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Long-lived nonlinear oscillatory states in interacting relativistic Bose-Einstein condensates
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We study a mean-field model for the dynamics of an interacting Bose-Einstein condensate in two-dimensional
pseudorelativistic materials. This model is relatively simple but contains long-lived solutions called oscillons
which are absent in simple nonrelativistic condensates. We report on a variety of scenarios including interactions
between pairs of oscillons and oscillons propagating across an inhomogeneous material boundary. Hitherto,
relativistic oscillons have been studied only in high-energy physics and cosmology, and their relevance has not
been highlighted so far in condensed-matter physics.
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I. INTRODUCTION

Many decades after the theoretical prediction of Bose and
Einstein, Bose-Einstein condensates (BECs) were experimen-
tally detected in laser-cooled magnetically trapped ultracold
bosonic atomic clouds [1–3]. More recently, BECs have also
been seen in fermionic atomic gases as a result of fermions
pairing into bosons [4]. An interesting and widely studied
example of fermions pairing are the excitonic bound states
of electron and holes in semiconductors. The possibility for
semiconductor excitons to undergo Bose-Einstein condensa-
tion has been suggested long ago at the beginning of the
1960s [5]. As the critical temperature for elementary boson
condensation scales as the inverse of the boson mass, it was
thought that exciton condensation could be obtained at 100 K
or even at room temperature, the exciton mass being much
less than the free-electron mass. The experimental search for
the condensed phase, however, turned out to be challenging
mostly due to the fact that excitons are not an elementary but a
composite boson with a finite lifetime [6]. Despite these diffi-
culties, signatures of exciton condensation have been reported
in double quantum wells [7–10], microcavities [11], graphene
[12], and transition-metal dichalcogenoides [13]. It is known
that excitons and exciton-polaritons show a BEC-like insulat-
ing phase, that has been the subject of promising theoretical
and experimental investigation mainly in graphenelike real
[14–16] and synthetic [17] lattices as well as in topological
insulators [18]. This BEC-like phase is particularly interest-
ing from experimental and theoretical points of view since
it presents the crossover behavior from the Bardeen-Cooper-
Schrieffer (BCS) limit to the Bose-Einstein condensation
limit. Recently, exciton condensates with superfluids transport
properties have been observed in double bilayer graphene [19]
and van der Waals heterobilayers [20]. Due to the pseudorela-
tivistic behavior of low-energy quasiparticles in a honeycomb
lattice, one may wonder what are the relevant properties of the
dynamics in the condensed phase. Moreover the relevance of
relativistic BECs has been recently pointed out in gases with

both electron and hole pairings. Relativity comes into play as
those two composite bosons form a particle antiparticle pair
[3]. The boson-boson interaction in relativistic BECs could
be potentially used to experimentally mimic field theory in
condensed matter. It is also a promising system for the analog
model of gravity [21].

In this paper, starting from the dispersion of excitons in
Dirac-like materials, we derive and investigate a simple but
flexible mean-field model that can describe the dynamics of
the condensed phase in different physical scenarios. Central
to this model is a relativistic generalization of the Gross-
Pitaevskii equation (GPE), i.e., a nonlinear Klein-Gordon
equation (NLKGE). In Sec. II, we derive the exciton disper-
sion relation using a two-particle model. In Sec. III, we study
the condensate phase of the exciton and derive the mean-field
model. In Sec. IV, we investigate the properties of a non-
stationary but localized solution of the model, known as an
oscillon. In Secs. V and VI, we study the oscillon dynamics
in more complicated scenarios: When they interact with each
other and with a localized defect and when two materials with
different energy gap are in contact. Until now, the oscillon
solutions of relativistic field theories have been studied only
in high-energy physics and cosmology, in particular, for self-
interacting scalar fields and in the SU(2) Higgs model [22].
Oscillon solutions exist also in nonrelativistic BECs, but their
mathematical structure is different. In such systems, in order
to stabilize oscillating solutions, one needs to either consider
coupled equations or apply some sort of external perturbation.
A discussion of nonrelativistic oscillon solutions in BECs can
be found in Refs. [23,24]. In these papers, the authors consider
coupled BECs [23] and a system confined in a trap with
oscillating walls [24]. Oscillons in nonlinear and parametri-
cally driven systems have been studied and experimentally
observed in fluids, such as granular media [25], Newtonian
fluids [26], and colloidal suspensions [27]. The formation
and interaction of oscillons have been the subject of several
theoretical, numerical, and experimental studies. However,
a number of open problems remains mostly related to their
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stability and to the transition between radiative and nonradia-
tive oscillons. Recent papers studying parametrically driven
systems in one dimension focused on the transition between
localized structures to breathing localized states [28,29]. In
two dimensions, oscillon instabilities have been numerically
studied in magnetic systems [30] and in the parametrically
driven damped sine-Gordon equation [31].

