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Non-Gaussian variational approach to Fermi polarons in one- and two-dimensional lattices
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We study the Fermi polaron problem of one mobile spin-up impurity immersed atop the bath consisting of
spin-down fermions in one- and two-dimensional square lattices. We solve this problem by applying a variational
approach with non-Gaussian states after separating the impurity and the background via the Lee-Low-Pines
transformation. The ground state with a fixed total momentum can be obtained via imaginary-time evolution. For
the one-dimensional case, the variational ground-state energy is compared with exact Bethe ansatz solutions and
numerical density matrix renormalization-group results with excellent agreement. In two-dimensional lattices,
we focus on the dilute limit, and find a polaron-molecule evolution consistent with previous results obtained by
variational and quantum Monte Carlo methods for models in continuum space. Compared to previous works, our
method provides the lowest ground-state energy in the entire parameter region considered, and has an apparent
advantage as it does not need to assume a priori any specific form of the variational wave function.
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I. INTRODUCTION

A polaron is defined as a dressed state formed by a mobile
impurity interacting with a medium. First proposed by Landau
[1] and Pekar [2] more than half a century ago to describe the
dressing effect of an impurity by the elementary excitations
of the medium, the concept of polaron has attracted great at-
tention and has become a fundamental problem in condensed-
matter physics, mainly because it plays an essential role as
a building block to understand more complex many-body
phenomena [3–5]. Depending on whether the host particle
excitations obey Bose or Fermi statistics, a polaron can be
classified as a Bose polaron or a Fermi polaron. As the Bose
polaron was extensively studied in the context of electron-
phonon systems, a Fermi polaron is suggested to behave
quite differently since the impurity may undergo a polaron-
molecule transition and effectively change its statistics by
binding fermions from the background.

In recent years, there has been a significant amount of the-
oretical work aimed at understanding polaron problems with
a variety of tools, such as the variational approach [6] based
on Feynman path-integral formalism [7], numerical simula-
tion based upon diagrammatic quantum Monte Carlo method
[8–11], and systematic perturbation expansion [12,13] with
the use of a T matrix [14–17]. Chevy has provided an instruc-
tive variational wave function [18] that captures the essential
properties of a polaron, even on a quantitative level when
compared with Monte Carlo calculations. This method can
be improved by including more particle-hole pair excitations
[19–21]. Specifically, by including one and two particle-hole
pairs in the variational ansatz, a polaron-molecule transition
in a two-dimensional (2D) Fermi gas was obtained [20,21],
which agrees well with the experimental results [22].

*wzhangl@ruc.edu.cn

Ultracold-atomic gases with high controllability provide
us with a particularly clean and flexible platform to explore
polaron physics. With the aid of Feshbach resonance and
optical lattice techniques, polaron properties can be studied
to great precision across a broad interaction regime, from
attractive to repulsive interaction, in different dimensions. A
Fermi polaron was experimentally observed and investigated
in highly polarized two-component Fermi gases [23–27]. The
observation of Bose polarons has been reported by radio-
frequency spectroscopy of bosonic 39K atoms [28] and of
40K impurities in an ultracold bath of 87Rb atoms [29]. In
addition, polarons in a 2D Fermi gas involving spin-orbit
coupling was theoretically studied [30], which may give rise
to a novel Fulde-Ferrell-Larkin-Ovchinnikov-like molecular
state. Polaron problems in alkaline-earth(-like) atoms with
orbital Feshbach resonance [31–33], in one-dimensional har-
monic traps [34,35], and at finite temperatures [36] were also
discussed theoretically.

In this paper, we consider a highly polarized Fermi Hub-
bard model with a single spin-up fermion acting as an impu-
rity interacting with a bath consisting of spin-down fermions.
We use the non-Gaussian variational method [37], which for
our case can be understood as a combination of the Lee-
Low-Pines (LLP) transformation [38] and the Gaussian state
approximation, to determine the ground state of the system.
Specifically, under the LLP transformation, the impurity de-
grees of freedom can be eliminated and we can obtain a trans-
formed Hamiltonian describing a single-component system
with host spin-down fermions only. Then we use a Gaussian
wave function to approximate the transformed ground state
and determine the corresponding variational parameters by
imaginary-time evolution. We benchmark our results by com-
paring to the exact Bethe ansatz solution [39] and variational
density matrix renormalization-group (DMRG) results [40]
for one-dimensional (1D) lattices. For 2D cases, we focus on
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the dilute limit, which is closely related to continuum systems.
By varying the interaction strength, we find a fairly broad
region for the system to evolve from polaron to molecule
states. The region of evolution is consistent with the results
obtained by a Chevy-type variational ansatz [21], diagram-
matic Monte Carlo simulation [10,11], and the impurity lattice
Monte Carlo method [41]. We emphasize that our approach
offers the lowest ground-state energy within the entire region
of interaction strength considered, and does not require any
knowledge about the wave-function ansatz or any expensive
numerical effort. In addition, as our method does not rely on
the dimensionality or specific form of the lattice, it can be
straightforwardly generalized to other lattice configurations in
various dimensions.

