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Sensitivity bounds of a spatial Bloch-oscillation atom interferometer
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We study the ultimate bounds on the sensitivity of a Bloch-oscillation atom interferometer where the external
force is estimated from the measurement of the on-site atomic density. For external forces such that the energy
difference between lattice sites is smaller than the tunneling energy, the atomic wave function spreads over
many lattice sites, increasing the separation between the occupied modes of the lattice and naturally enhancing
the sensitivity of the interferometer. To investigate the applicability of this scheme we estimate the effect of
uncontrolled fluctuations of the tunneling energy and the finite resolution of the atom detection. Our analysis
shows that a horizontal lattice combined with a weak external force allow for high sensitivities. Therefore, this
setup is a promising solution for compact devices or for measurements with high spatial resolution.
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I. INTRODUCTION

Atom interferometry is a powerful tool for sensing of
gravity, inertial forces, and electromagnetic fields [1–4], or
measuring the fundamental constants [5,6] and testing the
foundations of physics [7–9]. Free-falling atom interferome-
ters offer the highest sensitivity and are the core technology
in many experiments aiming at accurate gravimetry [10],
gradiometry [11–13], measurements of rotations [14], inertial
navigation [15], gravitational wave detection [16], general
relativity tests [17,18], and geodesy from space missions
[19,20]. However, their sensitivity scales with the size of the
interrogation area and this limits their use in application where
high spatial resolution is required. Trapped atom interferom-
eters are a valuable alternative [21]. Different schemes have
been implemented including Bloch oscillations [22], double
well traps [23–25], and Wannier Stark atom interferometers
[26,27].

Although arbitrarily long interrogation times can lead to
high sensitivity, these schemes have so far suffered from some
limitations, like decoherence induced by interactions [28],
trapping potential imperfections [29], and limited separations
between the spatial modes of the interferometer [21]. Solu-
tions to this last problem have been addressed in several pro-
posals and investigated in many current experiments. All these
methods require combinations of optical lattices [30,31], har-
monic traps [32], or in general dynamically varying trapping
potentials with high quality and stability [33]. It is desirable
to develop a scheme where a single optical lattice is used,
since it reduces the experimental requirements on a trapping
potential and because the high control of the lattice frequency
naturally increases the accuracy of the measurements. Bloch-
oscillation atom interferometry, where the periodic oscillation
of the momentum distribution of the atoms is observed, fulfills
such requirement since only a lattice, plus the external force
to be measured, is needed to operate the sensor [34]. As
demonstrated in a recent paper [35], the sensitivity depends

only on the initial coherence length ξ of the source. However,
its scaling with the initial temperature T of the gas (i.e.,
ξ = h/

√
2πmkBT where m is the mass of a single atom, kB is

the Boltzmann constant, and h is the Planck constant) makes
unrealistic any significant improvement of Bloch-oscillation
interferometry beyond the state of the art.

Triggered by recent works [36,37], where two groups have
reported the observation of the spatial evolution of the gas
in-trap, we investigate the ultimate bounds on the sensitivity
of a spatial Bloch-oscillation interferometer (SBOI) where
we detect the on-site atomic density rather than the atomic
momentum distribution. In the case of horizontal lattice op-
eration, for weak external forces, i.e., such that the energy
difference between lattice sites is smaller than the tunneling
energy, the atomic wave function spreads over many lattice
sites, naturally increasing the separations between the oc-
cupied modes of the lattice. Our analysis shows that this
evolution, together with the capability to address single sites,
leads to high sensitivities, making the scheme we propose a
promising solution for compact devices or for detection of
weak forces with high spatial resolution.

The paper is organized as follows. In Sec. II we present
the main results of this paper. In particular in Sec. II A we
introduce the Hamiltonian and characterize the evolution of
the system. In Sec. II B we derive the ultimate bound of
the sensitivity (Sec. II B 1) and compare it to an estimation
protocol based on the counting of atoms in each site of the
lattice (Sec. II B 2) or on the measurement of the width of
the atomic cloud (Sec. II B 3). In Sec. II B 4 we study how
the sensitivity depends on the initial distribution of atoms
in the lattice and on the tunneling energy between the sites
(Sec. II B 5). In Sec. II C we investigate the most favor-
able experimental configuration (Sec. II C 1), the effect of a
fluctuating tunneling energy (Sec. II C 2) and of a nonideal
atom counting (Sec. II C 3), the dependence of the sensitivity
on the lattice spacing (Sec. II C 4), and a configuration of
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optimal performance (Sec. II C 5). Finally we summarize our
findings and conclude our analysis in Sec. III. Some details
of calculations, omitted for clarity in the text, are presented in
the Appendix.

