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Persistence of ferromagnetic domains in a disordered two-dimensional lattice
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We investigate the persistence, in time and space, of ferromagnetic domains in two dimensions subjected to
the influence of both the static disorder of variable strength and weak interactions. The domains are represented
by a two-species bosonic mixture of 87Rb ultracold atoms in different hyperfine states, such that initially one lies
on the left half and the other on the right half of a square lattice. The dynamics of the double domain is followed
by describing the two-component superfluid through the time-dependent Gross-Pitaevskii coupled equations,
with values of the intra- and interspecies interaction that guarantee miscibility of the components. A robust
analysis of the magnetization dynamics for several values of the interspecies interaction, reachable in current
experimental setups, and the investigation of the density-weighted magnetization correlator lead us to conclude
that the presence of structural disorder yields a slowdown the process of destruction of the initial ferromagnetic
order. As shown by our numerical calculations, magnetization is maintained up to 50% of its initial value for the
largest disorder amplitude considered.
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I. INTRODUCTION

A vast number of phenomena belonging to condensed
matter remain until now unsolved. In particular, within the
magnetism realm, the dynamics of microscopic spins lying
in ultrathin films, the so-called magnetic domain dynamics,
continue until now as an open question [1–3]. The origin
of the spin-domain dynamics can be attributed to several
factors, among them, the presence of external drivings as
magnetic or electric fields, the existence of spin-polarized
currents inducing the transference of momentum to the do-
main wall [4,5], and the inner dynamics associated with both
the interactions between the microscopic constituents and the
energetic landscape where the constituents move. The purpose
of the present investigation is to analyze the dynamics of the
magnetic domains confined in two dimensions (2D) under the
influence of disorder. As we describe in the next paragraph, a
stylized system is used to address this objective.

Inspired by the remarkable control achieved with large
conglomerates of atoms in their quantum degenerate state,
and in particular by the experimental capacity of preparing
mixtures composed of either Bose condensates in different
hyperfine states [6] or different atomic species [7–11], con-
fined in particular geometries [12–16], we propose here the
design of an ultracold atom device to quantum simulate the
decay of magnetization in magnetic domains in 2D square
lattices subjected to static disorder. Our proposal is based on
previous experiments that explore the many-body localization
phenomenon with 87Rb Bose gases [17,18]. In particular, in
Ref. [17] the dynamics of an initially prepared out-of equi-
librium density pattern confined in a disordered optical lattice
was followed. Such a quantum quench protocol, planned to
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track the effects of disorder on the atom flux moving across
the two-dimensional (2D) lattice, together with the possibility
of spatially separating different hyperfine components, is the
basis of our proposal to study the dynamics of the ferromag-
netic domains, particularly their magnetization decay.

To investigate the dynamics of the ferromagnetic domains,
and particularly their magnetization decay, we consider a
two-species Bose condensate as the analog of a double-
spin domain in which each hyperfine component lies in the
halves of an inhomogeneous square lattice, thus setting the
initial configuration that will evolve in a disordered media
(see Fig. 1). This arrangement together with a recent study,
performed at the mean-field level for the stationary states of
a scalar Bose condensate [19], is our starting point to study
the dynamics of the double-spin domain. Although the present
study considers square lattices only, investigation of other
geometrical configurations, like those considered in Ref. [19],
could be of interest in the light of practical purposes such
as the design of spin-based magnetic protocols with complex
configurations.

Here we present the results of an extensive set of numerical
calculations performed at the mean-field level through the
coupled Gross-Pitaevskii (GP) equations to describe the evo-
lution in time of the hyperfine spin components spatially sep-
arated at t = 0 and then allowed to evolve under the influence
of uncorrelated static disorder. Working within the superfluid
regime, corresponding to values of the intraspecies interaction
such that the system is far from the Mott-insulating phases, we
analyze the evolution of the magnetization for a given initial
state, considering different values of the ratio between intra-
and interspecies interaction strengths. Motivated by the analy-
sis performed for the spin texture in a degenerate F = 1 87Rb
spinor Bose gas and in a caesium Bose-Einstein condensate
[20,21], we investigate the density-weighted magnetization
correlator and the magnetization variance. These quantities
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FIG. 1. Schematic form of the density profile prepared as the
initial state. The left and right sides represent the superfluid density
associated with the hyperfine components ↑ and ↓. Such profiles
correspond to densities at zero disorder amplitude and given values
of the intra- and interspecies interactions amplitudes g↑↑ = g↓↓
and g↑↓.

provide information about the magnetization anisotropy and
the decaying of the magnetization as a function of time,
respectively.