The remainder of this manuscript is organized as follows.
In Sec. II, we present the polaron problem and employ the
LLP transformation to decouple the impurity degree of free-
dom from the background. By assuming a Gaussian state as
the trial wave function for the transformed single-component
Hamiltonian, the ground state of the original model takes the
form of a non-Gaussian state by adding back the impurity
degree of freedom and reversing the LLP transformation, as
shown in Sec. III. A numerical minimization of energy is then
applied to find the approximate eigenstate for a given total
momentum. In Sec. IV, we study a 1D lattice and benchmark
the outcome of the non-Gaussian variational approach by the
DMRG and Bethe ansatz methods, while the results for a
2D square lattice in the dilute limit are discussed in Sec. V.
Finally, we summarize the main conclusion in Sec. VI.

II. HAMILTONIAN AND LEE-LOW-PINES
TRANSFORMATION

We consider a Hubbard model for a two-component
Fermi system interacting via an on-site interaction on a one-
dimensional chain or a two-dimensional square lattice. The
lattice spacing a = 1 is taken as the length unit throughout
this manuscript. The Hamiltonian reads

H = −t
∑
〈ij〉,σ

c†
iσ cjσ + g

∑
i

ni↑ni↓ − μ
∑

i

c†
i↓ci↓, (1)

where c†
iσ and ciσ are, respectively, creation and annihilation

operators for fermions on site i with spin σ = ↑,↓, niσ =
c†

iσ ciσ is the number operator, μ is the chemical potential
to tune the number of spin-down particles, and the summa-
tion in the first term runs over all nearest-neighboring sites
〈ij〉. To study the polaron physics, we focus on the highly
polarized limit with only one single spin-up impurity, i.e.,
N↑ = ∑

i ni↑ = 1.
Notice that the system possesses translational symmetry

and the total momentum is a good quantum number. To
eliminate the impurity degree of freedom, we introduce a
unitary transformation,

ULLP = e−iQ·X, (2)

where Q = ∑
k kc†

k↓ck↓ is the total momentum operator of
the spin-down background, k is the reciprocal lattice vector,
and X = ∑

i ic†
i↑ci↑ is the coordinate operator of the spin-up

impurity. The transformation given by Eq. (2), known as the
Lee-Low-Pines (LLP) transformation, was introduced in 1953

to study the problem of an impurity fermion immersed in a
background of phonons [38]. In the following discussion, we
show that the same transformation can separate the degrees
of freedom of the spin-up impurity and the spin-down Fermi
sea, as it does in a Bose medium of phonons. Recently, the
LLP transformation was employed to study the Fermi polaron
problem in a 1D continuum model [42].

We first rewrite the spin-down part of the Hamiltonian
given by Eq. (1) in momentum space,

H = − t
∑
〈ij〉

c†
i↑cj↑ +

∑
k

(εk − μ)c†
k↓ck↓

+ g

�

∑
i,k,k′

c†
i↑ci↑ei(k′−k)·ic†

k↓ck′↓, (3)

where ck↓ = 1√
�

∑
i e−ik·ici↓ and c†

k↓ = 1√
�

∑
i eik·ic†

i↓ are the
fermion operators in momentum space with � the number of
lattice sites, and the dispersion reads εk = −2t cos k and εk =
−2t (cos kx + cos ky) for 1D and 2D lattices, respectively.
Next, we apply the LLP transformation to Eq. (3). Using
the Baker-Campbell-Hausdorff (BCH) formula, the fermion
operators ck↓ and ci↑ transform as U †

LLPck↓ULLP = e−ik·Xck↓
and U †

LLPci↑ULLP = e−iQ·ici↑, respectively. The Hamiltonian
after the LLP transformation then takes the following form:

HLLP =
∑

k

c†
k↑ck↑

[
−t

∑
δ

e−i(k−Q)·δ
]

+
∑

k

(εk − μ)c†
k↓ck↓+

∑
k′

c†
k′↑ck′↑

⎡
⎣ g

�

∑
k,q

c†
k↓cq↓

⎤
⎦.

