ε. For given periodic pulse field V (t ) and energy bias �,
we can construct MF and obtain the corresponding Floquet
quasienergy spectrum by solving Eq. (13). The degenerate
(i.e., crossing) points in the quasienergy spectrum correspond
to the locations of RZS resonances in the interference patterns.
We emphasize that all eigenvalues of MF are real for our
model and thus they are physical solutions. The RZS reso-
nances identified by the crossing points of quasienergy levels
are all regular resonances, which are easy to observe experi-
mentally. For example, in Fig. 1(b) we plot the points where
the eigenvalues of FM are degenerate together with the inter-
ference patterns for V0 = 5ω. We find that these points can
be divided into two categories: The intersections appear at the
positions with quasienergy being lw (marked by red circles)
and the intersections occur at the positions with quasienergy
being (l ± 1

2 )ω (denoted by green squares). They constitute
two types of regular resonances, namely, integer resonances
and half-integer resonances. It is worth noting that both of
these two types of regular resonances are real resonances
due to real quasienergy values and there is not a complex
resonance with a complex quasienergy value as demonstrated
in Ref. [16].

In addition to the integer and half-integer resonances men-
tioned above, there are some RZS resonances that are not
recognized by the degenerate points in Floquet quasienergy
spectra. Fortunately, these resonances can be captured by an-
alyzing the eigenstates of FM. According to the criterion for
accidental resonances obtained from Eq. (6), we can rewritten
the condition as

∑
nF

xnF
aa

∑
mF

xmF
ba = 0, which means that half

of the components of one eigenstate of FM are equal to zero.
In Fig. 1(b) we plot the points by purple triangles where the
condition |∑nF

xnF
aa | � 10−2 or | ∑mF

xmF
ba | � 10−2 is satisfied

due to the finite dimensional FM in actual computation. We
find that the convergence with respect to the cutoff dimension
of FM is very rapid and the dimension of the matrix we
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(a) (b)

FIG. 2. (a) Periodic-averaged population probability P̄b(nτ ) as a
function of driving amplitude A and energy detuning � from the
numerical solution of the Schrödinger equation with V0 = ω, τ =
4T , and n = 10. (b) Red circles, green squares, and purple triangles
mark zero-value degenerate eigenenergies, nonzero-value degenerate
eigenenergies, and zero-value eigenstates of FM, respectively.

adopted is greater than or equal to 4 times of the maximum
value of driving amplitude A.

To see the influence of the offset V0 on the classification of
RZS resonances, we also plot the interference patterns and the
resonance positions identified by the above FM method with
V0 = ω in Fig. 2. When � = 0, it is found that the integer
(red circles) and half-integer (green squares) resonances al-
ways alternately occur in parameter A domain. When � �= 0,
the accidental resonances emerge. It is easy to see that the
accidental resonance are always separate from the regular
resonances for large V0 [see Fig. 1(b)]; whereas, for small V0

[see Fig. 2(b)], the accidental resonances can overlap with the
regular resonances (integer or half-integer) in very few cases.

D. Selective observation

Now we elaborate on how to carry out effective exper-
imental observation on the above various RZS resonance
structures. In order to avoid the reduction of the number of
resonance dips caused by the periodic averaging operation,
we do not take the final population probability Pb(t ) = |b(t )|2
as the observable, but view the periodic-averaged population
probability P̄b = 1

n

∑n
m=1 Pb(mτ ) as the observation quantity,

which can be obtained by averaging the results of n mea-
surements Pb(mτ ) that recorded after every j RZ pulses (i.e.,
τ = jT with T being pulse duration). We have confirmed that
the individual resonances become sharper as the number of
measurements n is increased. Furthermore, we have found that
all RZS resonances given by P̄b do not become less visible or
disappear as the number of measurements increases and thus
they are robust in the limit of large n.