II. MODEL AND SENSITIVITY

A. Hamiltonian

Our starting point is the Hamiltonian of an ultracold Bose
gas of N atoms in a one-dimensional optical lattice in presence
of an external force mg:

Ĥ =
∫

�̂†(x)

[
− h̄2

2m
� + Vlat (x) + mgx

]
�̂(x) dx, (1)

where Vlat (x) is the optical lattice potential, g is the acceler-
ation, and h̄ = h/2π is the reduced Planck constant. In the
tight-binding approximation, we represent the field operator
as a series of operators annihilating an atom in the kth site:

�̂(x) =
∑

k

wk (x)âk, (2)

where wk (x) is the Wannier-like spatial wave function local-
ized in the kth well. Here and below we consider the infinite
lattice, hence the sum runs from −∞ to +∞. Upon the
substitution of Eq. (2) into Eq. (1) we obtain, up to the leading
order of the overlap of the Wannier functions,

Ĥ = −J
∑

k

[â†
k âk+1 + âk â†

k+1] + δ
∑

k

kâ†
k âk . (3)

The two coefficients J and δ correspond to the hopping
energy and the energy difference between neighboring sites,
respectively, and are equal to

J =
∫

w∗
k (x)

[
− h̄2

2m
� + Vlat (x)

]
wk+1(x) dx, (4a)

δ = mg
∫

[|wk (x)|2 − |wk+1(x)|2]x dx � mgx0, (4b)

where x0 is distance between the adjacent wells. This Hamil-
tonian (3) sets the dynamics of the Bloch oscillations of the
gas, which we assume to be a pure Bose-Einstein condensate
(BEC). The initial state reads

|�α(0)〉 = 1√
N!

[�α(0)�̂a†]N |0〉, (5)

where �α(0) is a vector of complex amplitudes [|αk (0)|2 sets
an initial density of atoms at site k] and �̂a† is a corresponding
vector of creation operators. Furthermore, |0〉 denotes the
vacuum state. The solution of the Schrödinger equation

ih̄∂t |�α(t )〉 = Ĥ |�α(t )〉 (6)

takes a particularly simple form,

αk (t ) =
∑

j

Uk j (t )α j (0), (7)

since the Hamiltonian in Eq. (3) is quadratic. Here Uk j (t ) is
the matrix element of the evolution operator

Û (t ) = e−i Ĥt
h̄ . (8)

We now discuss how the acceleration g can be estimated from
the measurement of the on-site atomic population rather than
releasing the BEC from the lattice as it is generally done in
ultracold atom experiments [34].

B. Estimation

In this section we estimate the theoretical sensitivity of an
SBOI. In Sec. II B 1 we exploit the quantum Fisher informa-
tion (QFI) to calculate the ultimate bound, optimizing over
all possible measurements and detection protocols [38]. In
Secs. II B 2 and II B 3 we estimate the sensitivity provided by a
measurement of the populations in each site and by the width
of the cloud, respectively. Finally, in Sec. II B 5 we discuss
the dependence of the sensitivity on the number of initially
populated sites.

1. Ultimate sensitivity

The highest precision an interferometer can achieve is
given by the inverse of the QFI. For pure states, as considered
here, it reads

Fq = 4(〈ĥ2〉 − 〈ĥ〉2) ≡ 4�2ĥ, (9)

where the average is calculated at time t using the expression
|�α(t )〉 and where ĥ is the generator of the interferometric
transformation set by the evolution operator introduced in
Eq. (8):

ĥ = i
∂Û (t )

∂g
Û †(t ). (10)

The calculation of ĥ together with the Cramer-Rao lower
bound [38] gives the formula

�gopt

g
= 1√

Fq

1

g
. (11)

Using this formula we determine the ultimate sensitivity. As a
first case we consider a BEC of N = 4 × 104 atoms initially
localized in one site and take J = δ. The result, obtained by
numerically solving the Schrödinger equation (6), is drawn
with a dotted gray line in Fig. 1 in the time interval t ∈
[5.5, 7.5]TB, where TB = mgx0/h = δ/h is the Bloch period.
Note that the ultimate sensitivity monotonously improves with
time. This reflects the growth of information about g, de-
posited in the system, and formally it is a consequence of the
action of the derivative in Eq. (10) of the evolution operator
(8). We now compare this ultimate bound with the sensitivity
calculated with two different measurement schemes.

2. Site-resolved atom number measurement

First we assume to detect, via an in situ measurement,
n( j)

k —the number of atoms in each site. Here, k labels the sites
and j indexes the measurements. The outcomes are averaged
over ν repetitions, giving

nk = 1

ν

ν∑
j=1

n( j)
k . (12)
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FIG. 1. Relative sensitivity for N = 4 × 104 atoms initially
loaded in a single lattice site and for J = δ, as a function of time.
The dashed line shows the sensitivity for the measurement of the
number of atoms in each site [see Eq. (15)]. The solid black line is
the error propagation for the width measurement [see Eq. (20)] with
ν = 1. The dotted line is the ultimate sensitivity calculated using the
QFI [see Eq. (9)].