(4)

Here, δ represents the unit lattice vectors, with δ = ±1 for
1D and δ ∈ {(±1, 0), (0,±1)} for 2D lattices. It can be seen
that the LLP transformation explicitly separates the total con-
served momentum of the system. Indeed, the total conserved
momentum is transformed as the momentum of the spin-up
particle, which, for a given total momentum, eliminates the
degree of freedom of the impurity. Specifically, the momen-
tum of the spin-down atoms transforms as

U †
LLP

∑
k

kc†
k↓ck↓ULLP =

∑
k

kc†
k↓ck↓. (5)

The momentum of the spin-up impurity transforms as

U †
LLP

∑
k

kc†
k↑ck↑ULLP =

∑
k

∑
j,j′

kei(k+Q)(j−j′ )c†
j↑cj′↑

=
∑

k

∑
j,j′

(k − Q)eik(j−j′ )c†
j↑cj′↑

=
∑

k

(k − Q)c†
k↑ck↑

=
∑

k

kc†
k↑ck↑ − Q. (6)

The total momentum of the system transforms as

U †
LLP

∑
k

k(c†
k↑ck↑ + c†

k↓ck↓)ULLP =
∑

k

kc†
k↑ck↑. (7)
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From Eqs. (5)–(7), we can see that the conserved total mo-
mentum of the original model is transformed to the mo-
mentum of the impurity. Thus, for a given total momentum
K, the ground state of HLLP takes the form c†

K↑|0〉 ⊗ |�〉↓,
where |�〉↓ is the ground state of the spin-down atoms. By
combining with the condition

∑
k c†

k↑ck↑ = 1, Eq. (4) reduces
to a Hamiltonian containing a spin-down component only,

HK↓ =
∑

k

(εk − μ)c†
k↓ck↓ + g

�

∑
k,q

c†
k↓cq↓

− t
∑

δ

e−i(K−Q)·δ. (8)

We stress that although the first two terms in Eq. (8) are in a
quadratic form of spin-down operators, the third term involves
multiscattering processes between particles through the expo-
nential dependence of the operator Q = ∑

k kc†
k↓ck↓. Physi-

cally, the Hamiltonian obtained after the LLP transformation
describes a polarized medium of spin-down particles with
long-range effective interaction mediated by the impurity. The
polarization effect of such a strongly correlated many-body
system cannot be calculated exactly, and one has to rely on
some approximation to obtain the susceptibility.

Next, we construct a variational wave function in a Gaus-
sian form to find the approximate ground state |�〉↓ of the
Hamiltonian above, and then obtain the eigenstate of the
original Hamiltonian with a total conserved momentum by
adding back the spin-up impurity and reversing the LLP
transformation.

III. NON-GAUSSIAN STATE VARIATIONAL APPROACH

The essence of the variational approach used in this work
is to approximate the ground state of Eq. (8) by a Gaussian
trial wave function,

|�GS〉 = UGS|0〉↓, (9)

where the unitary transformation takes the form UGS =
ei 1

4 AT ξmA for an even particle number of spin-down atoms, or
UGS = ei 1

4 AT ξmAa1,k1 for an odd particle number of spin-down
atoms, with A = (a1,k1 , . . . , a1,k�

, a2,k1 , . . . , a2,k�
)T . The Ma-

jorana operators for spin-down fermions are defined as a1,k j =
c†

k j ,↓ + ck j ,↓ and a2,k j = i(c†
k j ,↓ − ck j ,↓), and satisfy the anti-

commutation relation {aα,k, aβ,k′ } = 2δαβδkk′ . The variational
parameter ξm is an antisymmetric Hermitian matrix. To elim-
inate the gauge degree of freedom in ξm, it is convenient to
introduce a covariant matrix [37],

(
m)i, j = i

2
〈�GS|[Ai, Aj]|�GS〉, (10)

where Ai labels the ith element of A. The covariance matrix is
related to ξm as


m = −Um�U T
m , (11)

where Um = eiξm for an even particle number of spin-down
atoms and Um = eiξmUv for an odd particle number of spin-
down atoms,

Uv =
(

1 0
0 −12�−1

)
, (12)

and � is constructed by the identity matrix 1� of
dimension � as

� ≡ iσy ⊗ 1� =
(

0 1�

−1� 0

)
. (13)