This work is organized as follows. In Sec. II, we present
the model used to describe the dynamics of the initial ferro-
magnetic domains under the influence of disorder. We briefly
explain the construction of the initial state from which the
evolution in time is followed. In Sec. III A, we show the results
of our numerical study concerning the dynamic extinction
of ferromagnetic domains, as a function of the disorder am-
plitude and different interaction strengths. In Sec. III B, we
analyze the behavior of the variance and spatial correlations,
which allows us to follow the process of demagnetization
in time and space. Finally, in Sec. IV, we summarize our
findings.

II. MODEL AND INITIAL STATE PREPARATION

We consider a weakly interacting mixture of two hyper-
fine spin components, |↑〉 = |F = 1, mF = −1〉 and |↓〉 =
|F = 2, mF = −2〉, of ultracold 87Rb atoms confined in an
inhomogeneous disordered square lattice. At zero temperature
and within the mean-field formalism, the wave functions �↑,↓
of the two species ↑ and ↓ obey the following effective GP
equations:

ih̄
∂�↑(�r, t )

∂t
= [H0(�r) + g↑↑|�↑|2 + g↑↓|�↓|2]�↑(�r, t ),

ih̄
∂�↓(�r, t )

∂t
= [H0(�r) + g↓↓|�↓|2 + g↓↑|�↑|2]�↓(�r, t ),

(1)

where H0(�r) = − h̄2

2m ∇2
⊥ + Vext (�r), with ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 being
the Laplacian operator in 2D and m the equal mass of the
two spin components. The external potential has the following

form:

Vext (�r) = 1

2
mω2

r r2 + V δ
0

[
cos2

(πx

a

)
+ cos2

(πy

a

)]
, (2)

where �r = xı̂ + yĵ ; ωr = 2π × 50 Hz is the radial harmonic
frequency, fixed to a common value used in current experi-
ments; a is the lattice constant; and V δ

0 = V0[1 + εδ (x, y)] is
the potential depth at each point (x, y). The function εδ (x, y)
represents a random disorder uniformly distributed in the
interval εδ (x, y) ∈ [−δ, δ]. Thus, the random depth V δ

0 mimics
a disordered environment like that introduced by speckle
patterns [22]. The amplitude of V δ

0 is scaled, as usual, in units

of the recoil energy ER = h̄2k2

2m , with k = π/a.
The interaction couplings gσσ ′ = 4πNh̄2aσσ ′/m, with

σσ ′ = {↑,↓}, are written, as usual, in terms of the s-wave
scattering length aσ,σ ′ , N being the number of atoms in the
condensate. However, we should point out here that these
interaction coefficients must be rescaled since the dynamics
under study occurs in 2D [23–29]. The effective scattering
length in the plane x-y becomes aσσ ′ → aσσ ′/

√
2π lz, with

lz = √
h̄/mωz, ωz being a common transverse frequency of

condensates [30,31]. In typical experiments the values of the
coupling constants gσσ ′ can be varied via Feshbach resonances
and thus adjusted to have either equal or different values of the
intra- and interspecies interactions, that is, g↑↑ = g↓↓ = g↑↓
or g↑↑ = g↓↓ �= g↑↓. In the present investigation we consider
the interaction couplings g↑↑ = g↓↓ and g↑↓ = g↓↑ that ensure
the miscibility of the hyperfine components g↑↓ <

√
g↑↑g↓↓

[11,32].

Initial ferromagnetic state

To create the initial state from which we follow the de-
magnetization process, we first determine the stationary states
of the coupled equations (1) by means of the imaginary time
evolution τ → it [33–36] for a disorder-free optical lattice
with the lattice spacing a = 532 nm, N = 600 atoms, and a
potential depth of V0/ER = 4 (see the Appendix). After free
energy minimization, we manually remove σ =↑ particles
from the left-half layer and σ =↓ particles from the right-
half layer (see Fig. 1). This removal of particles mimics
experimental protocols in which a digital mirror device is used
to optically remove the atoms at specific positions [17]. Here,
we perform the dismissing of particles in order to manually
design a state that displays two ferromagnetic domains with
opposite magnetization and equal hyperfine densities. Alter-
natively, another experimental and numerical route to achieve
magnetic domains is through a magnetic field gradient [37].