According to the central limit theorem, if ν is large, the
probability for obtaining nk is Gaussian:

p(nk ) = 1√
2π�2n̂k

e
− (nk −〈n̂k 〉)2

2�2nk /ν . (13)

Here 〈n̂k〉 and �2n̂k are true values (i.e., calculated asymp-
totically at ν → ∞) of the on-site atom number mean and
fluctuations, respectively. This set of outcomes is used to
construct the likelihood function

L(g̃) =
∑

k

ln[p(nk )]. (14)

The gravitational acceleration, which is to be estimated, is
treated as a free parameter g̃ (it enters through 〈n̂k〉 and �2n̂k ,
while nk’s, deduced from the experiment, depend on the true
value of g). The parameter is estimated as this value of g̃
(denoted by g̃ml) at which the likelihood function reaches its
maximum. It is called the maximum likelihood estimator, is
unbiased, and has a sensitivity

�2g̃ml = 1

ν

F1 + F2

F 2
1

. (15)

Here the two components of the sensitivity are

F1 =
∑

k

(〈n̂k〉′)2

�2n̂k
, (16a)

F2 =
∑
k 
=l

〈n̂k〉′
�2n̂k

〈n̂l〉′
�2n̂l

σ 2
k,l , (16b)

where the prime denotes the derivative over the parameter,
i.e., 〈n̂k〉′ = ∂

∂g〈n̂k〉 and σ 2
k,l = 〈n̂k n̂l〉 − 〈n̂k〉〈n̂l〉 is the cross

correlation of the site occupations [39].

The moments of the atom number operator n̂k = â†
k âk that

enter Eqs. (16) read

〈n̂k〉 = N pk (t ), (17a)

�2n̂k = 〈
n̂2

k

〉 − 〈n̂k〉2 = N pk (t )[1 − pk (t )], (17b)

σ 2
k, j = −N pk (t )p j (t ), (17c)

where probabilities pk (t ) = |αk (t )|2 are calculated with
Eq. (7). The scaling of all terms from Eq. (17) linearly with N
gives both F1 and F2 also proportional to N . This in turn gives
the 1√

N
dependence of the sensitivity (15), i.e., the shot-noise

scaling with the number of atoms.
The dashed line in Fig. 1 displays the sensitivity calculated

with Eq. (15) using the same conditions and atom number of
Sec. II B 1. It is periodic and reaches the optimal bound at
the multiples of the Bloch period. This is the first important
difference between an SBOI and a standard Bloch-oscillation
interferometer where the sensitivity is almost constant over
the whole Bloch period.

3. Measurement of the width

In this section we compare the previous result with another
method that consists in the measurement of the width of the
cloud in the lattice. To this end, we introduce a (squared)
width operator as

ŵ =
∑

k

n̂k

N
k2, (18)

where k = 0 is a label of the site in which initially the BEC
is loaded. The estimation protocol consists in a measurement
of the mean-squared width at M instants t1, . . . tM . At each
moment it is averaged over ν repetitions of the experiment,
similarly to Eq. (12). This gives a series of averaged outcomes:

wl = 1

ν

ν∑
j=1

w
( j)
l (l = 1 . . . M ). (19)

A theoretical curve—resulting from the averaging of the
operator (18) over the state (7) at time tl—is fitted to this set of
acquired data, with g as a free parameter of this least-squares-
fit method. The value of g obtained this way is unbiased and
gives the sensitivity [40]:

�2gfit = 1

ν

1∑M
l=1

(〈ŵ〉′l )2

�2ŵl

. (20)

From the point of view of the overall sensitivity, it is important
to investigate each component of this sum, given by the error
propagation formula

�2gl = �2ŵl

(〈ŵ〉′l )2
. (21)

The two moments are equal to

〈ŵ〉l =
∑

k

pk (tl )k
2, (22a)

〈ŵ2〉l =
[∑

k

pk (tl )k
2

]2

+ 1

N

∑
k

pk (tl )k
4. (22b)
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FIG. 2. Sensitivities as a function of σ , i.e., for different initial
distribution of atoms in the lattice [see Eq. (24)], for N = 4 × 104,
t = 7TB, and J = δ. The ultimate bound (dotted gray), calculated
with Eq. (11), is compared with the estimation from the number of
atoms (15) (dashed black) and with the estimation from the mean
width (21) (solid black).