The Gaussian variational ansatz given by Eq. (9) represents
a mean-field treatment of the correlations among spin-down
atoms induced by the third term of the Hamiltonian given
by Eq. (8). With the aid of Majorana operators, the state is
automatically antisymmetrized, and can be looked upon as
an analogy to the Hartree-Fock approximation for electronic
gases. In other words, the ansatz given by Eq. (9) describes a
screening effect of the spin-down medium onto itself. Thus,
by adding back the spin-up impurity and reversing the LLP
transformation, the eigenstate of the original Hamiltonian (1)
with a total conserved momentum K can be expressed as a
non-Gaussian state,

|�NGS〉 = ULLP(c†
K↑ ⊗ UGS)|0〉. (14)

Notice that in such a state, the impurity is scattered off not by
a bare spin-down fermion, but by a quasiparticle dressed by
other particles. Equivalently, this variational ansatz contains
terms of an arbitrary number of particle-hole excitations atop
the spin-down Fermi sea, as can be seen in a series expansion
of the exponential function of the Gaussian state.

In the spirit of the variational method, the ground state
of a Hamiltonian H can be obtained via an imaginary-time
evolution of a trial wave function,

|�(τ )〉 = e−Hτ |�(0)〉√
〈�(0)|e−2Hτ |�(0)〉

, (15)

to the asymptotic limit τ → ∞ provided that the initial trial
state |�(0)〉 has a nonzero overlap with the ground state. Such
an evolution can be described by a differential equation,

dτ |�(τ )〉 = −(H − 〈H〉)|�(τ )〉, (16)

with the mean energy 〈H〉 = 〈�(τ )|H |�(τ )〉. Thus, the
imaginary-time evolution equation for the non-Gaussian state
given by Eq. (14) can be written as

dτ |�NGS〉 = −P (H − E )|�NGS〉, (17)

where E = 〈�NGS|H |�NGS〉 = 〈�GS|HK↓|�GS〉 is the varia-
tional mean energy and P is the projection operator onto
the subspace spanned by tangent vectors of the variational
manifold. The left-hand side of Eq. (17) gives

dτ |�NGS〉 = ULLP[(c†
K↑|0〉↑) ⊗ (UGSUL|0〉↓)], (18)

where

UL = 1

4
:AT U T

m (∂τUm)A: + i

4
Tr

[
U T

m (∂τUm)
m
]
, (19)

and : : represents normal ordering with respect to
the vacuum state. The right-hand side of Eq. (17)
reads

−(H − 〈H〉)|�NGS〉 = −ULLP[(c†
K↑|0〉↑) ⊗ (UGSUR|0〉↓)],

(20)

where UR = (i/4):AT U T
m hmUmA: + δHK↓. Here, δHK↓ de-

notes the higher-order terms of ck↓ that are orthogonal to

033305-3



RUIJIN LIU, YUE-RAN SHI, AND WEI ZHANG PHYSICAL REVIEW A 102, 033305 (2020)

the tangential space which will be projected out by P
in Eq. (17), and

hm = 4
δE

δ
m
(21)

is the functional derivative of the variational energy. Compar-
ing Eqs. (18) and (20), and combining the covariant parameter
defined by Eq. (11), we can finally obtain the imaginary-time
equation of motion (EOM) for the covariance matrix 
m

[37,43],

∂τ
m = −hm − 
mhm
m. (22)

To evolve the variational parameter 
m according to
the EOM given by Eq. (22), we need to calculate the
functional derivative hm defined in Eq. (21). First of all,
we calculate the variational energy E = 〈�GS|HK↓|�GS〉.
Using the relations c†

k,↓ = 1
2 (a1,k − ia2,k ) and ck,↓ =

1
2 (a1,k + ia2,k ), we can rewrite the first two terms of HK↓ in
Eq. (8) as

∑
k

(εk − μ)c†
k↓ck↓ + g

�

∑
k,q

c†
k↓cq↓ = 1

4

∑
k

(εk − μ)(a1,ka1,k + a2,ka2,k − ia2,ka1,k + ia1,ka2,k )

+ g

4�

∑
k,q

(a1,ka1,q + a2,ka2,q − ia2,ka1,q + ia1,ka2,q)

= 1

2

∑
k

(
εk − μ + g

�

)
+ i

4
AT H0A − iμ

4
AT �A. (23)

The matrix � is defined as in Eq. (13), and H0 = iσy ⊗ [diag(εk ) + (g/�)J�], where diag(εk ) is an � × � diagonal matrix with
diagonal matrix elements εk1 , · · · , εk�

, and J� is an � × � matrix with all elements being 1. The expectation value of the term
(i/4)AT H0A under the Gaussian state can be calculated as

i

4
〈�GS|AT H0A|�GS〉 = i

4

∑
i, j

(H0)i, j〈�GS|AiAj |�GS〉 = i

4

∑
i< j

[(H0)i, j〈�GS|AiAj |�GS〉 + (H0) j,i〈�GS|AjAi|�GS〉]