III. RESULTS AND DISCUSSION

In our simulations we consider lattices having ∼30 × 30
occupied sites. As stated in Sec. II, the uncorrelated disorder
is introduced across the whole lattice through the function
εδ (x, y). To perform a reliable analysis of the physical quan-
tities and have meaningful predictions, we take the average
over an ensemble of 200 realizations for each value of the
disorder amplitude δ and given values of the ratio between
intra- and interspecies interactions g↑↓/g↑↑. We note that
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the way in which the disorder has been simulated warrants
that, although the lattice symmetry is altered, the underlying
structure is preserved; that is, the square geometry and the
harmonic confinement prevail. In the following, we identify
the dimensionless time as τ = ERt/h̄.

The time propagation of the double ferromagnetic domain
takes place after introducing the disordered potential and
properly adjusting the interaction coefficients due to the re-
moval of half the population, N → N/2. This pattern created
at hand, that is, the two ferromagnetic domains, is our starting
point to study the time evolution under the influence of static
uncorrelated disorder. We should note here that such an initial
state is nonstationary and, consequently, evolves under its own
dynamics. Interestingly, the protocol planned mimics a quan-
tum quench process since a closed system left in an eigenstate
of a given Hamiltonian at t = 0 evolves dynamically under a
different Hamiltonian. In Fig. 1 we show a schematic plot of
the initial state. Our particular interest is to investigate how the
local magnetization of the ferromagnetic domains degrades
when the weakly interacting 2D Bose mixture evolves in the
absence of other external fields, except for the one produced
from the combination of a speckle pattern and the square
lattice. To this end, in the subsections below we study both
the magnetization as a function of time and the magnetization
correlations in time and space.

A. Demagnetization vs disorder: Magnetization dynamics

The observables to be studied in this section are the magne-
tization mL and mR, in the left and right sides of the lattice, as
a function of time. These quantities are defined in terms of
the local magnetization m(x, y; t ) = ρ↑(x, y; t ) − ρ↓(x, y; t ),
where ρ↑(x, y; t ) and ρ↓(x, y; t ) are the densities associated
with the components ↑ and ↓, respectively. Thus, the magne-
tizations in the left and right sides are as follows:

mL =
∫∫

�L

dxdym(x, y; t ),

(3)

mR =
∫∫

�R

dxdym(x, y; t ),

where �L and �R are the left and right halves of the sys-
tem, respectively. Because of the particular election of the
initial state we have that mL(t = 0) = −0.5 and mR(t = 0) =
0.5. For our analysis, besides the set of random realiza-
tions εδ (x, y) for a given disorder magnitude, we consider
three different values of the ratio g↑↑/g↑↓. The time dy-
namics is followed for a period of time such that at zero
disorder and a given value of the coupling interactions the
magnetization in the left and right sides become null. That
is, the decay of magnetization at zero disorder is differ-
ent for each ratio g↑↓/g↑↑ considered. It is important to
mention here that all of our numerical calculations were
performed ensuring that changing τ → −τ at any temporal
step along the time dynamics allows us to recover the initial
state.

Since the prepared initial state is nonstationary, the hy-
perfine spin populations will evolve under the influence of
both disorder and interactions. Previous analyses of stationary
properties in a single Bose-Einstein condensate component

FIG. 2. Instantaneous density plots of the local magnetization
m(x, y, τ ) in the square lattice for three different values of the
disorder amplitude. Distance along x and y axis is scaled in terms
of the lattice constant a. Left, center and right columns correspond
to three different values of disorder amplitude δ as indicated in the
figure. Upper, middle and bottom rows are associated to τ = 0, τ =
180 and τ = 360 respectively. The ratio of the intra and inter-species
interaction is, g↑↓ = 0.9g↑↑.

confined in disordered lattices have shown that, in the weakly
interacting regime, the net effect of the disorder is to localize
the condensate density in bounded regions [19,38–41]. As a
matter of fact, the size of those bounded regions becomes
shorter and shorter as the amplitude of the disorder strength is
increased. Therefore, what we expect in the case of the two-
component condensate is to have spatially localized densities
of the condensate as the disorder magnitude grows and thus
preservation of magnetic domains.