II. EXCITON DISPERSION IN DIRAC MATERIALS

The Hamiltonian describing the low-energy behavior of
Dirac quasiparticles around one K point of the reciprocal
honeycomb lattice reads

H1 =
(

�/2 vpeiθ

vpe−iθ −�/2

)
, (1)

where � is the energy gap and v is the Fermi velocity,
p = h̄k is the modulus of the electron momentum, and θ =
arctan(py/px ). Such dispersion is appropriate to describe
low-energy electrons in gapped graphene and, with certain
limitations, transition-metal dichalcogenides (TMDs). As-
suming zero center-of-mass momentum for excited e-h pairs,
the two-particle Hamiltonian without Coulomb interaction is
given by the tensor product H2 = H1 ⊗ I2 − I2 ⊗ (T H1T −1)
with I2 as the 2 × 2 identity matrix and T as the time-reversal
operator. It reads

H2 =

⎛
⎜⎜⎝

0 vpeiθ vpe−iθ 0
vpe−iθ � 0 vpe−iθ

vpeiθ 0 −� vpeiθ

0 vpeiθ vpe−iθ 0

⎞
⎟⎟⎠, (2)

and this matrix has four eigenvalues: ±2
√

v2 p2 + �2/4 and
a doubly degenerate zero eigenvalue [15]. The zero-energy
eigenstates correspond to the cases when the system has a
single electron or a hole with its complementary particle in
the negative energy sea [15,32].

III. CONDENSATE STATES OF EXCITONS

To study condensed phases in a Dirac material, the Hamil-
tonian in Eq. (2) needs to be modified to include Coulomb
interactions [15]. They can be introduced by deriving a set
of renormalized Dirac-Bloch equations [16,33–36]. When
electrons and holes have the same mass, the Hamiltonian
in Eq. (2) can be block diagonalized [32]. We set up the
bands in such a way that zero energy is located halfway
between their extrema. This results in a reduced electron-hole
Hamiltonian [15],

HE =
(

�/2 vqeiθq

vqe−iθq −�/2

)
, (3)

where q = |q| is the modulus of the exciton’s momentum in
the center-of-mass frame and θq is the related angle [15]. After
introducing Coulomb interaction, the eigenvalue problem for
the Hamiltonian HE can be solved analytically giving the ex-
citon energies and wave functions [36,37]. The energy levels
of the exciton series are given by

En, j = �√
1 + α2

c
(n+γ )2

, (4)

where n is the principal quantum number and γ = √
j2 − α2

c
with j = m + 1/2 being the eigenvalue of the pseudo-spin-
angular momentum. The constant αc is the dimensionless
Coulomb coupling strength and the spinor wave function is
of the form

��n, j (q) =
(

ϕn, j (q)
±iχn, j (q)

)
. (5)

From Eq. (4), we can observe that if the coupling constant
exceeds the critical value (αc = 1

2 ), the ground-state energy
becomes imaginary and a phase transition to an excitonic in-
sulator occurs [16]. The excitonic insulator state is a BCS-like
condensate of excitons that can show a BCS-BEC crossover
at low density [38]. It can be regarded as a coherent superpo-
sition of the noninteracting ground state and all exciton states
with vanishing real parts of the lowest-energy level E0,1/2 [16].
This state is more complicated than a normal BEC since, at
strong Coulomb coupling, the quasiparticle picture becomes
less accurate and the many-body theory may be needed. A
description of this state at the mean-field level at low density
is presented in Ref. [39]. In what follows, we focus on the
low Coulomb interaction regime αc < 1/2 where the use of
the excitonic limit is more appropriate. In this regime, the
ground state for the excitons is the normal 1s state, and the
system can undergo a phase transition to a BEC state when
cooled below a critical temperature Tc. For exciton systems,
this temperature can be around 100 K or higher [6]. A detailed
description of the macroscopic coherent ground state of an
exciton condensate is given in Chap. 2 of Ref. [40]. We will
now derive the mean-field model that describes the dynamics
of the condensate state. We consider X 0-type excitons only
with spin and pseudospin both equal to zero.