= i

4

∑
i< j

(H0)i, j〈�GS|([Ai, Aj])|�GS〉 = 1

2

∑
i< j

(H0)i, j (
m)i, j = 1

4

∑
i, j

(H0)i, j (
m)i, j, (24)

where we have used the antisymmetry of H0 and the covari-
ance matrix 
m defined in Eq. (10). Similarly, we can obtain
the following expression:

iμ

4
〈�GS|AT �A|�GS〉 = μ

4

∑
i, j

�i, j (
m)i, j . (25)

The mean value of the operators that take the form as the
third term in Eq. (8) can be obtained by introducing coherent
representation for the fermionic Gaussian state, and the result
is [37]

〈�GS|eiQ·δ|�GS〉 = ( − 1
2

)�
s f Pf(
F ), (26)

where s f = (−1)�/2 and s f = (−1)(�−1)/2 for � being
even and odd, respectively. Other quantities in the ex-
pression above are 
F = √

1 − eiα
m

√
1 − eiα − (1 + eiα )�,

α = 12 ⊗ diag(k · δ), with diag(k · δ) a diagonal matrix with
diagonal elements k1 · δ, . . . , k� · δ, and Pf(
F ) denotes the
Pfaffian of 
F . Combining Eqs. (24)–(26), we obtain the

variational energy

E = 〈�GS|HK↓|�GS〉

= 1

2

∑
k

εk − �μ

2
+ g

2
+ 1

4

∑
i, j

(H0)i, j (
m)i, j

− t
∑

δ

e−iK·δ
(

−1

2

)�

s f Pf(
F ) − μ

4

∑
i, j

�i, j (
m)i, j .

(27)

The functional derivative hm is

hm = H0 − μ� + 2t
∑

δ

[
e−iK·δ

(
−1

2

)�

×s f Pf(
F )
√

1 − eiα
−1
F

√
1 − eiα

]
. (28)

In addition, the particle number of the spin-down medium is
determined by

N↓ = −∂E

∂μ
= �

2
+ 1

4

∑
i, j

�i, j (
m)i, j . (29)

In the following discussion, we evolve the variational parame-
ter 
m via Eqs. (22) and (28) until a convergence of variational
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0.7
MPS
non-Gaussian state
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0.4

0.8

1.2

FIG. 1. Particle number of the spin-down component and
ground-state energy of a Fermi polaron (inset) in a 1D lattice by
varying the chemical potential. Results obtained by the non-Gaussian
variational approach and DMRG method with MPS representation
reach an excellent agreement. Parameters used in this figure are
g/t = 2, K = 0, and � = 50.

energy given by Eq. (27) is reached under a number constraint
given by Eq. (29).

IV. ONE-DIMENSIONAL CASE

First, we focus on the one-dimensional case and study the
dispersion of the system for a given total momentum K. In our
numerical variation, we evolve the imaginary-time EOM (22)
until a convergence to a steady state is reached. To ensure the
resulting state is the true ground state, we run the evolution
for a set of randomly generated initial states and choose the
outcome with lowest energy. The variational results are then
compared with those obtained by Bethe ansatz (BA) [39]
and the variational DMRG method based on matrix product
states (MPS) representation under a periodic boundary condi-
tion, with system size � = 50, a maximum bond dimension
up to M = 1200, and a restriction of energy variance less
than 10−6.

Figures 1 and 2 show the results of zero total momentum,
K = 0. We first point out that the results obtained by the non-
Gaussian state with K = 0 agree perfectly well with those
obtained by DMRG without specifying the total momentum
K, indicating that the ground state has a zero total momentum.

-10 -5 0 5 10
g/t

-10

-8

-6

-4

-2

0

2

E
p
/t

MPS
non-Gaussian state

FIG. 2. Ground-state energy of a Fermi polaron in a 1D lattice
by varying the interaction strength. Other parameters are taken as
N↓ = 25, K = 0, and � = 50.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Ka

0

0.1

0.2

0.3

0.4

(E
(K

,g
)→

E
(0

,g
))

/t g/t = →4
g/t = →2
g/t = 0
g/t = 2
g/t = 4

FIG. 3. Dispersion relations for a 1D Fermi polaron with various
interaction strengths. Results for the interaction with opposite signs
are identical owing to the partial particle-hole symmetry as discussed
in the text. The effective mass increases with interaction strength
|g|, revealing a more significant dressing effect induced by the bath.
Other parameters used in this plot are N↓ = 25 and � = 50.