In Fig. 2 we show snapshots of the local magnetization for
three different values of the disorder amplitude, δ = 0, δ =
0.5, and δ = 0.9 (left, center, and right columns, respectively),
and three different times along the dynamics, τ = 0, τ =
180, and τ = 360. Each plot is a snapshot associated with
a given realization of disorder εδ (x, y) and a fixed value of
the intra- and interspecies interaction ratio, g↑↓/g↑↑ = 0.9.
As one can see from this figure, at zero disorder amplitude,
↑ and ↓ density configurations remain exactly opposite while
showing an asymmetric behavior for δ �= 0. We also observe
that larger values of the disorder amplitude lead to a slowdown
of the dynamics of the magnetic domains. That is, the initial
state remains for larger times, thus showing a persistence of
the magnetic domains during the time evolution. Figure 2
is representative of the magnetization behavior observed at
different times as the disorder is increased for the ensemble
of disorder realizations.

In Fig. 3 we summarize the results of the analysis of this
section. Each plot in this figure corresponds to the average
of the magnetization on the right (left panels) and left (right
panels) sides of the lattice as a function of time for different
values of the disorder amplitude δ. The specific values of δ
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FIG. 3. Magnetization in right and left sides as a function of time
for different values of disorder amplitude δ. The ratio of the intra- and
interspecies interaction g↑↓/g↑↑ is indicated in the left panels. Each
point in these curves is the result of the average over 200 realizations
of disorder for a given value of δ. The shadow area around each curve
corresponds to the root-mean-square deviation.

as well as the intra- and interspecies interaction ratio g↑↓/g↑↑
are indicated in the figures. The curves in each plot are the
averages for a given value of δ, with the shadow area around
each curve indicating its root-mean-square deviation. From
these figures one can observe that for short times, τ � 50,
the general behavior of the decreasing magnetization takes
very similar values, independently of the disorder strength.
However, for longer times, τ � 50, each magnetization curve
departs from each other, thus revealing the effects of the
disordered medium. Furthermore, as the disorder amplitude
is increased, the ferromagnetic order in each domain is pre-
served against depletion. In particular, for the largest value
of the disorder amplitude considered, that is, δ = 0.9, the
value of the magnetization in the left and right sides remains
unaltered around 50%. One can also notice two main out-
comes associated with the value of the ratio g↑↓/g↑↑. One
is that at zero disorder the time at which the magnetization
is annihilated decreases as the ratio g↑↓/g↑↑ is diminished.
In contrast, as this ratio is increased, the reduction of the
magnetization becomes progressively worse with respect to
its initial value.

The time dependence of the left and right magnetiza-
tions are well described by the power-law ansatz mR(τ ) ∝
b(δ)τ γ (δ). We fit the curves of Fig. 3 with such a power-law
ansatz at intermediate-time scales, where one neglects the
transient behavior at short times. We should notice that the
coefficients γ and b also depend upon the ratio between g↑↓
and g↑↑. In Fig. 4 we plot the behavior of γ as a function
of δ. From this figure one can notice how the value of the
characteristic exponent γ is modified as the ratio g↑↓/g↑↑ is
varied. Here it is important to stress that γ is also influenced
by the presence of the harmonic confinement. The value of
this exponent is reduced as δ grows, and thus the magnetiza-

FIG. 4. Power-law fit mR(τ ) ∝ b(δ)τ γ (δ) for the magnetization
on the right side as a function of δ, for three different values of the
ratio of the intra- and interspecies interaction. The inset shows the
error σ of the magnetization fit.

tion extinction becomes slower in time. It is quite remarkable
that for strong disorder strengths δ, the parameters γ take very
similar values, almost independent of the ratio of the inter-
and intraspecies interaction coupling. This can indicate that
the disorder has become the dominant contribution during the
elapsed evolution. The inset in Fig. 4 shows the error of the
magnetization fit.