In the low-density limit, the system can be seen as a
weakly interacting Bose gas of excitons. The noninteract-
ing first quantized Hamiltonian of a pseudorelativistic gas of
bosons reads

H0 =
√

h̄2v2k̂2 + m2v4, (6)

where k̂ is the momentum operator and m =
h̄2(d2Ek )/dk2)−1 = �/(4v2) is the exciton effective mass
with Ek being the exciton dispersion. In relativistic quantum
mechanics, Dirac proved the equivalence between the
ill-defined operator H0 and Hamiltonian HE for spin-1/2
massive particles. The same equivalence can be established
also for scalar particles by regarding the scalar wave field as a
doublet. A detailed explanation of this can be found in Sec. 4
of Ref. [41].

To simplify our treatment, we approximate the exciton-
exciton interaction with a hard-sphere potential [40,42],

U (r − r′) = N
4π h̄2

mLeff
aBδ(r − r′), (7)

where aB is the 1s exciton Bohr radius, Leff the effective
thickness of the monolayer and N the number of particles.
The use of this approximation for the interaction potential
is justified within the low-density limit (nexa2

B � 1). In other
words, since the excitons are neutral when the density is low
enough to ignore the fermionic nature of the electron-hole
pairs, one can assume that the range of interactions is on the
order of the exciton Bohr radius.
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Within this approximationn we can compute the field
Hamiltonian from H0 and the interacting potential in Eq. (7).
We define first the exciton creation operator in one of the two
equivalent K points using the spinor in Eq. (5),

ĉ†
k =

∑
q

[ϕ(q) + iχ (q)]â†
k+qb̂†

k−q, (8)

where {â†
k, b̂†

k, âk, b̂k}’s are the ladder operator for electrons
and holes. More details on the definition of the exciton opera-
tor are given in Appendix A. We drop the (n, j) indices since
we are considering condensed excitons in the ground state.
The field operator for this type of pseudorelativistic scalar
excitons is written as

φ̂(r, t ) = 1√
A

∑
k

1√
Ek

(ĉke−i(k·r−ωkt ) + ĉ†
kei(k·r−ωkt ) ), (9)

where A is the area of the layer. We can now use this
field operator and Eqs. (6) and (7) to compute the field
Hamiltonian as

H (φ̂) =
∫

d2r φ̂(r)

(
ih̄

∂

∂t
− H0

)2

φ̂(r)

+
∫

d2r d2r′φ̂(r)φ̂(r′)U (|r − r′|)φ̂(r)φ̂(r′), (10)

where we have squared the linear term, a standard procedure
in high-energy physics to derive the Klein-Gordon Hamil-
tonian from the pseudodifferential operator H0. After some
algebra, we obtain a pseudorelativistic generalization of the
GPE [21],

H (φ̂) = 1

2

∫
d2r[h̄2φ̂2

t + h̄2v2(∇φ̂)2 + m2v4φ̂2 + 2U0φ̂
4].

(11)
Here, U0 = N4π h̄2mv4aB/Leff , and this nonlinear coupling
constant has dimensions of energy cubed × area. The Hamil-
tonian in Eq. (11) is Lorentz invariant with velocity v, the
Fermi velocity of the carriers. The mismatch between the
Fermi velocity and the speed of light will break the Lorentz
invariance when the system is coupled with an external
electromagnetic field. We should expect the same symmetry
breaking at high density beyond the validity of the excitonic
limit. In this case, the Fermi nature of electrons and holes is
relevant, and the dipole interaction would again break Lorentz
invariance. Hamiltonians in Eqs. (1) and (3) are first order in
the low-momentum (kk · p) expansion around the K point. It
is worth stressing, here, that higher-order terms, such as trigo-
nal warping and electron-hole asymmetry, can break Lorentz
invariance [43]. It has been shown, however, that these dis-
tortions of the band structure are negligible in graphene
and many graphenelike systems, thus, the Dirac quasiparti-
cle picture is appropriate in many realistic situations. This
makes the derivation of Eq. (11) consistent with real world
experiments [43].

