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Sideband ground-state cooling of graphene with Rydberg atoms via vacuum forces
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We present a scheme leading to ground-state cooling of the fundamental out-of-plane (flexural) mode of a
suspended graphene sheet. Our proposal exploits the coupling between a driven Rydberg atom and the graphene
resonator, which is enabled by vacuum forces. Thanks to the large atomic polarizability of the Rydberg states,
the Casimir-Polder force is several orders of magnitude larger than the corresponding force achieved for atoms
in the ground state. By tuning the distance between the atom and the graphene membrane, we show that
resolved sideband cooling is possible, bringing the occupation number of the fundamental flexural mode down
to its quantum limit. Our findings are expected to motivate physical applications of graphene at extremely low
temperatures.
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I. INTRODUCTION

The interest around atomically thin mechanical resonators,
such as graphene and other two-dimensional (2D) materials
[1,2], has grown in the last years thanks to their low masses
and large stiffnesses, leading to large oscillation frequencies
and high-quality factors [3–6]. Those features put graphene in
the run for competitive nanomechanical solutions, with a vari-
ety of important applications in quantum technology, such as
storing and processing quantum information by invoking co-
herent coupling [7], high-precision quantum sensing [3,8–10],
and quantum interferometry [11]. From the condensed-matter
physics perspective, the ability to control the out-of-plane vi-
bration of a 2D material (the so-called flexural phonon) is also
very challenging because it allows for tunable control of pseu-
domagnetic fields [12], electron-phonon coupling [13], and
selective band-gap engineering [14]. However, the quantum
control of the flexural modes occurs in the near-zero thermal
noise limit, where the mechanical motion is mostly due to
quantum fluctuations [15]. As such, ground-state cooling of
graphene resonators still preludes the applications mentioned
above, and therefore an efficient, active cooling protocol is
urgent. Since laser (or radiation pressure) and photothermal
cooling schemes are extremely ineffective in graphene—as
a result of its broadband absorption spectrum [16–20]—a
possible solution could be to exploit the electromagnetic vac-
uum fluctuations (EVFs), emerging as a powerful resource to
couple graphene resonators with a quantum emitter. Such hy-
brid setups offer all-optical quantum control of the membrane
motion, enabling force sensing [9] and mechanical squeezing
[21]. More recently, EVF has also been used for ground-state
cooling of a h-BN monolayer based on electromagnetically in-
duced transparency (EIT) [22]. Additionally, dispersion forces
have a measurable effect on the levels and lifetimes of Ryd-
berg atoms when brought close to surfaces [23,24]. However,
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solutions combining the features of both vacuum forces and
high-lying Rydberg states in graphene electromechanical se-
tups are still at their infancy [25], and the possibilities offered
by Rydberg states are far from being exhausted.

In this article, we describe a scheme to achieve ground-
state cooling of a graphene resonator by coupling it to a
Rydberg atom via vacuum forces. We exploit the large atomic
polarizability of the Rydberg states and the fact that the
backaction of the Casimir-Polder (CP) force depends on the
atom-surface distance to construct a resolved sideband cool-
ing protocol bringing the out-of-plane (flexural) mode down to
its quantum ground state. Our findings pave the way for both
quantum-technological and condensed-matter investigations
for which ground-state cooling of flexural modes in suspended
graphene (and eventually other 2D materials) is required.

This article is organized as follows: In Sec. II, we begin
by briefly reviewing the surface-induced effects on the atomic
energy states as well as on atomic decay rates, giving some
numerical results for a Rydberg atom near a graphene sheet.
In Sec. III, we describe the coupling mechanism between
the atomic states and the flexural vibrations of a graphene
membrane. Furthermore, we show that the resulting effec-
tive model allows us to operate within the resolved sideband
cooling regime. The cooling process and study of the full
dissipative dynamics of the system are developed in Sec. IV.
We show under which conditions it is possible to achieve
ground-state cooling of the graphene vibrational modes. In
Sec. V, we discuss possible experimental setups for the devel-
opment of our proposal. Finally, a discussion about the main
results, final remarks, and discussion about future perspectives
are enclosed in Sec. VI.