B. Demagnetization vs disorder: Variance and
magnetization correlator

Another suitable quantity that has been used in various ex-
periments and provides crucial information on how magnetic
domains change in space and time is the density-weighted
magnetization correlator. As established in Refs. [20,21] this
correlator is defined as

G(�r; t ) =
∫
�

m(�r; t )m(�r + �r; t )d�r∫
�

ρ(�r; t )ρ(�r + �r; t )d�r , (4)

where m(�r; t ) is the local magnetization defined in the previ-
ous section, ρ(�r; t ) = ρ↑(�r; t ) + ρ↓(�r; t ) is the total density,
and � = �L + �R. In Fig. 5 we illustrate the correlator
G(�r = 0; t ) for several values of the disorder strength and
a fixed interaction ratio of g↑↓/g↑↑ = 0.9. We should notice

FIG. 5. Correlator G(�r = 0; τ ), that is, variance as a function
of time for different values of the disorder magnitude. Each curve is
the average over 200 realizations of disorder δ.
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FIG. 6. Correlator G(�x; τ ) at τ = 0. The inset shows the den-
sity profile prepared as the initial state. The red line shows the axis
along which we determine the correlator G(�x; τ ).

that for �r = 0, the density-weighted correlator coincides
with the magnetization variance. For t = 0, the magneti-
zation variance takes its largest value G(�r = 0; t = 0) =
1 since the initial state corresponds to fully polarized do-
mains. Then, for t > 0 the variance shows a decreasing
behavior in time, which becomes less pronounced as the
disorder amplitude increases. As a matter of fact, for the
largest value of the disorder amplitude considered, which
is δ = 0.9 and at a time τ = 360, the variance depletion is
around half its initial value. In contrast, the magnetization
variance becomes null at τ = 360 for zero disorder strength.
Thus, one can appreciate that the structural disorder stim-
ulates a deceleration of the polarization of the magnetic
domains.

Since at t = 0 down and up components lie on the left and
right halves of a square lattice, a natural election of the path
on which the spatial variations of the correlator G(�r; t ) can
be tracked is a line that crosses perpendicular to the halves
of magnetic domains and then G(�r; t ) becomes G(�x; t ).
In Fig. 6 we illustrate both the axis in which the correlator
is evaluated and its spatial variations for positive values of x.
The staircase shape of the correlation function on Fig. 6 can
be understood from the observation that the density at a given
lattice site and in the region around it remains essentially
constant.

To conclude the present analysis, in Fig. 7 we illustrate the
spatial variations of the correlation function of Eq. (4) for τ =
180 and τ = 360. As can be appreciated from Fig. 7 (upper
panel), a depletion of the magnetic order is observed, since
this reduction is less pronounced as the disorder decreases.
Interestingly, all the curves get close when the correlation
approaches zero, thus indicating that the domains still pre-
serve information of the initial state. In contrast, the long-term
dynamics illustrated in Fig. 7 (lower panel) shows higher
discrepancies for each value of the disorder amplitude. In
agreement with the previous findings, for δ = 0, the magnetic
order is completely lost. For the cases δ = 0.3 and δ = 0.5, we
observe residual domains that no longer conserve the initial
structure. However, for δ = 0.7 and δ = 0.9, the initial mag-
netic structure stands, with the polarization of the magnetic
domains being reduced.

FIG. 7. Correlator G(�x; τi ) along the x axis for different values
of the disorder magnitude. The upper and lower panels correspond to
τ = 180 and τ = 360, respectively. Each curve is the average over
200 realizations of disorder δ.

IV. FINAL REMARKS

We have studied the time dynamics of initially localized
ferromagnetic domains evolving under the influence of both
disordered confinement and contact interactions. The purpose
of such an investigation was to establish the persistence
of ferromagnetic order in the domains, namely, spatial re-
gions with definite magnetization, when the competition of
structural disorder and interactions could lead the system,
evolving under their inner dynamics, to nullify such an initial
magnetic pattern. To study such a magnetization annihilation
process as a function of time, we proposed a model system
simulating a double ferromagnetic domain evolving under
static disorder. The model consisted of a two-species 87Rb
Bose-Einstein condensate, whose components labeled as ↑
and ↓ states were placed spatially separated, lying each one in
the halves of a 2D potential resulting from the superposition
of a harmonic potential and a square lattice. The descrip-
tion of the dynamics was addressed within the mean-field
Gross-Pitaevskii approach by solving the coupled equations
associated with different hyperfine components. To have a
reliable analysis of the evolution in time of the magnetization
under the presence of disorder, our analysis consisted of an
extensive set of numerical calculations over different realiza-
tions of uncorrelated disorder having a given amplitude δ and
constant values of the intra- and interspecies interactions g↑↓
and g↑↑, respectively. Regarding the magnitude of the intra-
and interspecies interactions g↑↓ and g↑↑, we worked in the
regime in which the ratio between these coefficients g↑↓/g↑↑
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TABLE I. Physical parameters used in the numerical simulation.

