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Nonequilibrium Landau-Zener tunneling in exciton-polariton condensates
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For describing a coherent quantum two-level system driven by a linearly time-dependent energy separation
of the diabatic states, the Landau-Zener model is routine to serve as a textbook model for its dynamics. Along
this research line, a particularly intriguing question is whether the framework of Landau-Zener theory can be
extended to an intrinsically nonequilibrium quantum system with coherent and dissipative dynamics occurring
on an equal footing. In this work, we are motivated to investigate the Landau-Zener problem of polariton
condensates in a periodic potential under nonresonant pumping by using the driven-dissipative Gross-Pitaevskii
equations coupled to the rate equation. Within the two-mode approximation, a nonequilibrium Landau-Zener
model, characterized by coherent and dissipative dynamics occurring on an equal footing, is derived. Funda-
mentally different from the previous Landau-Zener model, the total density of nonequilibrium Landau-Zener
model, in general, is not the conserved quantity anymore due to the dissipative nature. In a surprise, the
parameter regimes of the total density still being conserved can still be found. The motion of Hamiltonian of the
nonequilibrium Landau-Zener problem in phase space is further discussed. The instability of the band structure
can also be studied by the curvatures in phase space, and there may be two loops in the middle of the Brillouin
zone. Detailed analysis of the nonequilibrium nature on the tunneling rate will open a new perspective toward
understanding the Landau-Zener problem.
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I. INTRODUCTION

Adiabatic transitions at avoided level crossings play an
essential role in many dynamical processes with potential
applications of the quantum state preparation [1]. The paradig-
matic model studying adiabatic transitions is referred to as the
Landau-Zener (LZ) problem [2,3]. In more details, the dynam-
ics of the model system are restricted to two quantum states
coupled with a constant tunneling matrix element. A control
parameter is swept through the avoided level crossing at a
constant velocity. The focus of the LZ problem is on the final
occupation probability of the two states. The pure LZ problem
was solved by Landau [2] and Zener [3] independently. Then,
Wu and Niu [4,5] have extended the LZ model from the linear
quantum system to nonlinear physical systems inspired by
the experimental realization of an optically trapped ultracold
Bose gas [6,7]. Along this research line, the purpose of the
present work is further extension of the LZ theory to include
an intrinsically nonequilibrium nature for a quantum system
motivated by the experimental progress of exciton-polariton
Bose-Einstein condensate (BEC) [8–12].

Exciton-polariton BEC, which can be achieved even at
room temperature due to the exceedingly light effective mass,
has the crucial novelty of being an intrinsically nonequilib-
rium system with coherent and dissipative dynamics occurring
on an equal footing [8–12]. Up to now, there are lots of work
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discussing the steady states and elementary excitations of
polaritons in both one- and two-component condensates the-
oretically [13–20] and experimentally [21–24]. Meanwhile,
nonlinear phenomena like oblique dark solitons, vortices,
bright solitons [25–27], and dark-bright solitons [28–33] in
a polariton condensate are the current hot topics. Besides,
tuning the interaction of polaritons has been demonstrated by
using biexcitonic Feshbach resonance in recent experiments
[34,35]. Moreover, spontaneous oscillations in a microcavity
polariton bosonic Josephson junction with strong imbalance
of the population in a double well [36–39] has inspired the
ongoing interests in investigating a polariton condensate in a
periodic potential.

Experimentally, the periodic potential in polariton can be
realized by surface acoustic wave (SAW) and buried mesa
array [40–44]. The band structure of a polariton condensate
as a direct result of introducing a periodic potential appeals
because it provides a natural dissipative quantum simulator for
studying topological properties [45,46], e.g., spin Hall effects
[47,48], the flat band in Lieb lattice [49–53]. With the state-of-
the-art technologies of SAW, it’s possible to trap a polariton
BEC in a moving periodic potential [54]. A timely question
arises to study adiabatic transitions of a polariton condensate
around the edge of the Brillouin zone, i.e., the nonequilibrium
LZ problem.