In terms of ladder operators, the Hamiltonian in Eq. (11)
can be written as (see Appendix B),

H =
∑

k

Ekĉ†
kĉk + U0

2A

∑
klp

1√
EkElEl+pEk−p

ĉ†
kĉ†

l ĉl+pĉk−p,

(12)

where the second term is the standard four-field interaction
commonly used to model the condensed phase of an interact-
ing gas of excitons in the structureless particle approximation
[40], namely, when we can neglect the fermionic nature of the
electron-hole pairs. The energy-dependent prefactor comes
from the normalization of the exciton scalar field. When the
bosons are in a condensate state, it is then possible to describe
the dynamics of the condensate at the mean-field level by
performing the substitution φ̂(t ) → φ(t ): The order parameter
φ satisfies then the classical equation,

�φ − μ2φ − Ũ0φ
3 = 0, (13)

with μ = mv/h̄, Ũ0 = U0/h̄2v2, and we adopted the standard
definition for the flat space box operator,

� = − 1

v2
∂2

t + ∇2, (14)

with the Fermi velocity v. Equation (13), in 2 + 1 dimensions
has nonstationary localized solutions called oscillons [22,
44–46]. Oscillons are metastable solutions with a very
long lifetime that depends critically on the initial condition
[44–46]. The longevity of the oscillon lifetime has been ex-
tensively reported in many numerical studies [22,44,46] along
with their solitonlike properties [44,45]. In the following sec-
tions, we will review some of these properties and explore
further aspects of these solutions. Before proceeding to the
solution of Eq. (13), we will give a brief summary on its
validity. Being a generalization of the GPE, Eq. (13) retains its
limitations, the exciton-exciton four-fields interaction is valid
either in the diluted regime in consideration here or in the
opposite limit (high density) when the coupling is very weak
U0 ≈ 1/N , where N 
 1 is the number of excitons. Moreover,
this formulation holds when finite temperature effects are neg-
ligible. We note that a finite temperature may be included in
the mean-field picture with a simple modification of Eq. (11)
[47].

IV. OSCILLONS IN RELATIVISTIC BECS

In this section, we first review the emergence of oscillons
in the nonlinear Klein Gordon equation in Eq. (13) [44–46].
We, then, discuss the relation between the dispersion term and
the oscillon’s formation. To do so, we introduce a system of
scaled space and time variables given by

ξ = x

x0
, η = y

y0
, τ = t�

h̄
, (15)

and define r0 =
√

x2
0 + y2

0. x0 and y0 are chosen appropriately
for the initial conditions of the problem, and, for our purposes,
we always choose x0 = y0. In these variables, Eq. (13) reads

∂2
τ ψ − β

(
∂2
ξ + ∂2

η

)
ψ + ψ + ψ3 = 0, (16)

where β = 8[h̄v/(r0 �)]2 and the dimensionless field
ψ (ξ, η, τ ) is defined as

ψ = 4h̄v

√
NπaB

Leff�
φ. (17)

Equation (16) has been solved using both a pseudospectral
implicit method and a finite difference leapfrog algorithm
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FIG. 1. Dynamics of the modulus square of the field, in time,
after subtracting the background. (a) The initial oscillon state, (b) the
first collapse, and (c) and (d) the first revival. The first snapshot is at
τ = 24 after the initial transient has quenched.

[44]. In what follows, we present the results for a gapped
graphene sample � = 0.2 eV, v = c/300, and β = 1, which
implies r0 = 9.3 nm. Figure 1 shows the dynamics of the
modulus square of the field ψ when the initial state comprises
a uniform condensate background with a Gaussian-shaped
hole at the origin, i.e.,

ψ (ξ, η) = A0(1 − e−(ξ 2+η2 )/σ 2
), (18)

with A0 = 1 and σ = 2.86 which is chosen so that the oscil-
lon solution is maximally metastable [44,45], i.e., it has the
maximal lifetime. This means that, in this configuration, the
nonlinearity best compensates the dispersion. We note that a
satisfactory explanation for the metastability of oscillon solu-
tions is still missing. There is not an obvious relation between
the long lifetime of the oscillon and the symmetries of the
Hamiltonian. This is due to the fact that the NLKGE is not in-
tegrable, and, thus, there is no direct link between its solutions
and conservation laws. However, we know that, in nonrela-
tivistic systems, localized solutions with periodic oscillations
are not attractors of the dynamic unless one considers more
complicated systems [23,24] as we have mentioned in the
Introduction. This suggests that the pseudorelativistic nature
of the Hamiltonian plays an important role in the formation of
the long-living oscillon. There have been attempts in the liter-
ature to relate the long lifetime with adiabatic invariance, but
this approach just takes into account very weak nonlinearities
[48]. It was also proposed but without a rigorous proof that
a Lyapunov exponent governs the power law of the oscillon
lifetime [46].