II. MODIFICATION OF THE ATOMIC STATES DUE TO
SURFACE-SCATTERED VACUUM FLUCTUATIONS

Consider an atom placed close to a graphene membrane at
a distance d along the z direction; see Fig. 1(a). The atom-
surface interaction potential is calculated by assuming the
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FIG. 1. (a) Schematic representation of the experimental setup.
A Rydberg atom is placed a distance d from a suspended graphene
membrane. The out-of-plane (flexural) motion results in a modula-
tion of the Rydberg transition frequency ωa. (b) (not to scale) The
states |s〉 contributing to the calculation of ground-state energy shift
δωg, lying above the energy level. For Rydberg states, the energy
shift δωr accounts for contributions from both the above-and below-
lying transitions |k〉. In addition, the graphene resonator induces a
modification in the free-space Rydberg decay rate �0.

graphene sheet to be infinitely extended, thereby neglecting
possible finite-size effects. Within the formalism of macro-
scopic quantum electrodynamics, at zero temperature, we can
write the energy shift in the ground-state δωg, and total shift
in the Rydberg state δωr as the sum of the nonresonant δωNR

r
and the resonant δωR

r parts [26,27]:

δωg = h̄μ0

2π

∫ ∞

0
dξξ 2αg(iξ ) Tr [G(r, r, iξ )], (1)

δωNR
r = h̄μ0

2π

∫ ∞

0
dξξ 2αr (iξ ) Tr [G(r, r, iξ )], (2)

δωR
r = −μ0

3

∑
�<r

ω2
r�|dr�|2Tr{Re[G(r, r, ωr�)]}. (3)

Here, G(r, r, ω) is the Green tensor accounting for the
relevant electromagnetic properties of graphene (refer to
Appendix A for an explicit expression), ωg� (ωr�) is the atomic
transition frequency between a certain � and the ground (Ryd-
berg) states, μ0 is the vacuum permeability, and dx� = 〈x|d̂|�〉,
with x = (g, r), denotes the dipole matrix elements between
two states. The electromagnetic response of the atom is cap-
tured by the atomic polarizability function αx(ω),

αx(ω) = lim
ε→0

2

3h̄

∑
�

ωx�|dx�|2
ω2

x� − ω2 − iωε
, (4)

where the sum is extended to all allowed atomic transitions,
as depicted in Fig. 1(b).

The distance-dependent energy shift (Casimir-Polder shift)
in the ground state, δωg, is due to nonresonant terms (σ̂gkâ†

l

and σ̂kgâl ) of the interaction Hamiltonian Hint = −d̂ · E. Here,
âl denotes the annihilation operator of the scattered electro-
magnetic field E. In addition, the atomic operator σgk = |g〉〈k|
describes the transitions from the ground state |g〉 to the inter-
mediate states |s〉 (see Fig. 1). In the single-photon Hilbert
space, Hint couples the polaritonic ground (|g, 0l〉) and the
intermediate (|k, 1l〉) states. These excitations are followed by
the re-absorption process of a photon by the atom, bringing
the atom back to its ground-state (the field mode to its vacuum

state). Because these processes violate energy conservation,
they are purely virtual, ensuring that the ground-state energy
shift is due to nonresonant part of the interaction and its
expression is given by Eq. (1). For the Rydberg state, however,
the transition manifold contains both above- and below-lying
states. As a result, the corresponding shift δωr contains both
nonresonant and resonant terms (thus coupling the polaritonic
|r, 0l〉 and |k, 1l〉 states). While the former accounts for virtual
processes, the latter allow real photon transitions. The total
shift δωr is then the sum of nonresonant (δωNR

r ) and resonant
(δωR

r ) parts.
The presence of a nearby graphene surface also changes

significantly the free-space spontaneous decay rate of the Ry-
dberg state �0 as

� = �0 + 2μ0

3h̄

∑
�<r

ω2
r�|dr�|2Tr[Im[G(r, r, ωr�)]]. (5)

From Eqs. (1)–(5) one can observe that the amplitude of each
term in the summation is given by the product of transition
frequency and dipole moment magnitude of the transition
involved. For the Rydberg state, the transition manifold with
neighboring Rydberg states contributes with a relatively en-
hanced value due to the large values of the dipole-moment
magnitudes. This results in the fact that energy shift and
relaxation rates are much larger for Rydberg atoms than in
the case of regular (non-Rydberg) atoms. This is particularly
useful in the present case, where we aim to exploit the large
modulation in the energy-shifting effect of the Rydberg state
whenever the atom-surface distance is varied due to the out-
of-plane motion of the graphene resonator. We find that, by
working at a suitable atom-surface distance, the conditions
for resolved sideband cooling (to be described below) are
met, a demanding task which has been lacking for graphene
resonators so far.