In this work, we are motivated to investigate the nonequi-
librium LZ problems of a polariton BEC theoretically. First,
at the mean-field level, an optically trapped polariton BEC
can be well described by the dissipative Gross-Piteavskii (GP)
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equation coupled to a rate equation. Within the framework
of the two-mode approximation, a nonequilibrium LZ model,
characterized by coherent and dissipative dynamics occurring
on an equal footing, is derived. Second, we investigate the
steady states of the LZ model both numerically and analyti-
cally. Fundamentally from the equilibrium counterparts of the
LZ model, the total particle number of the nonequilibrium
LZ model is not conserved quantity any more in general.
However, we still find three kinds of parameter regimes in
which the total particle number of the dissipative system
is still conversed by calculating dn/dt = 0. Next, we study
the nonequilibrium LZ tunneling of the model system nu-
merically. It’s difficult to define a tunneling probability of a
dissipative system with a nonconserved particle number. Here
we choose to use the occupation of each state to describe
this adiabatic process. We find fluctuation has a peak near
t = 0, which leads to the atom loss and presents how the
interaction affects the occupation after tunneling. Finally, we
study the motion of the nonequilibrium LZ model in phase
space. The imaginary part of the Hamiltonian is a periodic
function along with the relative phase, while the real part can
have a new result for adjustable condensate density. When the
pumping rate is far beyond the threshold, there may be two
crossovers in the middle of the Brillouin zone, as is famous
for “swallowtails” [43].

The emphasis and value of the present work are to provide
a theoretical model, i.e., an extended LZ model in describ-
ing the open quantum system with coherent and dissipative
dynamics occurring on an equal footing capturing the key
information of the nonequilibrium nature affecting adiabatic
transitions at avoided level crossings. We remark that in the
case of vanishing the dissipation parameters, our model can be
simplified into the coherent model, which has been widely ex-
plored both theoretically and experimentally in the context of
the ultracold quantum gas [4,5]. We hope the model adopted
in this work can serve as a simple model to study adiabatic
transitions at the avoided level crossing for a nonequilibrium
quantum system.

The paper is organized as follows. In Sec. II, we introduce
polariton in a periodic potential, which can be described by
a dissipative GPE coupled to the rate equation of a reservoir
under pumping. In Sec. III, we investigate the steady states
of the model, both numerically and analytically, and simplify
the problem into a two-level problem. In Sec. IV, we evolute
the model from the lower level at t = −∞ to study the LZ
tunneling. In Sec. V, we transform the Hamiltonian into phase
space to find the motion of fixed points under different pump-
ing rates. In Sec. VI, we conclude with a summary of our main
results and final remarks.

II. NONEQUILIBRIUM LANDAU-ZENER MODEL

Our goal is to investigate the nonequilibrium LZ prob-
lem of an exciton-polariton BEC characterized by coherent
and dissipative dynamics occurring on an equal footing.
To this end, we are interested in a nonresonant pumped
exciton-polariton BEC in a periodic potential. Recently, sev-
eral schemes of the periodic potential landscape engineering
[40–44] have been proposed, e.g., utilizing metallo-photonic
waveguides [55], using photonic crystal structures [56], or

depositing a thin metal film [40,57]. Moreover, the almost free
choice of the confinement strengths and trapping geometries
have provided powerful means for control and manipulation
of the polariton systems both in the semiclassical and quantum
regimes [58]. In this work, we focus on that array of one-
dimensional cigar-shaped exciton-polariton BEC trapped in
an all-optically controlled dynamic lattice for polaritons work-
ing in the ultraviolet wavelength range at room temperature,
where the optical lattice was realized on a one-dimensional
(1D) ZnO microrod using an array of periodically arranged
laser spots in a fully reconfigurable manner [59]. Theoret-
ically, the order parameter for the condensate is described
by a one-component time-dependent wave function ψ ; the
reservoir on the relevant time scales can be modeled by a
scalar density denoted by nR.

At the mean-field level, the dynamics of the order param-
eter for the polariton condensates in the accelerating lattice
labeled by ψ can be well described by the driven-dissipative
GP equation [8,13,14], i.e.,

ih̄
∂

∂t
ψ = − 1

2m

(
h̄

∂

∂x
− iαt

)2

ψ + V0 cos (kLx)ψ

+ g|ψ |2ψ + gRnRψ + i
h̄

2
(RnR − γC )ψ, (1)

with m being the mass of the polariton, g the interaction
constant, γC the decay rate of the polariton condensate, and
gR characterizing the interaction between the condensate and
reservoir. V0 in Eq. (1) is the strength of the periodic po-
tential with the wave number of kL that can be controlled
with a spatial quantization energy modulation of either the
photonic or excitonic component [44,60–62]. We emphasize
that the purpose of this work is to provide the simplest theo-
retical nonequilibrium LZ model where the dissipative nature
is captured by the incoherent reservoir nR below rather than
the imaginary part of periodic potential [60]. Therefore, we
limit ourselves into the case of the imaginary part of periodic
potential in Eq. (1) being zero although tuning strength of the
periodic potential in this case remains experimentally chal-
lenging.