The mean 〈ŵ〉l is intensive in N (i.e., it does not scale with
the number of atoms). This is also the case of the first part
of 〈ŵ2〉l , which is equal to 〈ŵ〉2

l . Therefore, in the expression
for the variance, the dominant terms cancel and only the term
which scales inversely with N prevails, namely,

�2ŵl = 1

N

∑
k

pk (tl )k
4. (23)

The prefactor 1
N in front of the sum in Eq. (23) gives the

shot-noise scaling of the sensitivity (20), as in the case of the
estimation from the measurement of the number of atoms in
each site (see Sec. II B 2).

The error propagation formula from Eq. (20) is shown in
Fig. 1 as a function of time with a solid line. Though it is worse
than the sensitivity from the measurement of the number of
atoms (dashed line) it also reaches the ultimate bound at the
multiples of the Bloch period. Thus we conclude that both
estimation strategies discussed in this section can be close to
optimal if the oscillation time is close to the Bloch period.

4. Choice of the initial state

So far we used a BEC localized in a single site as initial
state. In this section we investigate how the sensitivity changes
when the atoms are initially spread over many lattice sites. For
this purpose we model the vector of coefficients �α(0) with a
Gaussian function:

αk (0) ∝ e− k2

2σ2 , (24)

where the proportionality sign stands for normalization. We
fix t = 7TB and calculate the sensitivity using the QFI accord-
ing to Eq. (11) and compare it with the values predicted by
Eqs. (15) and (20) as a function of the initial width of the
cloud, σinit . Figure 2 shows the result.

While the ultimate bound can improve as σ increases,
the sensitivities of the two estimation protocols described in
Secs. II B 2 and II B 3 deteriorate. This means that from the
point of view of these two strategies the optimal operation of

an SBOI requires us to start with atoms loaded in a single site
of the lattice. The behavior of the ultimate bound predicted
by the QFI derives from the well-known properties of a
standard Bloch-oscillation interferometer where the ultimate
sensitivity increases with the initial coherence length. As we
will see in the next section, an SBOI can recover high sensi-
tivity operation relaxing the condition J = δ and using large
values of J .

5. Dependence on the lattice parameters

In order to understand how the sensitivity in Eq. (15)
depends on the relevant parameters in the Hamiltonian (3),
i.e., δ and J , an explicit time dependence of the on-site
probability pk (t ) is required. In the limit of a BEC initially
localized in only one site, i.e, pk (0) = δk0, the time evolution
of pk (t ) is given by [41]:

pk (t ) =
∣∣∣∣Jk

[(4J

δ

)
sin

( δt

2h̄
− πn

)]∣∣∣∣
2

, (25)

where Jk (y) are Bessel functions of the first kind. We cal-
culate the value of �g̃ml at optimum t = TB when both
estimation strategies give the same sensitivity that saturates
the ultimate bound set by the QFI. At this instant the two
components of the sensitivity, F1 and F2, have the same value
equal to (see the Appendix for details)

F1 = F2 = 16N

(
J

g

)2( t

h̄

)2

f (t ), (26)

where f (t ) � 1 and f (t ) = 1 for the multiples of the Bloch
period. This sets the bound of the sensitivity of the estimator
g̃ml to the value

�g̃ml = g

2
√

2N

1

J

h̄

t
= g

2
√

2N

1

F
(
x0

J
δ

) h̄

t
, (27)

where F is the force driving the oscillations. If we compare
this expression with the result of the numerical analysis
reported in Fig. 1 for δ/J = 1 at δt/h̄ = 7 × 2π we find a
perfect agreement.

By comparing this expression with the sensitivity of a
spatial Mach-Zender atom interferometer (SMZI) the physical
mechanism behind the operation of the scheme presented
in this paper becomes clear. For two modes separated by a
distance d in presence of an external force F , the accumulated
phase difference φ = Ftd/h̄ detected with a shot noise 1/

√
N

leads to an uncertainty:

�gMZI = �φ

φ
g = g√

N

1

Fd

h̄

t
. (28)

Considering that in an SBOI the atoms, initially localized in
one well, at half Bloch period reach a distance equal to the size
of the Wannier Stark states, i.e., ≈x0J/δ, it becomes clear—by
inspecting Eqs. (27) and (28)—that the sensitivity of an SBOI
is equal to the one of a SMZI where the separation between the
two modes is of the order of the maximum spatial spread of
the atomic wave function over the lattice during the dynamics.

Large separation between the spatial modes is crucial to
have a sensitive trapped atom interferometer. This can be
easily fulfilled in an SBOI by simply increasing the tunneling
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energy or reducing the strength of the external force. It is the
main result of our analysis.