In Fig. 1, we show the dynamics of the square modulus of
the oscillon field, after subtracting the background (A0), we
can see after one period the original peak is fully recovered.
These oscillating dynamics are quite resilient as we can see
in Fig. 2(a), even if it suffers from a weak breathing effect
due to the nonintegrability of the system. This is in agreement

FIG. 2. (a) The oscillon field in the time domain at (ξ, η) =
(0, 0) for A0 = 1 and σ = 2.86. (b) The dispersive solution at
(ξ, η) = (0, 0) for A0 = 1 and σ = 1.

with previous results in the literature [44–46]. In contrast, in
Fig. 2(b), we can see the propagation of a dispersive solution
(A0 = 1 and σ = 1). Our numerical simulations as well as
previous results [44–46] show that the lifetime of the solution
depends critically on the initial condition, and it is determined
by the standard deviation σ of the Gaussian ansatz. A deeper
understanding of why, for specific values of σ , the dynamics
evolves into an oscillon would come from a rigorous explo-
ration of the metastability of these solutions.

It is interesting to study the effect of the dispersion on
the dynamics of the oscillon by varying the width of the
initial Gaussian hole. In Fig. 3, we can see how the disper-
sion mostly affects the early stage of the dynamics. When
we increase r0, the dispersion term becomes less important,
and the formation of the oscillon is considerably delayed as
we can clearly see from Figs. 3(b) and 3(c). In Fig. 3(d),
the dynamics completely changes, as the dispersion becomes
completely negligible, and the field at (0,0) oscillates only
slightly around the minimum (ψ = 0)—note the axis scale
change. The oscillations of the background, instead, are driven
by the amplitude of the field only as expected in the strong
nonlinear limit (see Fig. 4).

In Fig. 4, we can see that the oscillon’s frequency increases
with the strength of the initial field, that also defines the

FIG. 3. Early stage dynamics of the oscillon field at (ξ, η) =
(0, 0) for decreasingly dispersive (increasing r0, hence, decreasing
β) cases. (a) r0 = 9.3 nm (hence, β = 1), (b) r0 = 29.4 nm (β =
10−1), (c) r0 = 93.2 nm (β = 10−2), (d) r0 = 29.4 μm (β = 10−7).
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FIG. 4. (a) Dynamics of the oscillon for two condensate den-
sities, A0 = 1 (blue) and A0 = 2 (orange). (b) Oscillations of the
background for the dispersionless equation again for A0 = 1 (blue)
and A0 = 2 (orange).

strength of the nonlinearity. This is a well-known nonlinear
effect called self-phase modulation.

To inform experimental considerations of this system, it
is important to estimate some relevant physical quantities.
The period of the oscillon is particularly significant because
excitons are not simple bosons, but composite quasiparticles
with a finite lifetime and a period longer than that would be
impossible to observe. This quantity can be computed from
Fig. 1 and the scaling relation Eq. (15), we get T = 20 fs
that is well below the exciton lifetime in two-dimensional
materials that is on the order of a few picoseconds up to 150 ps
[49]. Our model relies on the assumption of the low-density
limit regime, thus, an important quantity is the exciton density.
From the interaction strength U0, we can calculate the density
for an oscillon with initial amplitude A0 = 1 and radius r0 =
9.3 nm as nex = 3.16 × 1011 cm−2 which, combined with the
exciton Bohr radius, gives nexa2

B = 0.16 confirming the low-
density requirement is met. In particular, for a system with
a 0.2-eV gap and Coulomb coupling constant αc = 0.47, we
have a 1s state binding energy εb = 0.07 eV and Bohr radius
aB = 6.68 nm.

V. OSCILLON INTERACTIONS

In nonlinear partial-differential equations, such as Eq. (16),
specific behaviors arise from the subtle interplay between
nonlinearity and dispersion. In most cases, this is a matter of
the specific numbers involved, and in this section and the next,
we illustrate two scenarios, namely, oscillon collisions and the
effect of heterostructures on oscillons. The underlying physics
in both cases is essentially the same as is explained as in the
first sections on oscillon physics.

We review first the collision of two identical oscillons [44]
moving along the diagonal, then, we study the interaction
between the oscillon and a defect. In the case of collision, the
initial state reads

ψ (ξ, η) = A0

(
2 − exp

[
− (ξ − ξ0)2 + (η − η0)2

σ 2

]

− exp

[
− (ξ − ξ1)2 + (η − η1)2

σ 2

])
. (19)

As shown in Fig. 5, the solitonlike behavior of the solution
is preserved after the collision. It is also interesting to see

FIG. 5. Scattering of two oscillons of initial amplitude A0 =
1, σ = 2.86 and initial speed ṽ0 = 0.5. (a) Initial state of the os-
cillon, (b) separation of positive and negative energies, (c) collision
time, and (d) final state after collision. Here, with ψ̃ , we indicate the
field after subtracting the background.