The term of α = mac in Eq. (1) can be regarded as the
vector potential gauge, which can be realized experimentally
due to the inertial force in the comoving frame of the ac-
celerating lattice. Experimentally, the term of α in Eq. (1)
can be experimentally realized in principle as follows. A one-
dimensional optical lattice can be created by taking a linearly
polarized laser beam and retro-reflecting it with a high-quality
mirror [7,40,54]. Another phase-coherent laser beam is in-
troduced to make a frequency shift �νL between two lattice
beams. The original lattice potential will become unstable
and move at a velocity νlat = d�νL where d is the lattice
spacing. The BEC in the lattice will be accelerated with force
F = md d�νL

dt [7,54], corresponding to the term of α = mac in
Eq. (1).

Equation (1) is coupled to an incoherent reservoir nR,
which is described by a rate equation [13,14], i.e.,

∂

∂t
nR = P − γRnR − R|ψ |2nR, (2)
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where P is an off-resonant continuous-wave pumping rate,
γR is the dissipative rate of the reservoir, and R stands for
the stimulated scattering rate of reservoir polaritons into the
condensate. The reservoir is a dynamical variable, which can
modify the dispersion of the condensate rather strongly. If
the polariton distribution in the reservoir region and all co-
herences between the reservoir and the condensate relax on
a short time scale as compared to the condensate dynamics,
the state of the reservoir is fully determined by its local
density [13].

Before investigating the nonequilibrium LZ problem, we
first briefly review some important features of a polariton
condensate in the uniform space [13], corresponding to the
vanishing of both the periodic potential and the gauge poten-
tial, i.e., V0 = 0 and α = 0 in Eq. (1). There, the steady-state
under a continuous-wave and uniform pumping can be ob-
tained as ψ0 = √

n0e−i(gn0+gRn0
R )t/h̄ and n0

R = γC/R with n0 =
(P − Pth )/γC and Pth = γRγC/R.

In the presence of periodic lattice potentials and the gauge
potential, i.e., V0 �= 0 and α �= 0 in Eq. (1), there will exist the
band structure in the polariton condensate, where the longest
lifetime characterizes the lowest-band top state. The tunneling
mainly occurs around the edge of the Brillouin zone, so we are
motivated to project Eqs. (1) and (2) into the plane wave two-
mode basis in the neighborhood of the Brillouin zone edge of

k = 1
2 and search for the solutions of Eqs. (1) and (2) in the

form,

ψ (x, t ) = a(t )eikx + b(t )ei(k−kL )x, (3)

nR(x, t ) = n0
R + 2u(t ) cos (kLx), (4)

with the reservoir density of nR(x, t ) having a periodic fluctu-
ation described by the u(t ) term in Eq. (4). In principle, the
fluctuation of the reservoir should be written as

∑
n un(t )einx,

however, we just take n = 0,±1 within the framework of the
two-mode approximation. We remark that Eqs. (3) and (4) can
be deduced into the corresponding results of Ref. [62] without
considering the reservoir density’s fluctuation by taking u = 0
in Eq. (4).

To simplify our following calculation, we prefer to rewrite
Eqs. (1)–(4) in dimensionless forms by introducing di-
mensionless variables x̄ = kLx, t̄ = 2EkLt/h̄, k̄ = k/kL, ψ̄ =
ψ/

√
n0, ḡ = gn0/2EkL , R̄ = Rn0/2EkL , γ̄C = h̄γC/2EkL , γ̄R =

h̄γ R/2EkL , ᾱ = α/(2kLEkL ), P̄ = h̄P/2EkL , v = V0/2EkL , and
n̄0

R = γ̄C/R̄ (replacing x̄ by x, etc.). Then, by substituting
Eqs. (3) and (4) to Eqs. (1) and (2) and only collecting the
coefficients of eik̄x and ei(k̄−1)x for Eq. (1) and eix and e−ix

of Eq. (2) similar to Refs. [2–5], we can obtain an extended
nonequilibrium LZ model as follows:

i
∂

∂t

⎛
⎜⎝

a

b

u

⎞
⎟⎠ =

⎛
⎜⎜⎝

L(k) + ḡ(|a|2 + 2|b|2) v
2 (ḡR + i

2 R̄)b
v
2 L(k − 1) + ḡ(2|a|2 + |b|2) (ḡR + i

2 R̄)a

− iR̄n̄0
Rb∗

2 − iR̄n̄0
Ra∗

2 −i[γ̄R + R̄(|b|2 + |a|2)]