Temperature contribution

In this work, the cooling protocol could be performed at
cryogenic temperatures (as low as T = 30 mK) so thermal
excitations might not play an important role. As such, we will
assume the validity of the zero-temperature limit of Eqs. (1)–
(5). However, this approximation is not obvious, so we will
discuss it in more detail.

At finite temperatures, for an atomic state |x〉, the fre-
quency integral in the nonresonant contributions to the energy
shifts read [26]

δωNR
x = μ0kBT

∞∑
j=0

′ξ 2
j αx(iξ j ) Tr [G(r, r, iξ )], (6)

where x = {r, g} and ξ j = 2π jkBT/h̄ are the Matsubara fre-
quencies (the primed summation indicates a factor of 1/2 for
j = 0). The nonresonant energy shift reduces to the zero-
temperature results if the condition kBT � (h̄c/z+) holds.
Here, z+ is the maximum atom-surface distance, which is
given by z+ = d + �z, where �z is the temperature-induced
displacement. For the setup proposed in the main text, T =
30 mK, d = 0.7 μm and �z = 2.8 pm, the ratio becomes
kBT/(h̄c/z+) � O(10−6) � 1. This ensures that the above
expression for nonresonant energy-shift contribution reduces
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to its zero temperature counterpart, as used in Eqs. (1) and (2).
The finite-temperature resonant contribution is given by

δωR
r = μ0

3

∑
k>r

np(ωrk )ω2
kr |dkr |2Tr[Re[G(r, r, ωkr )]]

− μ0

3

∑
k<r

[np(ωrk ) + 1]ω2
rk|drk|2Tr[Re[G(r, r, ωrk )]],

(7)

with np(ωrk ) = [eh̄ωrk/kBT − 1]−1 denoting the EM field oc-
cupation number. The first term accounts for the decay
of an atomic state to its lower states (k < r); the sec-
ond term represents the thermally activated excitations. In
both terms, the thermal-induced transitions are nonzero only
if np(min[ωrk]) > 1, i.e., if the lowest frequency min[ωrk]
within the transition manifold is thermally actuated. For
the Rydberg manifold |80S1/2〉, min[ωrk] = 2π × 46.93 GHz
(i.e., transition from |r = 80S1/2〉 → |k = 79P3/2〉), and tem-
perature T = 30 mK, we get np(min[ωrk]) = O(10−32). This
validates the zero-temperature limit in Eq. (3). A similar
analysis can be performed for the decay rate, thus providing
justification for Eq. (5). This stems from the fact that thermal
correction appears through a factor np(ωrk ) [26], which we
show to be negligible.

In particular, we take the values EF � 0.8 eV and γg =
1012 s−1 for the graphene Fermi energy and relaxation rate,
respectively [28–31].

III. SIDEBAND COOLING OF THE GRAPHENE
FLEXURAL MODE

Let us begin by describing the coupling mechanism be-
tween the out-of-plane (flexural) vibration of the graphene
resonator and the Rydberg atomic state. For a fixed atom-
surface distance d , the atomic transition frequency is given
by

ωa = ω0 + δω(d ), (8)

where ω0 is the free space transition frequency and δω(d ) ≡
δωr (d ) − δωg(d ) is surface-induced shift. CP energy shift
are extremely sensitive to small distance variations. In the
nonretarded limit, i.e., the atom-surface distance is less than
the effective transition wavelength, this shift scales as ≈(d +
δz)−3 where δz are small deviations from the equilibrium.
Thus, as the suspended graphene vibrates out of plane, this
motion will induce a modulation in the local Rydberg transi-
tion frequency, where δω(d ) → δω(d + δz).