how the oscillons interact with a defect of the condensate. This
can be simulated by adding a loss term, proportional to the
first time derivative of the field. Equation (16) is modified as
follows:

∂2
τ ψ − β(∂2

ξ + ∂2
η )ψ + ψ + ψ3 + �(ξ, η)∂τψ = 0, (20)

and we consider a Gaussian defect of the form [50]

�(ξ, η) = �0 exp

(
− (ξ − ξd )2 − (η − ηd )2

σ 2
d

)
, (21)

where �0 is the strength of the damping and {ξd , ηd} is the co-
ordinates of the defect. In Fig. 6, we observe that the oscillon
is resilient even to nonperturbative damping (�0 
 1).

The scaled initial speed ṽ0 we used in in this section corre-
sponds to a velocity v0 = 0.5 v. Solitons with a velocity close
to the local speed of sound are known to be experimentally
more stable and easier to produce in atomic nonrelativistic
systems. This would be a very interesting aspect to study
experimentally in pseudorelativistic materials where the role
of the local speed of sound is played by the Fermi velocity v.
Recently, it has been proposed as an experiment with control-
lable near-zero soliton velocity in atomic BEC [51]. It would
be very interesting, ideally, with a setup that is able to control
the oscillon velocity to study both the low velocity and, in
principle, the ultrarelativistic limit v0 = v.

VI. CONDENSATES IN HETEROLAYERS

We now investigate BECs spanning two connected Dirac
material slabs with different energy gaps (�1 and �2) requir-
ing an adapted version of Eq. (16). To do so, we introduce
a scaled time as τ = t�1/h̄. This leads to a dimensionless
equation that has the same form as Eq. (16) on the side with
energy gap �1 and mass m1 = �1/4v2 and that depends on
the ratio between two different energy gaps �2/�1 = m2/m1
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FIG. 6. Interaction of a single oscillon with a Gaussian-shaped
defect located at (ξ, η) = (0, 0) and �0 = 50, σd = 10−2. (a) Early
stage of the dynamics: separation of positive and negative energies.
(b) Interaction with the defect and (c) and (d) late stage of the
dynamics. The inset in (a) is the initial state of the oscillon A0 = 1
and ṽ0 = 0.5.

on the other side,

∂2
τ ψ − β

(
∂2
ξ + ∂2

η

)
ψ + γ 2(ξ )ψ + γ (ξ )ψ3 = 0,

ψ (ξ, η, 0) = ψ0(ξ, η), (22)

where β = 8[h̄v/(r0 �1)]2 and the scaled field ψ is defined
as in Eq. (17) with � = �1. The space-dependent coefficient
γ (ξ ) is defined as follows:

γ (ξ ) = 1, ξ < 0,

γ (ξ ) = �2

�1
, ξ > 0. (23)

We take first the simplest case of a constant background
ψ0(ξ, η) = ψ0. As we can see from Fig. 7, traveling waves
are generated by scattering at the boundary between the two

FIG. 7. Motion of traveling waves in two condensates with �1 =
0.2 and �2 = 0.3 eV and constant background ψ0(ξ, η) = 1.

FIG. 8. Motion of an oscillon between two condensates with
�1 = 0.2 and �2 = 0.3 eV. The initial state ψ0(ξ, η) is a Gaussian
well of the form Eq. (18) located at (ξ, η) = (−2,−2) with A0 = 1
and σ = 2.86. The sequence of snapshots from left to right in each
row is as follows: τ = 0.2, 2.3, 4.4, 6.7, 9, 11.2, 13.5, 15.7, 18.

layers and propagate throughout the two sides of the con-
densate. The dynamics of these waves is straightforwardly
understood using a multiple scale perturbative analysis of
Eq. (22) limited to one side of the heterolayer (see Appendix C
for details). In Fig. 8, we show the motion of an oscillon
located initially in the condensate with energy gap �1. The
stability of the oscillon dynamics is not particularly influenced
by the presence of the second condensate after the splitting of
positive and negative energies. The oscillon moves through
the second condensate and starts oscillating with a higher
frequency proportional to the second gap �2 as we show in
Fig. 9. From Fig. 9, we can compute the frequency (in eV)
of the first harmonics of the oscillons on both sides of the
condensate. We get ω1 = 0.041 and ω2 = 0.068 eV. Those
values are significantly lower than the two energy gaps (�1