⎞
⎟⎟⎠

⎛
⎜⎝

a

b

u

⎞
⎟⎠, (5)

with

L(k) = 1

2
(k − ᾱt )2 + ḡRn̄0

R + i

2

(
R̄n̄0

R − γ̄C
)
. (6)

Equation (5) is the central result of this work, which describes
the LZ model [i.e., Eq. (5)] for an intrinsically nonequilib-
rium quantum system with coherent and dissipative dynamics
occurring on an equal footing. We also remark that, to our
best knowledge, the nonequilibrium LZ problem described by
Eq. (5) is investigated for the first time in the context of the
polariton condensate.

To illustrate our model based on Eq. (5) the analogies to
and differences from the pure LZ model in Refs. [2–5], we
first briefly demonstrate how Eq. (5) can be simplified into the
pure LZ model in the limiting case corresponding to u = 0,
γ̄C = 0, R̄ = 0, and ḡR = 0. Here, we are interested in the
adiabatic approach by taking ᾱ a small value. After only
keeping the linear term of ᾱ in Eq. (5), we can arrive at the
nonlinear LZ model [4,5] as follows:

i
∂

∂t

(
a
b

)
=

(−ᾱt + Hint
v
2

v
2 ᾱt − Hint

)(
a
b

)
, (7)

with Hint = ḡ(|b|2 − |a|2). For convenience, we have dropped
out the average of the diagonal elements because it does not
affect the evolution of the probabilities. The total probability
|a|2 + |b|2 is conserved and is set to be 1. If we further let
ḡ = 0 in Eq. (7), the nonlinear LZ model will become the pure

LZ model as is expected [2,3]:

i
∂

∂t

(
a
b

)
=

(−ᾱt v
2

v
2 ᾱt

)(
a
b

)
. (8)

Before investigating the effects of the nonequilibrium na-
ture on the LZ problem, we first briefly review some important
features of a pure LZ model in Eq. (8) and nonlinear LZ model
in Eq. (7). As shown by Eqs. (7) and (8). the dynamics of
the LZ model are restricted to two quantum states coupled
with a constant tunneling matrix element characterized by v.
A control parameter labeled by α is swept through the avoided
level crossing at a constant velocity. The key quantity of the
LZ problem is to calculate the final occupation probability of
the two states. There, an exact result of a transition probability
r0 exists for a pure LZ model in Eq. (8), which vanishes expo-
nentially in the adiabatic limit of ᾱ → 0 as r0 = exp(−πv/ᾱ)
[2,3]. Compared with a pure LZ model in Eq. (8), the most
striking feature exhibited by the nonlinear LZ model in Eq. (7)
is the presence of a nonzero tunneling probability of r0 in the
adiabatic for the introduction of the interaction term of Hint

[4,5].
We emphasize that in both cases of pure LZ and nonlin-

ear LZ, the total density labeled by |a(t )|2 + |b(t )|2 = 1 is a
conserved quantity, i.e., d (|a(t )|2 + |b(t )|2)/dt = 0. In high
contrast, with considering the existence of an intrinsically
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nonequilibrium nature, the probability of |a(t )|2 + |b(t )|2 im-
mediately becomes a nonconserved quantity, representing the
key physics of the nonequilibrium nature affecting the LZ
problem.

III. STEADY STATES OF NONEQUILIBRIUM
LANDAU-ZENER MODEL

As mentioned in Sec. II, both the pure LZ and nonlin-
ear LZ transitions are referred to as the coherent dynamical
problems characterized with the total density of |a|2 + |b|2
being conserved. Fundamentally, the conserved total density
is immediately violated [i.e., d (|a|2 + |b|2)/dt �= 0] for the
introduction of the dissipation as shown in Eq. (5). Lacking
the total conserved density brings the difficulty of defining
the tunneling probability properly. For defining the tunneling
probability, our strategy is to take the value of a (or b) in
the limit of a long time with a∞ = limt→∞ a(t ), which be-
comes time independent, by solving the equations of motion
of Eq. (5). The goal of this section is to check whether there al-
ways exist the stationary states of our model in the considered
parameter regimes. Note that the key role of the parameter
of α in Eq. (1) is to induce the nonadiabatic transitions at
avoided level crossings, which does not affect the properties
of stationary states. To this end, we are limited to the case
of α = 0 in Eq. (5) and investigate the long-time behavior of
a (or b) by numerically solving Eq. (5) with different initial
conditions.