In Fig. 3(a) we plot the resonances as a function of A/ω

for τ = T , 2T , and 4T with n = 10, � = 0, and V0 = ω.
In this case, the resonance positions are determined by the
analytical condition: sin[ 1

4 (A + 2ω)τ ] = 0, which are exactly
the points captured by the Floquet quasienergy spectrum as
demonstrated in Fig. 3(b). Comparing Figs. 3(a) and 3(b) we
find that in this case there are only regular resonances and no
accidental resonance. If we take τ = T for measurement, only
partial integer resonances can be observed. If we set τ = 2T ,

(a)

(b)

FIG. 3. (a) Periodic-averaged population probability P̄b(nτ ) as
a function of driving amplitude A from a numerical solution of the
Schrödinger equation for different τ with n = 10, � = 0, and V0 =
ω. (b) Partial eigenvalues of FM as a function of A. Vertical broken
red lines and dash-dotted black lines mark zero-value degenerate and
nonzero-value degenerate positions, respectively.

all integer resonances can be observed. If τ = 4T , all regular
resonances including integer and half-integer resonances can
be observed. In the general case, � �= 0. We take � = √

2ω as
an example and plot the resonances as a function of A/ω also
for τ = T , 2T , and 4T with n = 10 and V0 = ω in Fig. 4(a)
together with the corresponding Floquet quasienergy spec-
trum illustrated in Fig. 4(b). Obviously the degenerate points
of the quasienergy levels in the spectrum can recognize only
part of RZS resonances (i.e., regular resonances) in Fig. 4(a).
The rest of RZS resonances are of course accidental reso-
nances, and their positions are exactly consistent with those
[marked by the purple triangles in Fig. 4(a)] obtained by using
the criterion |∑nF

xnF
aa | � 10−2 or | ∑mF

xmF
ba | � 10−2 given

by the eigenstates of FM. Particularly if we take τ = T for
measurement, only accidental resonances can be observed.
If we set τ = 2T , both accidental and integer resonances
can be observed. If τ = 4T , both accidental and regular
resonances can be observed. These results suggest that we
can make selective observations of the different types of

(a)

(b)

FIG. 4. (a) Periodic-averaged population probability P̄b(nτ ) as a
function of A from a numerical solution of the Schrödinger equation
for different τ with n = 10, � = √

2ω, and V0 = ω. Purple trian-
gles denote the points where exist zero-value eigenvectors of FM.
(b) Partial eigenvalues of FM. Vertical broken red lines and dash-
dotted black lines mark zero-value degenerate and nonzero-value
degenerate positions, respectively.
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(a)

(b)

FIG. 5. (a) Final population probability Pb(T ) as a function of A
for different field phases φ. (b) Periodic-averaged population proba-
bility P̄b(nτ ) as a function of A for different φ with n = 2 and τ = T .
The minimum values of each line correspond to the positions of
accidental resonances. The parameters are � = √

2ω and V0 = ω.

RZS resonances by adjusting the time interval τ between
measurements.

Finally, we discuss the effect of the phase of the periodi-
cally driving field on the accidental resonances. To this end,
we rewrite the field as V (t ) = V0 + A sin2(2ωt + φ), with φ

being the initial phase of the field. According to the above
proposed rule of selective observation, accidental RZS res-
onance occurs only in the measurements where � �= 0 and
τ = T . This means that the accidental resonance can also be
observed simply by measuring the final occupancy probability
Pb at t = T . For comparison, in Fig. 5 we plot the results
of both the final occupation probability [see Fig. 5(a)] and
the periodic-averaged occupation probability [see Fig. 5(b)]
for different initial phases. Obviously the minimum values of

occupation probabilities correspond to the positions of acci-
dental resonances. In contrast to the results that the accidental
resonance is sensitive to the phase of the field and cannot
be observed experimentally [16], it is easy to see that in
our case the accidental resonances are not sensitive to the
initial phase of the field. This is why they can be observed in
other periodic-averaged measurements [e.g., τ = 2T or 4T ,
see Fig. 4(a)].

III. CONCLUSION

To summarize, we have demonstrated a general framework
based on Floquet matrix for exactly classifying Rosen-Zener-
Stückelberg (RZS) resonances into two main categories,
respectively, characterized by the degenerate points in Floquet
quasienergy spectrum and the eigenstate of Floquet matrix
with half of the components being zero. The different types
of RZS resonances identified by our method do not require
solving the Schrödinger equation and can be selectively ob-
served experimentally in most parameter regimes. The main
difference between our Floquet matrix approach and the oth-
ers is that we expand the physical quantities in Fourier series
with half of the frequency of the driving field instead of itself.
This operation rescales the Floquet matrix and changes the
structure of the matrix, which provides the basis for realiz-
ing the selective observation of RZS resonances via periodic
measurements. It is worth mentioning that the Floquet matrix
method used in this paper can be generalized to other types of
resonances including nonlinear cases.
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