C. Experimental implementation

1. Horizontal configuration

Bloch-oscillation interferometers typically use a vertical
optical lattice to probe the local gravitational force that cor-
responds to δ � 1kHz × h̄ for lattice spacings of a fraction
of a micron. In this configuration, using the maximum value
of the tunneling J that is of the order of the recoil energy
ER = (h̄kL )2/2m ≈ few kHz ×h̄, J/δ remains of the order of
unity. The wave function does not spread over the lattice and
thus the present method cannot offer much gain with respect
to the standard detection of the atomic momentum distribution
in time of flight, for vertical lattices.

However, in the δ � J limit, SBOI can be advantageous.
To reach this regime, it could be necessary to align the optical
lattice horizontally to cancel the effect of gravity and to add
an external controllable force to almost compensate the one
we wish to measure. This could limit the maximum relative
sensitivity of the measurements due to the finite control of
bias forces. However, the use of an optical lattice offers the
possibility to implement a controlled sweep of the phase of the
lattice with an acceleration very close to g. This is a common
technique used in free-falling atom interferometers where the
frequencies of the Bragg or Raman lasers are chirped to
remain in resonance with the atomic sample. In both cases
the moving lattices become a reference frame with respect to
which the atoms feel a very small residual force.

2. Control of the tunneling energy

Contrary to a Bloch-oscillation interferometer, where the
atomic momentum distribution does not depend on the tun-
neling, an SBOI requires the knowledge of J . To clarify this
feature we now describe our scheme from another point of
view.

The detection of the in-trap atomic density aims at identi-
fying very precisely the Bloch period TB. As described by the
analysis in Sec. II B the highest sensitivity can be achieved
very close to a multiple of TB, where the atoms, mainly occu-
pying the initial well, tunnel to the two neighbors. In this short
time interval, using Eq. (25), we find that N±1 := 〈n̂±1〉 =
NJ2(t − nTB)2/h̄2. As a consequence, measuring N and N±1

at time t , it is possible to determine how far we are from nTB

only when J is known with high accuracy. Neglecting for the
moment the error due to the quantum fluctuations of the atom
number in the three wells, with a simple error propagation
we find that �(t − nTB) = (�J/J )(t − nTB). If the time t is
known precisely, then by dividing this formula with nTB ≈ t
we get

�(nTB)

nTB
= �g

g
= �J

J

(t − nTB)

t
. (29)

This expression predicts that the relative uncertainty in the
acceleration is proportional to the relative fluctuation of J ,
divided by a factor that increases the closer we perform the
measurement to a multiple of the Bloch period nTB. In order to

FIG. 3. Sensitivity from the measurement of the width for a pure
state (solid black line) compared with the noisy case of σJ = 0.01J0

(dashed dark-gray line) and σJ = 0.05J0 (dash-dotted light-gray
line). Here, J0 = δ. The vertical and horizontal lines indicate the
values of the sensitivity at 7.1 TB used for the comparison with the
results provided by Eq. (29).

confirm our simplified analysis we have performed numerical
simulations as explained below.

We take into account the changes of J and assume that
it remains constant in each experiment but varies from shot
to shot. This means that a pure state |�α(t )〉 is replaced by a
mixture

�̂ =
∫

dJ P (J ) |�α(J )(t )〉〈�α(J )(t )|, (30)

where P (J ) is the probability for having J and |�α(J )(t )〉 is
a solution of Eq. (6) with fixed J [which appears in the
Hamiltonian (3)]. The two moments read

〈ŵ〉l =
∫

dJ P (J )
∑

k

p(J )
k (tl )k

2, (31a)

〈ŵ2〉l =
∫

dJ P (J )

[∑
k

p(J )
k (tl )k

2

]2

(31b)

+ 1

N

∫
dJ P (J )

∑
k

p(J )
k (tl )k

4. (31c)

Note that due to the fluctuations of J the dominant intensive
terms from line (31b) and the square of the mean from line
(31a) do not cancel, contrary to the pure-state case. Therefore,
we expect the variance to significantly grow in presence of
noise. To illustrate this effect, we take a Gaussian probability
density

P (J ) = 1√
2πσJ

e
− (J−J0 )2

2σ2
J (32)

and evaluate the sensitivity using the error propagation for-
mula from Eq. (20) and the moments of the density operator
from Eq. (31).

Figure 3 shows the sensitivity from the width taken from
Fig. 1 and compares this ideal-case result with the outcomes
obtained in presence of fluctuations of J for σJ = 0.01J0 and
0.05J0, where J0 = δ. The anticipated effect is clearly present,
though the sensitivity remains mostly intact by the presence
of noise at the multiple of the Bloch period. We compare the
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numerical results at 7.1 TB for the two different levels of noise
affecting J reported in Fig. 3 with the prediction provided
by Eq. (29). The good agreement confirms the simplified
description of the interferometric scheme presented at the
beginning of this section.