We first choose the case of vanishing periodic strength
v = 0 and check whether our numerical results can recover
the previous well-known results as a test of the validity of our
numerical method. As is illustrated in Figs. 1(a1) and 1(b1),
for the case of the periodic potential strength v = 0, the fluc-
tuation of the reservoir can be set to zero, and the system can
evolve into a stationary state where two components are the
same no matter γ̄R < γ̄C or γ̄R > γ̄C . With vanishing periodic
strength v = 0, the reservoir density can be immediately cal-
culated as n̄0

R = P̄/(γ̄R + R̄|ψ |2). By plugging n̄0
R into Eq. (5),

the nonequilibrium LZ model of Eq. (5) can be regarded as a
two-level system for the ground and first excited states, which
is immediately related to Bloch mode dispersions of the p, σ ,
and π bands in Ref. [44].

Then, we proceed to consider how the periodic poten-
tial affects the stationary states by introducing v �= 0. From
Figs. 1(b1) and 1(b2), we can find that the population of
two-component BECs can be different when the strength of
v increases and the fluctuation of the reservoir is stable and
nonzero. When v/2 is close to ḡ, occupation of each double
well decreases and the fluctuation of reservoir changes with
time and the occupation of the polaritons becomes unstable in
Fig. 1(c1) with γ̄C < γ̄R, while in Fig. 1(c2) the occupation
decreases even linearly with time and the fluctuation can still
be stable. Finally, occupation of each well decreases with the
change of fluctuation |u|; that procedure can keep a very long
time as shown in Figs. 1(d1) and 1(d2), while the fluctuation
of reservoir becomes an oscillating function and vibrates in a
high speed [13]. The occupation in two wells will oscillate and
decrease when v/2 > ḡ; these phenomena have been observed
in recent experiments [36,38].

FIG. 1. Nonlinear dynamics of the Bloch mode’s amplitudes
governed by Eq. (5) with time t (in units of h̄/2EkL ). Dimension-
less parameters in Eq. (5) are used: ᾱ = 0, γ̄C = 0.33, P̄ = 35, ḡ =
0.006, ḡR = 2ḡ, R̄ = 0.01, the first column γ̄R = 0.495, the second
column γ̄R = 0.1, and (a1) and (a2): v = 0; (b1) and (b2): v = 0.002;
(c1) and (c2): v = 0.01; (d1) and (d2): v = 0.02.

The long-time-independent stationary states in Fig. 1 can
be explained by calculating the time variation of the total
density probability of the condensate density with the help of
Eq. (5) as

d

dt
(|a|2 + |b|2) = R̄u(a∗b + b∗a). (9)

From Eq. (9), the condition of the total density probability
being conserved depends on two parameters: the fluctuation
of reservoir u and the relative phase between a and b. In such,
there are three possible cases under which the total density
probability still is a conserved quantity even with dissipation.

Case 1. u = 0, which indicates the fluctuation of reservoir
is zero. This corresponds to the case that the reservoir is too
large to be influenced by the polariton condensate.

Case 2. |a| or |b| is zero. This means the polariton con-
densate is willing to stay in one mode of the two-mode
approximation.
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Case 3. The relative phase between a and b are fixed to be
θa − θb = π

2 + jπ with j being an integer.
In what follows, we plan to double check above three possi-

ble cases of the total density probability still being a conserved
quantity even with dissipation. First, it’s physically reasonable
that the system should be stable in the case of u being a
very small quantity compared to the reservoir density of n0

R,
although the total density probability is not the conserved
quantity any more according to Eq. (9) as shown in Fig. 1.
According to Eq. (2), we can obtain the steady value of the
reservoir as follows:

n̄0
R = P̄

γ̄R + R̄|ψ |2 ≈ P̄

γ̄R

(
1 − R

γ̄R
|ψ |2

)
, (10)

for R̄ � γ̄R. By substituting it to Eq. (5) as done
in Ref. [36], we can obtain the analytical expression
of u:

u = −R̄n̄0
R

ab∗ + a∗b

2γ̄R̄ + 2R̄(|b|2 + |a|2)
. (11)