Owing to the finite-size effect, we observe a steplike jump
in both the particle number and the ground-state energy by
varying the chemical potential, as depicted in Fig. 1. To further
elucidate the interaction effect, in this figure and the following
discussion, we set the zero point energy to be the energy of the
corresponding noninteracting case, and define the polaron en-
ergy as Ep(K, g) ≡ E (K, g) − E (K = 0, g = 0). Notice that
the noninteracting system energy E (K = 0, g = 0) can be
calculated exactly.

In Fig. 2, we fix the density of spin-down particles N↓/� =
0.5 and vary the interaction g from attractive to repulsive.
This result perfectly matches the BA solution [39], which
is not distinguishable from the curve of our non-Gaussian
variational data. It can be seen that the ground-state energy
varies smoothly versus the interaction. In the limit of infinitely
large repulsion g → +∞, the spin-up impurity acts an effec-
tive hard wall for spin-down particles, which cuts two links
with hopping rate t and hence leads to an energy Ep → 2t . In
the opposite limit of large attractive interaction g → −∞, the
spin-up impurity is tightly bound with one spin-down particle,
and acting together as an impenetrable boundary due to the
Pauli blocking effect. Thus, the energy tends to the limiting
value of Ep → g + 2t . Our numerical results are consistent
with the two limits.

Next, we fix the density of spin-down particles at half
filling with μ = 0 and N↓/� = 0.5, and extract the dispersion
relation E (K, g) − E (0, g) by varying the total momentum K
with interaction strength g/t = 0,±2,±4. From Fig. 3, we
find that the effective mass of the quasiparticle defined as

m∗ =
(

∂2E

∂K2

∣∣∣∣
K=0

)−1

(30)

is independent of the sign of the interaction and increases
monotonically with |g|. The symmetry with respect to the
sign of the interaction can be understood by applying a partial
particle-hole transformation [44],

U↓ ≡
∏

j

[c j↓ + (−1) jc†
j↓], (31)
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which transforms the operators ciσ as

U †
↓ci↑U↓ = ci↑, U †

↓ci↓U↓ = (−1)ic†
i↓. (32)

At half filling with μ = 0, the Hamiltonian given by Eq. (1) is
transformed under Eq. (31) as

U †
↓H (g, μ = 0)U↓ = H (−g, μ = 0) + g

∑
i

c†
i↑ci↑, (33)

while the number constraint remains unchanged, i.e., N↑ =
1 and N↓/� = 0.5. Thus, we have the relation of the energy
spectra for the interaction of opposite signs,

E (K, g) = E (K,−g) + g, (34)

at half filling. This result shows that the difference between
E (K, g) and E (K,−g) is a constant g, and the effective
masses for the two cases are equivalent.

V. TWO-DIMENSIONAL CASE IN THE DILUTE LIMIT

In this section, we employ the non-Gaussian variational
approach to a 2D square lattice. We focus on the dilute limit
with the number of spin-down particles that is much smaller
than that of the lattice sites, i.e., N↓ � �. This limit is of
particular interest as it is closely related to the continuum
model, which can be considered as a lattice model with an
infinitesimal lattice spacing, d → 0. The problem of the Fermi
polaron in a 2D continuum system has been studied using
various methods [10,11,20,21,41]. Previous works using a
variational approach by including more pairs of particle-hole
excitations show that there exists a polaron-molecule tran-
sition in the ground state as the interaction varies [20,21].
Similar findings have been obtained in diagrammatic Monte
Carlo (diagMC) simulations [10,11]. All of these variational
and diagMC studies perform separate calculations for polaron
and molecule states, where the transition is identified as the
level crossing point of the two states. Later, in order to study
the transition region in a unified way, a fully nonperturbative
calculation was performed using the impurity lattice Monte
Carlo (ILMC) method [41]. One feature of the ILMC method
is the discretization of the spatial part. The results obtained
by ILMC show evidence for a smooth crossover from polaron
to molecule states. Here, we study the 2D lattice model in
the dilute limit via the non-Gaussian variational approach,
without assuming a priori any specific form of the wave
function. In the following calculation, we take the lattice
size as � = 50 × 50 and N↓ ≈ 37, which corresponds to a
filling density N↓/� ≈ 0.0148. Systems with smaller size and
different filling factor are also tested for various interacting
strengths to ensure that the finite-size effect is negligible.