For small amplitudes, δz � d , one can write the total
Hamiltonian of the system as [9,32]

Ĥ = h̄ωmb̂†b̂ + h̄



2
σx − h̄

�

2
σz + h̄g(b̂ + b̂†)σz. (9)

The first term is the graphene mechanical oscillator Hamil-
tonian, with b̂ (b̂†) standing for the phonon annihilation
(creation) operator; the second term describes the Rydberg
laser driving of effective Rabi frequency 
 and detuning �

with respect to local Rydberg transition frequency [9,32,33].
Finally, the last term in Eq. (9) is the (electromechanical)
interaction between the atom and the oscillating surface with
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FIG. 2. (a) Casimir-Polder vacuum coupling g0 and (b) spon-
taneous decay rate � of the Rydberg states |80S1/2〉 (solid line),
|60S1/2〉 (dashed line), and |50S1/2〉 (dotted line). The intersection
of gray lines fixes our chosen working point at d = 0.7 μm.

effective coupling g = g0 zzpf , with

g0 = ∂zδω(d )|z=d . (10)

Here, g0 is the CP coupling describing the amount of the
change in the atomic transition frequency per unit displace-
ment in graphene motion. The quantity zzpf = √

h̄/2mωm is
the zero-point fluctuation of the oscillator, characterized by
its effective mass m and frequency ωm, and the position op-
erator is given by ẑ = zzpf (b̂ + b̂†). In Fig. 2, we depict the
vacuum coupling g0 and the effective Rydberg decay rate �

as a function of the atom-surface distance different Rydberg
states at zero temperature,1 observing their enhancement due
to the Rydberg physics [34]. While the free-space spontaneous
decay rate of a Rydberg state is of the order of a few kHz, the
presence of a macroscopic surface increases these values only
up to few MHz for the micron-scale distances considered here.

Hamiltonians similar to Eq. (9) are used for reservoir-
engineering schemes, which are at the basis of different
ground-state cooling solutions, achieved for single ions
[35], optomechanical setups [36–38], single atoms [39], and
nitrogen-vacancy centers in diamond [40]. These have also
been recently proposed for carbon nanotubes [41–43]. The
cooling scheme proposed in this article is based on a similar
protocol, where graphene phonons are scattered away through
the sufficiently fast relaxation of the Rydberg atomic degrees
of freedom (DOF), to which the graphene flexural mode is
coupled via the CP forces. To achieve resolved sideband cool-
ing in this process, the following criteria are to be fulfilled
[40,44,45]:

(i) weak effective coupling, g/� < 1;

(ii) atomic resolved sidebands, �/ωm < 1;

(iii) strong cooperativity, g2/�(γmnth ) > 1.

Here, γm is the mechanical damping rate and nth is the initial
mean thermal phonon in the mechanical mode. From these
conditions, it turns out that the strong cooperativity is im-
proved by the enhancement of the vacuum coupling g0, as

1The transition frequencies and the matrix elements of the dipole
operator for the Rydberg states can be calculated by using the Nu-
merov method and by employing the Clebsch-Gordan coefficients.
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g = g0zzpf . At the same time, to fulfill the weak-coupling
condition, a smaller value of g is required. Moreover, both
the resolved sideband and the strong cooperativity conditions
are reinforced by the smaller values of the effective atomic
decay rate �. To fulfill all these conditions simultaneously,
the cooling protocol requires a delicate balance among the
competing parameters.

In the low-temperature regime and nonretarded limit, the
CP potential and transitions rates for a Rydberg atom scale
as ∝n4/z3 [34], leading to decay rates on the order of a
few MHz for the atom-surface distances of a few microns
(see Fig. 2). On the other hand, low-excited states, which
have a free-space decay rate on the order of MHz, can be
surface-enhanced to a value which might violate the above
conditions. Therefore, a low-lying state would not be suitable
for sideband cooling. In the proposed scheme, the freedom
to vary the atom-surface distance as well as the principal
quantum number of the Rydberg state allows us to be in
the regime where sideband cooling would be feasible for
graphene flexural modes. However, there are some constraints
when working with Rydberg atoms that need to be addressed.
Although we have the freedom to tune n and z, we have
to take into account that the atomic size of the atom scales
with n2. Due to its increasing size, there is a limit to how
close it can be from the surface [25]. Having these constraints
in mind, operating at d = 0.7 μm and n = 80 (see dashed
line in Fig. 2), we find g0 = 1.12 GHz/nm (correspondingly,
g = 0.57 MHz) and � = 3.24 MHz, with the conditions (i)
g/� � 0.18 < 1 and (ii) �/ωm � 0.03 < 1 being simultane-
ously satisfied. Only condition (iii) remains to be met. To
do so, we consider a flexuron initially in equilibrium with a
bath at temperature T = 30 mK. Furthermore, we consider a
graphene resonator of mass m = 1.6 × 10−18 kg and quality
factor Q = 2 × 105 (see, e.g., Refs. [6,46]). The graphene
resonator frequency is then ωm = 2π × 20 MHz for which we
find n̄th � 30. Combining these results, we can finally satisfy
condition (iii) g2/�(γmnth ) � 5.2 > 1.