3. Finite atom number resolution

We now incorporate finite resolution of the atom number
measurement into our model. To this end, we notice that for a
pure BEC the probability for having nk atoms in the kth site is
binomial:

p(nk ) =
(

N

nk

)
pnk

k (1 − pk )N−nk , (33)

where pk = |αk (t )|2 (contrary to before, we skip the time
dependence of pk , for clarity). The imperfection of the atom
number measurement is represented by a convolution of p(nk )
with the detector resolution function pres(nk, n′

k ) which is the
probability for obtaining nk given a true value n′

k . This gives

p̃(nk ) =
∑

n′
k

pres(nk, n′
k )p(n′

k ). (34)

If we approximate the probability (33) with a normal distribu-
tion with the mean μ and the variance σ equal to

μ = N pk = 〈n̂k〉, σ 2 = N pk (1 − pk ) (35)

we can easily include the finite atom number resolution σres,
taking a Gaussian pres, centered around the true value and with
a width equal to the quadratic sum of σ and σres and obtain

p̃(nk ) � 1√
2π

(
σ 2

res + σ 2
)e

− 1
2

(nk −〈n̂k 〉)2

σ2
res+σ2 . (36)

This implies that while the mean detected atom number
remains unbiased the mean square increases:

〈
ˆ̃n2

k

〉 =
N∑

nk=0

p̃(nk )n2
k � 〈

n̂2
k

〉 + σ 2
res. (37)

Also, since in this model of finite resolution the probabilities
pres at different sites k and k′ 
= k are independent, the average
〈n̂k n̂k′ 〉 is unaltered.

We now use these results to calculate the impact of res-
olution on the sensitivity from Eq. (20). The mean of ŵ

remains unchanged but the variance increases since according
to Eq. (18)

〈ŵ2〉 =
∑
k 
=k′

〈n̂k n̂k′ 〉
N2

k2k′2 +
∑

k

〈
n̂2

k

〉
N2

k4. (38)

While the first “off-diagonal” part is intact by the finite
resolution, the second “diagonal” term is modified according
to Eq. (37).

Figure 4 shows the impact of this imperfection on the
sensitivity, assuming that at each site the detector’s resolution
is proportional to the shot-noise fluctuations of the mean atom
number at this site, i.e., σ 2

res = λ〈n̂k〉 (λ is the proportionality
constant). The minimal �g at t = 7TB increases from the limit
set by the QFI �g = 4.019 × 10−5g for λ = 0, to 5.684 ×
10−5g for λ = 1, i.e., a factor

√
2. This is expected considering

FIG. 4. The effect of finite resolution on the sensitivity from the
measurement of the width. The solid black line is the ideal case λ =
0, and the dashed black line is for λ = 1.

that for λ = 1 the detection noise is equal to the shot-noise
atom number fluctuation for each site.

An approximate analytical formula to quantify the effect
of a finite atom number resolution on the sensitivity can
be again derived at times close to a multiple of the Bloch
period using the formula N±1 = NJ2(t − nTB)2/h̄2 and the
error propagation of �N±1. To confirm the validity of this
approach we use it to derive the sensitivity bound assuming
the shot-noise scaling �N±1 = √

N±1. For negligible fluctua-
tions of the tunneling energy we get �(t − nTB)/(t − nTB) =
�N±/(2N±) = 1/(2

√
N±) = h̄/[2

√
NJ (t − nTB)]. It follows

that

�(nTB)

nTB
= �g

g
= h̄

2
√

2NJt
, (39)

where the additional
√

2 takes into account the double mea-
surement on the two neighboring sites. Note the perfect
agreement between this formula and Eq. (27) derived with a
rigorous calculation.

Finally, in Fig. 5 we show the combined effect of fluctua-
tions of the tunneling constant and finite resolution using σJ =
0.01δ and λ = 1. While the sensitivity at the optimal time does
not shift from the σJ = 0 case (�g = 5.684 × 10−5g), the

FIG. 5. The combined effect of the fluctuations of the tunneling
constant (σJ = 0.01) and finite resolution (λ = 1) on the sensitivity
from the measurement of the width (dashed black). The solid black
line is the ideal no-noise case.

033318-6



SENSITIVITY BOUNDS OF A SPATIAL … PHYSICAL REVIEW A 102, 033318 (2020)

nonzero σJ causes the region where the width measurement
is close to optimal to shrink with respect to Fig. 4, similarly to
the effect observed in Fig. 3.

4. Lattice spacing

In this paragraph we identify the optimal value of the lattice
spacing. For a standard Bloch-oscillation interferometer the
sensitivity does not depend on x0 but can be enhanced only
reducing the initial width of the atomic momentum distribu-
tion. Also, for an SBOI the sensitivity (27) apparently does
not depend on x0. However, some experimental constraints
change the overall picture. The use of an optical lattice with
x0 equal to a fraction of a micron makes it impossible to
load many atoms in a single lattice site due to high three-
body losses when atomic densities are big. This limits the
improvement from the shot-noise scaling, i.e., with the inverse
of

√
N .