In a 2D continuum model, the interaction strength g is
characterized by the binding energy Eb of a two-body bound
state. To make a quantitative comparison, we first solve
for the two-body bound state in the lattice Hamiltonian.
In momentum space, the two-body Hamiltonian reads

H (2) =
∑
k,σ

ε′
kc†

kσ
ckσ + g

�

∑
q,k,k′

c†
q−k↑c†

k↓ck′↓cq−k′↑, (35)

with single-particle dispersion

ε′
k = εk + 4 = −2t cos(kx ) − 2t cos(ky) + 4 (36)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
g/t

0

1

2

3

4

E
b
/t

exact
non-Gaussian state

FIG. 4. Two-body bound-state energy for a single spin-up and
a single spin-down atom in a 2D square lattice of size 50 × 50. The
exact result is obtained by solving the two-body problem analytically
as in Eq. (40).

and number constraints
∑

k c†
k↑ck↑ = ∑

k c†
k↓ck↓ = 1. Notice

that we have shifted the zero-energy point to the band bottom
to get a direct comparison with the continuum model. The
two-body wave function with zero total momentum can be
generally written as

|� (2)〉 =
∑

k

�
(2)
k c†

k↑c†
−k↓|0〉. (37)

Substituting Eq. (37) into the Schrödinger equation,

H (2)|� (2)〉 = E (2)|� (2)〉, (38)

we obtain the following equation for the coefficients �
(2)
k :

2ε′
k�

(2)
k + g

�

∑
k′

�
(2)
k′ = E (2)�

(2)
k . (39)

Equation (39) leads to a self-consistent equation,

−1

g
= 1

�

∑
k

1

Eb + 2ε′
k

, (40)

where Eb = −E (2) is the two-body binding energy. The two-
body ground state of Eq. (35) can also be obtained numerically
via the non-Gaussian variational method. In Fig. 4, we show
the results of Eb obtained by the two methods and find
excellent agreement. This observation is another evidence for
the validity of the variational approach.

With the connection between the lattice and continuum
models built by Eq. (40), we replace g in the Hamiltonian (1)
with Eb, and solve for the ground state with total momentum
K = 0. As in the 1D case, we define the polaron energy as the
shift induced by the interaction,

Ep ≡ E (g) − E (g = 0), (41)

and plot the subtracted-scaled polaron energy (Ep + Eb)/E f

versus the dimensionless interaction η ≡ 1
2 ln(2E f /Eb) in

Fig. 5. Here, the Fermi energy E f = ε′(k f ) is defined via
the shifted dispersion relation given by Eq. (36) with Fermi
momentum k f .

From Fig. 5(a), we find that the variational result ap-
proaches the value of a noninteraction system in the weak-
coupling limit with large positive η, and saturates to the
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FIG. 5. (a) The non-Gaussian variational ground-state energy
(blue circles) of a 2D Fermi polaron with number of background par-
ticles N↓ ≈ 37 (inset) in a square lattice of size 50 × 50. The system
is in the dilute limit with N↓/� ≈ 0.0148. The energy saturates to the
noninteracting value Ep = 0 in the weak-coupling limit with large
positive η, and to the two-body bound-state energy −Eb (black solid
line) in the strong-coupling limit with large negative η. (b) A polaron-
molecule evolution can be observed by plotting the polaron energy
in a scaled way. The results are compared with the outcome obtained
using the Chevy-like polaron ansatz with one particle-hole pair
excitation (dashed line) [20], the same ansatz with two particle-hole
pair excitations (solid line) [21], and the molecule variational wave
function with one particle-hole excitation pair (dash-dotted line)
[20]. Some numerical solutions using diagrammatic quantum Monte
Carlo (diagMC) [10] and impurity lattice Monte Carlo (ILMC) [41],
as well as the experimental data for highly polarized quasi-two-
dimensional Fermi gases [45], are also shown for comparison.

two-body bound-state energy −Eb (solid line) in the strong-
coupling limit with large negative η. This observation suggests
that the system transforms from a polaron to a molecule state
by increasing the interaction from zero. In fact, compared with
the energies of polaron and molecule states obtained by either
Chevy-like ansatz or diagrammatic MC, as shown in Fig. 5(b),
the results obtained by the non-Gaussian variational approach
show good agreement in the corresponding weak and strong
interacting limits. In the intermediate interaction regime,
the non-Gaussian variational method reveals a fairly broad
evolution from polaron to molecule states, with a ground-
state energy significantly lower than all other numerical and
variational methods throughout the entire parameter region.
We emphasize that in this calculation, one does not need to
assume any specific form of the trial wave function, and the
results for different interaction strengths are obtained via the
same algorithm with very economical numerical efforts. The
numerical convergence is quite stable against different initial

states and variational routes. From Fig. 5(b), we estimate
that the polaron-molecule evolution takes place within the
parameter region −1.3 < η < −1, which is approximately
consistent with those obtained by the Chevy-like ansatz [21]
with −0.97 < η < −0.80, the diagMC method [10] with
−1.1 < η < −0.8, and the ILMC method [41] with −0.9 <

η < −0.75 for 2D systems, as well as the diagMC method
with −1.3 < η < −0.9 for quasi-2D geometries [11].