FIG. 9. Oscillon spectrum on both sides of the heterolayer ξ <

0 (blue, lower-frequency peak) and ξ > 0 (gray, higher-frequency
peak). � is a dimensionless frequency related to the inverse of τ .
The inset: third-harmonic generation.
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and �2) in the two sides of the heterolayer, this is because
we are studying the dynamics of the system at a relatively
early stage between τ = 10 and τ = 200 when the combined
effect of the dispersion and the nonlinearity is still strong. For
long-time propagation, the value of the frequency approaches
the one of the energy gap and the system behaves, such as
a harmonic oscillator [44]. In the inset, we can observe the
generation of third harmonics in the spectrum of the bosonic
field as expected from a system with third-order nonlinearity.
This effect is clearly not specifically related to the heterolayer
structure studied in this section and would be present in the
spectrum of the time series in Figs. 2–4.

VII. CONCLUSIONS

In this paper, we derived a simple mean-field model to
investigate the dynamics of Bose-Einstein condensates for a
quasiparticle with pseudorelativistic low-energy dispersion.
This approach is based on a generalization of the Gross-
Pitaevskii equation. We applied this model to the exciton
dispersion of gapped Dirac material, such as doped or strained
graphene and TMDs. We remark, however, that the interest
of this model is not limited to these materials but could be
applied to other physical systems. Magnons in TlCuCl3 [52],
for example, have been proven to show a BEC phase with a
relativistic dispersion relation. It could be also be generalized
by including the polarization degree of freedom to exciton-
polariton condensates in synthetic honeycomblike photonic
lattices. We studied the properties of a nonstationary but local-
ized solution of the model, known as an oscillon. We detailed
the dynamics of the two-oscillons interaction and proved that
this solution is also resilient to the interaction with impurities
of the background. Until now, the relevance of oscillon solu-
tions of relativistic field theories has been highlighted only in
high-energy physics in both 2 + 1 and 3 + 1 dimensions, and
they have not been considered in condensed-matter physics.
It is important to note that the oscillon solutions we have dis-
cussed in this paper are not allowed in simple nonrelativistic
BECs because the Gross-Pitaevskii is first order in time. They
are tightly related to the pseudorelativistic dispersion of Dirac
quasiparticles. As we mentioned in the Introduction, oscillons
of a different mathematical structure can be found in coupled
nonrelativistic systems or in cavities with oscillating walls.
Materials that show a BEC phase with the pseudorelativistic
dispersion relation could represent an interesting optical ana-
log platform to experimentally mimic field theories.
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APPENDIX A: WANNIER EQUATION AND THE EXCITON
OPERATOR

In this Appendix, we give more details on the Wannier
equation for excitons in pseudorelativistic materials. As-
suming the noninteracting ground state, the linear-response

Dirac-Bloch equation for the polarization Pk is given by
[16,33–36]

ih̄Ṗk = 2

(
εk + 1

2

∑
k′

Vkk′

)
Pk − h̄�R(t ), (A1)

where εk is the electron and hole pseudorelativistic dispersion
and �R(t ) is the Coulomb-renormalized Rabi frequency. The
related Wannier equation (electron-hole Coulomb problem)
reads [15,16,53]

2εkun, j (k) +
∑

k′
Vkk′un, j (k) = En, jun, j (k), (A2)

this equation corresponds to the k-space representation of the
Dirac-Coulomb problem [15,16,37,53],

(2h̄vσ · k + �σz + V (r)) ��n j (r) = En, j ��n j (r), (A3)

where ��n j ( is a two-components spinor. Equations (A2) and
(A3) have, in principle, both positive and negative energy
solutions. When we consider X 0 paraexcitons, they are simply
the complex conjugate of each other. The positive energy
solutions of Eq. (A2) are given by [16]

u j (k) = ϕ j (k) + iχ j (k), (A4)

where ϕ j (k) and iχ j (k) are the spinor components in k space
where we dropped the index n and we fixed the pseudo-spin-
angular momentum j = ±1/2. The exciton creation operator
can be written as

ĉ†
k =

∑
q, j

u j (q)â†
k+q, j b̂

†
k−q,− j . (A5)

APPENDIX B: THE PSEUDORELATIVISTIC
HAMILTONIAN IN MOMENTUM SPACE

In this second Appendix, we show how to relate the pseu-
dorelativistic Hamiltonian in Eq. (11) with the momentum
space Hamiltonian in Eq. (12) of the main text. It is easier to
deal with the interacting and noninteracting terms separately.
We first rewrite the linear Hamiltonian H0,