In addition, if the lattice spacing is too small, it is challeng-
ing to precisely count the atoms in each site. As a consequence
larger lattice spacing naturally improves the sensitivity of an
SBOI. To determine the optimal lattice spacing we notice
that the relative uncertainty in an SBOI is limited by the
relative fluctuations of J and the atomic shot noise. As a
consequence, high sensitivity can be achieved compensating
the external force with an accurate bias field and operating the
interferometer with a very small residual force mg.

However, the sensitivity saturates the optimal bound (set
by the Fq) at multiples of the Bloch period. Considering that
in real experiments the interrogation time τ is finite, due to
decoherence induced by residual interactions or experimental
noise, we cannot work with arbitrarily small forces but keep
TB = h/(mgx0) < τ . This condition suggests to increase x0

while reducing g. However, an SBOI requires us to keep the
tunneling J sufficiently high to spread the wave function over
few lattice sites, i.e., J � δ = mgx0. Using the maximal value
of J as a function of x0, i.e., J = h̄2π2/(8mx2

0 ), we obtain
an upper bound on x0, which sets the minimal applicable
acceleration as a function of the coherence time τ :

gmin = 8

τ 3/2

√
π h̄

m
(40)

and the required spacing is x0 = √
π h̄τ/m/4.

Finally, we discuss how the lattice spacing influences the
control on the tunneling energy. As indicated in Eq. (28),
the sensitivity depends on the spread of the wave function
during the dynamics that is equal to x0J/δ = J/(mg). As a
consequence, it is directly related to the spatial resolution
of the sensor. If we consider applications where this quan-
tity is determined by the measurement constraints, fixing g
corresponds to fixing J . In the tight-binding approximation,
the tunneling energy J in units of ER depends on the lattice
depth sL through a scaling factor s3/4

L e−2
√

sL . It is possible to
demonstrate via a simple error propagation that the relative
fluctuation of the tunneling constant, that directly affects the
sensitivity as shown in Sec. II C 2, depends on the relative
fluctuation of the lattice depth �sL/sL by the relation �J/J ∼√

sL�sL/sL. This expression shows that, the larger the value
of sL needed to achieve a specific value of J , the larger the
constant of proportionality. Therefore, bigger x0 reduces the

fluctuations of J provided a specific instability of the lattice
depth. A similar argument is valid also in the limit of small
lattice depths.

5. Final remarks

In this last section we consider a realistic example of an
SBOI. We take τ ∼ 1 s and N ∼ 104, and from Eq. (40)
we get the smallest measurable acceleration ≈5 × 10−5g and
an optimal lattice spacing of x0 = 17μm. From Eq. (27), if
we neglect fluctuations of the tunneling energy, the relative
uncertainty is 4 × 10−4 and a single shot (ν = 1) sensitivity
is of the order of 10−8g. With an improvement of a factor of
10 in the coherence time, it is possible to reach a sensitivity
comparable with the state of the art but with an unprecedented
spatial resolution of the order of 100 μm. Note that in order
to achieve comparable sensitivities with a standard Bloch-
oscillation interferometer the sensor should be operated with
an ideal BEC with an initial coherence length of 100 μm that
is not within the reach of current ultracold atom technology.

The advantage of the setup discussed in this paper with
respect to a standard Bloch-oscillation interferometer is that
the sensitivity depends on the amplitude of the oscillations of
the cloud in the lattice, rather than on a large initial extension
of the condensate.

The main obstacles to the operation of an SBOI are the
reduction of the atom interactions [42–44] and the realization
of optical lattices with large spacings. Carbon dioxide gas
lasers can be used to generate optical lattices with site sep-
aration of ≈5 μm [45]. In the near future midinfrared cw high
power radiation generated with quantum cascade lasers might
broaden the spectrum of available spacings. Arbitrarily large
separations between lattice sites could be finally achieved
using recently realized beat-note optical lattices [46].

III. CONCLUSIONS

In this paper, we studied a matter-wave interferometer
consisting of a BEC undergoing Bloch oscillations in an
optical lattice. We assumed that the parameter—here the
acceleration g—is estimated from the in situ measurement of
the atomic density. We considered the case when the lattice
is oriented almost horizontally, so that the increment of the
linear potential from site to site is smaller than the tunneling
energy. In this regime, atoms spread over many sites, so the
wave function probes the perturbing potential over a large
distance.