The time-dependent dynamics of condensate density due to
Eq. (9) becomes

dn

dt
= −R̄2n̄0

R

(ab∗ + a∗b)2

2γR̄ + 2R̄(|b|2 + |a|2)
, (12)

which makes the physics of Eq. (9) clearer. By Eq. (12), the
total density can be conserved by choosing u, a, or b to be
zero corresponding to Case one and Case two, respectively.
The special relative phases between parameters of a and b can
also stabilize the system corresponding to Case three.

We are limited ourselves to the case of the reservoir having
a steady value as is shown in Figs. 1(a1)–1(c1) and 1(b2)–
1(c2). Within these parameter regimes, we substitute the form
of u to Eq. (5). After dropping an energy shift of Eshift =
1/8 + ḡRn̄0

R with n̄0
R = γ̄C/R̄, we can rewrite our model of

Eq. (5) into the following form:

i
∂

∂t

(
a

b

)
=

(
ḡ(2|b|2 + |a|2) − (λ + iχ )|b|2 − γ /2 v/2 − (λ + iχ )a∗b

v/2 − (λ + iχ )b∗a ḡ(2|a|2 + |b|2) − (λ + iχ )|a|2 + γ /2

)(
a

b

)
, (13)

with (λ + iχ ) = (ḡR+ i
2 R̄)R̄n̄0

R

2γ̄R+2R̄n . Equation (13) is an effective ver-
sion of nonequilibrium LZ model of Eq. (7) proposed in this
work.

Above, we have developed the analytically physical picture
and predicted features of the total density probability still
being a conserved quantity even with dissipation. Below, we
are interested in how the relative phase of two Bloch modes
can stabilize total density probability by numerically solving
Eq. (5). We choose the parameter regimes with total den-
sity probability being conserved and plot the corresponding
relative phase of two Bloch modes in Fig. 2. It’s clear now
that the relative phase changes between −π/2 and 3π/2 [see
Fig. 2(a1)] in the weak pumping region. This suggests that
the relative phases are oscillating around π/2 + jπ consistent
with the prediction of Eq. (9). In contrast, in Fig. 1(c2) and
Fig. 2(b2) the population of polaritons cannot reach a balance
in the strong pumping region (γ̄R < γ̄C), because the imagi-
nary part of elementary excitation can be larger than zero and
the relative phase is not exactly between −3π/2 and π/2,
but it is also a stable relative phase leading to linear decay.
Our numerical results can also explain partly the results of
Ref. [36], where authors have observed a smoothed sawtooth
phase evolution with a much smaller amplitude (−0.3π to
0.3π ). This result is very close to −0.5π and 0.5π in our
theory and the profile of population changing with time is also
consistent with ours.

IV. NONEQUILIBRIUM LANDAU-ZENER TUNNELING

Before analyzing the nonequilibrium LZ problem, it is
essential to establish that the model system itself described by
Eqs. (1) and (2) is stable with respect to weak perturbations
[13]. In more detail, one would introduce perturbations to

a steady state and solve the corresponding Bogoliubov–de
Gennes (BdG) equations [14]. If the imaginary part of the
excitation spectrum leads to an exponential decay for the
perturbation amplitude, then the original steady state can be
considered as stable against such perturbation. In this work,
we limit ourselves into the modulationally stable parameter
regimes [13]. Meanwhile, we also numerically double check
that the dynamics of the polariton condensate described by the
nonequilibrium LZ model of Eq. (5) are always dynamically
stable.

In this section, we will pay attention to the adiabatic pro-
cess by evolving a state from t = −∞ to ∞ numerically.
There is lots of work that has been done in adiabatic theory
[4,5,63,64], but for the polariton system, there are some new
results. In the past, the initial state is set to the lower state
and the upper state can be calculated as tunneling probability
for the conserved population, however, it is difficult to define
the tunneling opportunity in an open system. We focus on
the occupation of each state before and after tunneling for
the atom loss of the system. Considering the linear of t for
Hamiltonian is dependent on time and changes slowly in a
nonlinear polariton system. In Sec. III, we investigate the
occupation of each state will oscillate and decrease when v is
large enough. More details about tunneling will be discussed
in this section.