H0 = 1

2

∫
d2r[h̄2φ̂2

t + h̄2v2(∇φ̂)2 + m2v4φ̂2], (B1)

using the expansion in terms of exciton ladder operators,

φ̂ = 1√
A

∑
k

1√
Ek

(ĉke−i(k·r−ωkt ) + ĉ†
kei(k·r−ωkt ) ), (B2)

substituting this expression in Eq. (B1), after lengthy but
simple algebra [54], we get

H0 =
∑

k

Ekĉ†
kĉk. (B3)

Let us now look at the interaction Hamiltonian,

HI = U0

∫
d2r φ̂4. (B4)

After normal ordering, HI contains the following generic
terms:

(ĉk )4, (ĉ†
k )4, ĉ†

l ĉ†
pĉ†

qĉk, ĉ†
kĉlĉpĉq, ĉ†

kĉ†
l ĉpĉq. (B5)
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One can see that the first four terms of the list above are
associated with field components [see Eq. (9)] that rotate
as e−4i(k·r−ωkt ), e+4i(k·r−ωkt ), ei(l+p+q−k)·r−i(ωl+ωp+ωq−ωk )t ,
and e−i(l+p+q−k)·r+i(ωl+ωp+ωq−ωk )t , respectively. In these
terms, due to conservation of energy and momentum, the
exponents never vanish in scattering processes from a hard
field potential. It is, thus, clear that the fifth term is, in
general, the dominant one since the other terms will be
spatially and temporally averaged out during the evolution
of the condensate. We, therefore, retain only the last term
ĉ†

kĉ†
l ĉpĉq in the normal-ordered Hamiltonian [Eq. (B4)].

This procedure is standard and is conventionally used when
treating nonrelativistic Hamiltonians [40]. Considering
the fifth term only, we obtain the momentum conserving
interaction Hamiltonian in momentum space,

HI = U0

2A

∑
klp

1√
EkElEl+pEk−p

ĉ†
kĉ†

l ĉl+pĉk−p. (B6)

APPENDIX C: MULTIPLE SCALE PERTURBATION
THEORY FOR THE NLKGE

In this Appendix, we introduce the multiple scale method
for the nonlinear Klein-Gordon equation to show how the
traveling waves propagates in a heterolayer condensate. For
simplicity, we limit our analysis on one side of the condensate
since the dynamics is the same on both sides,

∂2
τ ψ − (

∂2
ξ + ∂2

η

)
ψ + m2ψ + ψ3 = 0, (C1)

with initial conditions,

ψ (ξ, η, 0) = ψ0(ξ, η),

(C2)

ψτ (ξ, η, 0) = ψ1(ξ, η),

we set a slow space-timescale ξ1 = εξ, η1 = εη, and τ1 =
ετ . We can now make the following ansatz of a perturbation

series for the solution:

ψ (ξ, η, 0) =
∑

n

εn+1�n(ξ, ξ1, η, η1, τ, τ1, τ2). (C3)

Modifying the derivatives accordingly to the slow scale trans-
formations and inserting the ansatz, the wave equation (C1),
up to the second order, becomes (we will implicitly assume
that initial conditions must be met at each order)

εLKG(�0) + ε2[LKG(�1) − 2�0,τ1τ + 2�0,ξ1ξ ] + O(ε3) = 0,

(C4)
where LKG = � − m2 is the linear Klein-Gordon operator.

The order ε gives LKG(�0) = 0, that is solved by a func-
tion of the form

�0(ξ, ξ1, η, η1, τ, τ1) = A(ξ1, η1, τ )ei(kξ ξ+kηη−ωτ ) + c.c.,
(C5)

with the dispersion relation ω(k) = √
k2 + m2, k = (kξ , kη ).

Proceeding to the following order we get:

LKG(�1) = 2i(ωAτ + kξ ∂ξ1 A + kη∂η1 A)ei(kξ ξ+kηη−ωτ ) + c.c.,
(C6)

this term has the same structure as the solution to the homoge-
neous problem, and it, thus, represents a secularity and needs
to be eliminated. This leads to the following condition on the
amplitude A(ξ1, η1, τ ):

ωAτ + kξ ∂ξ1 A + kη∂η1 A = 0, (C7)

and a solution of this equation is a unidirectional traveling
wave of the form A = A(ρ1 − vτ1) where ρ1 = (ξ1, η1) and
v = (vξ , vη ) is the group-velocity vector. This explains the
behavior in Figs. 7 and 8 where we see unidirectional waves
propagating along the ξ direction only since the initial mo-
mentum along η is set to zero.
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