Using the metrological tool known as the quantum Fisher
information, we have calculated the best-achievable sensitiv-
ity �g for this configuration, and showed that indeed the
precision benefits from the large extension of the cloud.
Having established the ultimate bound, we have determined
the sensitivity for two experimental scenarios: when g is
estimated from the measurement of the number of atoms in
each site or from the width of the atomic cloud. As the latter
carries less information with respect to the former, it gives an
inferior sensitivity, apart from the vicinity of the multiples of
the Bloch period. At these times, all three sensitivities (i.e.,
obtained from the QFI and the two protocols) coincide.

We incorporated two sources of imperfections: fluctuations
of the tunneling constant and the limited resolution of the
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atom number measurement. With both these deficiencies, the
sensitivity drops but remains competitive to results obtained
with the state-of-the-art settings. We conclude by stating
that the matter-wave interferometer proposed here turns out
to be a promising solution for compact sensors or for the
measurements of small forces with high spatial resolution.
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APPENDIX: ANALYTIC EXPRESSION
OF THE SENSITIVITY

Here, we present the detailed derivation of Eqs. (26) and
(27). We start with F1, given by Eq. (16a). Using the expres-
sion for pk (t ) from Eq. (25) and the moments of the atom
number operator from Eq. (17), we obtain

〈n̂k〉′ = N |Jk (y)|[Jk−1(y) − Jk+1(y)]y′, (A1)

where we used J ′
k (y) = 1/2[Jk−1(y) − Jk+1(y)] and intro-

duced a function of δ:

y = 4J

δ
sin

( δt

2h̄
− πn

)
. (A2)

Its derivative is equal to

y′ = 4J

δ2

[
− sin

( δt

2h̄
− πn

)
+ δt

2h̄
cos

( δt

2h̄
− πn

)]
. (A3)

When the measurement is performed after many Bloch peri-
ods, the second term in the parentheses dominates, leading to

an approximate expression:

〈n̂k〉′ � |Jk (y)|[Jk−1(y) − Jk+1(y)]

× 2J

δ

t

h̄
cos

( δt

2h̄
− πn

)
. (A4)

The variance of the atom number operator is simply

�2n̂k = N |Jk (y)|2[1 − |Jk (y)|2]. (A5)

Bringing together Eqs. (A4) and (A5) gives

F1 =
∑

k

(〈n̂k〉′)2

�2n̂k
= 16

(J

δ

)2( t

h̄

)2
f (t ), (A6)

where f (t ) is the time-dependent function

f (t ) = 1

4
cos2

(
δt

2h̄
− πn

) M∑
k=1

|Jk−1(y) − Jk+1(y)|2
1 − |Jk (y)|2 (A7)

and reaches its maximum f (t ) = 1 at the multiples of the
Bloch period, t = nTB, n ∈ N.

In the next step, we calculate F1 and F2 in the vicinity of
t = nTB, when almost all atoms are located in the central site
and only a small fraction is present in the two neighboring
sites. Therefore,

p±1 = ε, p0 = 1 − 2ε (ε � 1). (A8)

The approximate expression for F1, obtained from Eq. (16a),
gives

F1 � N
(p′

0)2

p0(1 − p0)
+ 2N

(p′
1)2

p1(1 − p1)
, (A9)

where we used the symmetry between ±1 (hence the factor
of 2) and � stands for the dropping of p±2, etc. Plugging in
Eq. (A8) above, we obtain

F1 � N
(1 − 2ε)′2

(1 − 2ε)2ε
+ 2N

(ε′)2

ε(1 − ε)
� 4N

ε′2

ε
. (A10)

We now calculate F2. Using the expression for the moments
of the atom number operator, we have directly from Eq. (16b)

F2 = N
∑
k 
= j

p′
k

pk (1 − pk )

p′
j

p j (1 − p j )
(−pk p j ) = −N

∑
k 
= j

p′
k

(1 − pk )

p′
j

(1 − p j )

= − N
∑
k, j

p′
k

(1 − pk )

p′
j

(1 − p j )
+ N

∑
k= j

p′
k

(1 − pk )

p′
j

(1 − p j )
= −N

(∑
k

p′
k

(1 − pk )

)2

+ N
∑

k

(
p′

k

(1 − pk )

)2

= − N

(−2ε′

2ε
+ 2

ε′

1 − ε

)2

+ N

[(−2ε′

2ε

)2

+ 2

(
ε′

1 − ε

)2]
= 4N

ε′2

ε
− 2N

(
ε′

1 − ε

)2

� 4N
ε′2

ε
= F1. (A11)

Thus we showed that when ε → 0 (thus t → TB) F1 and F2

are equal. Therefore, using the formula for the sensitivity (15),
which for a single shot (ν = 1) is

�2g̃ml = F1 + F2

F 2
1

, (A12)

we obtain

�2g̃ml = 2

F1
. (A13)

This result, combined with Eq. (A6), gives Eq. (27) from the
main text.
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