As is vividly shown in Fig. 3, we evolute the initial state
from (a, b, u) = (0,

√
P̄/γ̄C − γ̄R/R̄, 0) and find the fluctu-

ation has a sudden change at t = 0 from zero to nonzero.
Two levels will have a crossover near t = 0 and the initial
occupation will vanish when t > 0 for the fluctuation of the
reservoir. Comparing Figs. 3(a1) and 3(b1) with Figs. 3(a2)
and 3(b2), the peak of fluctuation in the weak pumping region
(γ̄R > γ̄C) is lower than that in the strong pumping region
(γ̄R < γ̄C). We can also find that larger depth of periodic
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FIG. 2. Nonlinear dynamics of the Bloch mode’s relative phase
θ = θb − θa governed by Eq. (5) with time t (in units of h̄/2EkL ).
Dimensionless parameters in Eq. (5) are used: ᾱ = 0, γ̄C = 0.33,
P̄ = 35, ḡ = 0.006, ḡR = 2ḡ, R̄ = 0.01, the left column γ̄R = 0.495,
the right column γ̄R = 0.1, and (a1) and (a2): v = 0.002; (b1) and
(b2): v = 0.01; (c1) and (c2): v = 0.02.

potential can reduce more occupation in the final states after
tunneling as is shown v = 0.02 in Fig. 3(b1) compared to
v = 0.002 in Fig. 3(a1) if we fix interaction strength. If it is a
double-well system to study the Josephson junction between
two wells, the oscillations have a short lifetime as particle

FIG. 3. Numerical results for the time evolution of Eq. (5) with
the time t (in unit of h̄/2EkL ). Dimensionless parameters in Eq. (5)
are used: ḡ = 0.006, ᾱ = 0.02, ḡR = 2ḡ, P̄ = 35, γ̄C = 0.33, R̄ =
0.01; (a1): v̄ = 0.002, γ̄R = 0.495; (b1): v = 0.002, γ̄R = 0.1; (a2):
v = 0.02, γ̄R = 0.495; and (b2): v = 0.02, γ̄R = 0.1.

FIG. 4. Numerical results for the tunneling occupation as a
function of ᾱ by solving Eq. (5) with the initial states (a, b, u)
= (0,

√
P̄/γ̄C − γ̄R/R̄, 0). Dimensionless parameters in Eq. (5) are

used: ḡR = 2ḡ, P̄ = 35, γ̄Cg = 0.33, γ̄R = 0.495, R̄ = 0.01, and v =
0.01.

number decreases after tunneling if the temperature is beyond
zero (ᾱ > 0).

It is known that interaction strength g can change the
tunneling probability from zero to a finite value for an adi-
abatic evolution, and it will break down the Bloch oscillation.
In recent experiments, the interaction of polariton can be
adjusted by Feshbach resonance [35], so we can use the nu-
merical calculation to find the rule of tunneling occupation
along with adiabatic coefficients. The inset in Fig. 4 is the
enlarged drawing of the condition ḡ = 0, and we can see the
branch point is off the real axis leading to a transition oc-
cupation vanishing exponentially in the adiabatic limit [4,5].
The result is completely according to the close system for
which we set ḡR = 2ḡ, and there is no interaction between
the reservoir and the polaritons, but the dissipative γ̄C leads
to the particle loss. Here, we just consider P̄ 	 P̄th in Fig. 4.
When interaction ḡ is beyond zero, occupation after tunneling
will decrease after reaching a peak for the fluctuation of the
reservoir, which is a result of competition between LZ driving
and relaxation [65–68]. Besides, the increase of nonlinear
interaction between the reservoir and polaritons makes the
system stable again, which leads to dynamical stability even
though the acceleration ᾱ is much larger. The competition
between dissipative coefficients and the nonlinear interaction
of reservoir and polaritons bring a powerful tool to achieve a
new equilibrium.