To extract more information about the evolution between
the polaron and molecule states, we calculate the density-
density correlation function defined as

C↑↓(x) = 〈�NGS|c†
i+x,↑ci+x,↑c†

i,↓ci,↓|�NGS〉, (42)

which can be transformed as mean value problems in the
Gaussian state as

C↑↓(x) = 1

�

∑
k,k′

ei(k−k′ )·x〈�GS|c†
k,↓ck′,↓|�GS〉. (43)

From Fig. 6(a), we observe a smooth change of the corre-
lation function by varying the interaction strength η. In the
weakly interacting case of η = 0.5, the distribution of the
spin-down background fermions is fairly extended around
the impurity, showing a polarization effect of the medium
induced by the impurity. As the interaction strength increases,
the spin-down particles gradually concentrate on the spot of
impurity, and eventually form a tightly bound dimers. The
correlation function shows dips around the dimer as a result
of the Pauli exclusion principle. When moving further away
from the impurity, the correlation approaches the background
value of a noninteracting Fermi system. The variation of the
correlation function also suggests a smooth crossover from
the polaron to molecule states, as previously discussed by
the ILMC algorithm [41]. In cold-atom experiments, the real-
space density-density correlation can be extracted from in
situ imaging [46], Bragg spectroscopy [47], or time-of-flight
measurements [48,49].

Another quantity of particular interest is the quasiparticle
residue defined as

Z = |(〈FS|↑〈0|ck=0,↑)|�NGS〉|2 = |〈FS|�GS〉|2, (44)

where |FS〉 = ∏
k<=|k f | c†

k↓|0〉 denotes the noninteracting
ground state of the spin-down atoms, i.e., the noninteracting
Fermi sea. This quantity reveals to what extent the many-
body wave function is modified by the interaction and can
be extracted by the radio-frequency spectroscopy [26,50].
According to Eq. (10), the covariant matrix of |FS〉 reads


m,FS =
(

0 diag((−1)nk↓+1)
−diag((−1)nk↓+1) 0

)
, (45)

where nk↓ denotes the particle number of the spin-down
component with momentum k, and diag((−1)nk↓+1) is a
diagonal matrix with elements (−1)nk1↓+1, . . . , (−1)nk�↓+1.
Thus, the quasiparticle residue here can be viewed as the
overlap between two Gaussian states and can be calculated
as [51]

Z = 2−�Pf(−
m,FS)Pf(−
m,FS − 
m). (46)

As shown in Fig. 6(b), the quasiparticle residue decreases
monotonically and smoothly from unity to zero as η varies
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FIG. 6. (a) Density-density correlation function C↑↓(x) and (b) quasiparticle residue of a 2D polaron with the lattice size � = 50 × 50 and
the particle number N↓ ≈ 37. In (a), we take x = (x, 0), and k f is the Fermi wave vector along the x direction.

from the weakly to strongly interacting limits, also suggesting
a crossover from the polaron to molecule states rather than a
phase transition.

VI. CONCLUSION

We study the polaron problem of a Fermi Hubbard model
in one- and two-dimensional square lattices. By employing the
Lee-Low-Pines transformation to separate the impurity from
the background fermions, and the Gaussian approximation
for the resulting bath Hamiltonian, we obtain a variational
wave function in the form of a non-Gaussian state, where the
variational parameters are determined by imaginary-time evo-
lution. For one-dimensional lattices, we calculate the ground-
state energy and dispersion relation, and achieve excellent
agreement with the Bethe ansatz and DMRG results. For the
two-dimensional case, we focus on the dilute limit and find an
evolution from the polaron to molecule states by varying the
interaction strength, without assuming a priori any specific
form of the state. The parameter region of the evolution is

consistent with the existing results obtained by the variational
method, diagrammatic quantum Monte Carlo simulation, and
impurity lattice Monte Carlo algorithm. Our results of the
ground-state energy, the density-density correlation function,
and the quasiparticle residue all suggest a smooth crossover
from the polaron to the molecule states. We emphasize that
as the present method does not rely on the dimensionality or
specific form of the lattice, it can be straightforwardly gener-
alized to other lattice configurations in various dimensions.
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