Name Symbol Value

Particle number N 600
87Rb mass m 87 amu
Lattice constant a 532 nm
Trap frequency (x) ωx 2π × 50 rad/s
Trap frequency (y) ωy 2π × 50 rad/s
Trap frequency (z) ωz 2π × 4000 rad/s
Bare s-wave scattering length a↑↑ = a↓↓ 100 a0

Potential depth V0 4 ER

guarantees miscibility of hyperfine components, and we also
considered appropriate coupling interaction strengths away
from the strong interaction effects. Besides the study of the
dynamics of the magnetization in the presence of disorder, we
analyzed the variance and the density-weighted magnetization
correlator to investigate time and spatial magnetization decay,
respectively.

The conclusion from the study of the magnetization dy-
namics is that the degradation of the initial double ferromag-
netic domain, which is the loss of magnetization in definite
regions of space, becomes slower and slower as the structural
disorder is increased, while in contrast increasing the ratio
between inter- and intraparticle contact interactions g↑↓/g↑↑
tends to degrade the initial state. Furthermore, the analysis
for the density-weighted correlator as a function of time and
space reveals also such a persistence of the initial state as the
disorder is increased. We reach these results from a robust
study of the time evolution of the right and left magnetizations
of the quantum system described above. Summarizing, our
study allowed us to recognize that the slow extinction of the
ferromagnetic order is induced by disorder and then enhanc-
ing memorylike effects in the coupled magnetic domains.

This paper sets a platform for the design of specific
protocols appropriate to study demagnetization processes or
frustration effects associated with geometry and energy dis-
order [42–45]. Also, our study aims for the investigation
of the dynamics induced by measurement in the sense that
sources of disorder can be either internal, like those here
considered, or external, like those associated with reservoirs
in contact with assessable quantum systems [46]. Textures or
local magnetization, as referred to in the current literature,
are suitable observables to track the effects of the disorder
media in systems having more that one component and, also,
are accessible physical quantities with single-spin-resolution
techniques [47,48] used in current experimental setups. We
expect that our work will trigger further theoretical analysis
of, for instance, the long-range character proper of the dipole-
dipole magnetic interactions and the homogeneous environ-

ment where the elemental constituents move. Those aspects
still remain as open questions to be addressed. Understanding
the dynamics of magnetic domains has become nowadays a
relevant topic not only within the context of the fundamental
physics but also associated with the emergence of techno-
logical uses. Practical applications of the investigation here
presented are directly related to the design of magnetic logic
and memory devices.
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APPENDIX : NUMERICAL CALCULATIONS DETAILS

In this Appendix we provide additional details related to
the numerical simulations performed in order to obtain the
main results of the paper. As stated in Sec. II, we first obtain
the ground state of the coupled GP equation shown in Eq. (1).
This was achieved by using the imaginary-time propagation
based on the split-step Fourier method [33,34]. The relevant
physical parameters used in the simulations are included in
Table I.

After accomplishing convergence of the ground-state wave
functions, we performed the removal of particles by manually
setting �↑ = 0 in the left halve of the system �L. Anal-
ogously, we fixed �↓ = 0 within the right halve �R. For
simplicity, we normalized the resulting wave functions after
the removal of particles.

The above procedure yields the initial configuration of the
wave functions from which the demagnetization process was
followed. The real-time dynamics was performed by using the
fourth-order Runge-Kutta method. The numerical parameters
used in both, the imaginary-time propagation and the real-time
propagation, are shown in Table II.

TABLE II. Parameters for the numerical simulation.

Name Symbol Value

Number of grid points in the x direction Nx 512
Number of grid points in the y direction Ny 512
Spatial extension of the numerical Lx 40 a

grid in the x direction
Spatial extension of the numerical Ly 40 a

grid in the y direction
Step size used in real-time evolution dτ 0.001
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