V. THE MOTION OF HAMILTONIAN IN PHASE SPACE

In this section, we focus on the motions of the polariton
system in phase space. Here, we consider two components
a = aeiθa , b = beiθb , population difference s = |b|2 − |a|2, to-
tal population n = |b|2 + |a|2, the relative phase θ = θb − θa,
and the product of two components |ab| = √

n2 − s2/2.
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FIG. 5. Evolution of the phase space motions of Hamiltonian (14) in phase space (s, θ ). Dimensionless parameters in Eq. (14) are used:
ḡ = 0.006, γ̄R = 0.496, γ̄C = 0.33, R̄ = 0.01, ḡR = 2ḡ. The fixed points P2 and P3 will move from the relative phase π/2 and 3π/2 to 0 and
2π along with the increase of the periodic strength v. Besides, more fixed points will appear if the pumping rate P̄ is large enough, and some
fixed points will vanish because of the existence of adiabatic parameter γ .

From Eq. (13), the total energy of the system can be cast
into an effective Hamiltonian [69,70]:

E = ḡ
3n2 − s2

4
+ γ s/2 + v cos θ

√
n2 − s2/2

− (λ + iχ )
n2 − s2

2
cos2 θ, (14)

with γ = ᾱt . The energy is only corresponding to n, s, θ
and the imaginary part of E is always a periodic function
to θ , so we only consider the real part. The fixed points
of the effective Hamiltonian correspond to the eigenstates

of the nonlinear two-level system and the extreme points
require

∂

∂θ
E = (n2 − s2)λ sin 2θ −

√
n2 − s2

2
v sin θ, (15)

∂

∂s
E = γ

2
− ḡs

2
+ 2λs cos2 θ − sv cos θ

2
√

n2 − s2
, (16)

∂

∂n
E = 3ḡn

2
+ nv cos θ

2
√

n2 − s2
− cos2 θ

[
2λn + (n2 − s2)

dλ

dn

]
,

(17)

with d
dnλ = − ḡRR̄2 n̄0

R

2(γ̄R+R̄n)2 . From Eq. (15), the fixed points only

appear when sin θ = 0 or s = ±n, or cos θ = v

4λ
√

n2−s2 . The
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solution is s = ±n, or θ = 0, π or θ = arccos ( v

4λ
√

n2−s2 ). Here
we have a new solution if | v

4λ
√

n2−s2 | � 1 and n represents the
density of polariton, so it must be a positive number and can
be controlled by pump rate P̄.

First, we want to focus on the pumping rate that is near
the threshold P̄th and how the adiabatic process influences the
phase space of the system. As is shown in Figs. 5(a1)–5(a3),
there are only three fixed points: one is at θ = π and the others
appear near θ = π/2 and θ = 3π/2, along with the increase
of v; fixed points go to the border of the phase at the adiabatic
process with γ = 0. In Fig. 5(a3) fixed points P2 and P3 are
the same. When γ is beyond zero, fixed point P1 goes to the
border s = −n and points P2 and P3 go to the border s = n as
is shown in Figs. 5(b1)–5(b3).

The polariton system’s particle number can be adjusted by
pumping rate and if we set P̄ 	 P̄th, the system will have
different results. There are eight fixed points in phase space:
P1, P6, and P8 appear at θ = π , meanwhile, P2 and P3 appear
at θ = π/2 and 3π/2 and other points appear at θ = 0 as
is shown in Figs. 5(c1)–5(c3). Point P5 or point P6 is the
saddle point and can annihilate itself by colliding with P1 as
R changes slowly, leading to the breakdown of adiabaticity of
the tunneling [70]. Furthermore, P5 and P6 will also annihilate
with P4 and P1, so in this situation, there may be two loops at
k = 1/2 as are reported in Ref. [43]. There are two saddle
points when v/2 < g, because we need to compare gn with
v/2 and in our region ḡn 	 v/2 for P̄ 	 P̄th.

VI. CONCLUSION

In summary, we obtain and study the nonequilibrium LZ
model of the polariton condensate in a periodic potential under
nonresonant pumping by the two-mode approximation to the
driven-dissipative GP equations coupled to a rate equation
for the reservoir density. In the past, the fluctuations of the
reservoir are routine and not under consideration for they are
much smaller than the reservoir, but they play a very important
role in the tunneling process. The steady states of the system
provide that the relative phase can only be π/2 + jπ in the
Josephson junction, and atoms will lose after tunneling for
fluctuations has a sudden peak near t = 0. The numerical
results of the tunneling process agree with Ref. [36] very
well. If we set the fluctuation of the reservoir to a constant,
the simplified model is similar to the model discussed in
Ref. [44]. Last but not least, the motion of the Hamiltonian
in phase space reveals two loops in the band structure, which
is obtained in Ref. [43] with different methods.
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