IV. ANALYSIS OF THE COOLING PROCESS

Taking advantage of the features of Rydberg atoms dis-
cussed above, we now construct a resolved sideband cooling
scheme for the fundamental flexural mode of a graphene res-
onator. We first present a unitary picture of the cooling process
by considering the Hamiltonian appearing in Eq. (9) and by
transforming it into the basis in which the effective two-level
atom is diagonal, which reads

Ĥ = −h̄
ωs

2
σz + h̄ωmb̂†b̂

+ h̄[gcos (α)σz − g sin (α)σx](b̂ + b̂†), (11)

where ωs = (�2 + 
2)1/2 is the energy splitting of two
dressed states:

|+〉 = sin (α/2)|g〉 + cos (α/2)|r〉,
|−〉 = cos (α/2)|g〉 − sin (α/2)|r〉,

with tan α = 
/|�|, sin (α) = 
/ωs, and cos (α) = −�/ωs.
Then we move to the interaction picture via the unitary trans-
formation Û = exp[i(ωmb̂†b̂ + (ωs/2)σz )t]. After performing

a rotating wave approximation (RWA) (valid for g � ωs =
ωm), we recast Eq. (11) as

ĤI = Û †ĤÛ = −h̄g̃(σ−b̂† + σ+b̂), (12)

with g̃ = g sin(α).
In the single-phonon picture, the Hamiltonian (12) drives

the transition |−, n〉 ↔ |+, n − 1〉, where |n〉 is the phonon
Fock basis. Since the atomic decays are fast, � > g̃, and the
latter is overdamped, which guarantees that phonons can be
damped away thanks to the dressing with the atomic degrees
of freedom. Note that, in the dressed-states picture, the reso-
nance condition occurs when the laser induced atomic energy
splitting is equal to the mechanical frequency, as given by
ωs = ωm.

The dynamics of the open system is governed by the
Markov master equation

˙̂ρ = −(i/h̄)[Ĥ, ρ̂] + L(ρ̂ ), (13)

where the Liouville operator, accounting for irreversible dy-
namics due to the coupling with the various dissipative
channels, is given by

L(ρ̂) = γm

2
(n̄th + 1)Db̂[ρ̂] + γm

2
n̄thDb̂† [ρ̂]

+ �Dσ̂−[ρ̂] + �̃

4
Dσ̂z [ρ̂], (14)

with Dô[ρ̂] = 2ôρ̂ô† − ô†ôρ̂ − ρ̂ôô†. The first and second
terms in Eq. (14) describe the thermalization process with
the phonon bath, respectively accounting for the (stimulated
and spontaneous) thermal emission and thermal excitation of
the mechanical mode of vacuum decay rate γm = ωm/Q. The
third term describes the atomic spontaneous emission in the
presence of a graphene resonator �; the fourth term accounts
for the atomic dephasing occurring at the rate �̃. Note that, for
the cryogenic temperatures considered, we can safely neglect
the atomic thermal excitation.

In the Lamb-Dicke regime, g
√

n̄th + 1 < ωm [47], where
the mode-atom interaction is only a perturbative effect, the
system will relax into the product state ρ̂(t ) � ρ̂ss ⊗ ρ̂m(t ),
which will be composed of the atomic steady-state density
matrix ρ̂ss and the reduced mechanical density matrix ρ̂m =
Tra [ρ], with the trace performed over the atomic degrees.
This allows us to adiabatically eliminate the atomic degrees
and rewrite the master equation for the mechanical modes
alone [44],

˙̂ρm = −iωm[b̂†b̂, ρ̂m] + A−Db̂[ρ̂m] + A+Db̂† [ρ̂m], (15)

where

A− = g2S(ωm) + (γm/2)(n̄th + 1), (16)

A+ = g2S(−ωm) + (γm/2)n̄th (17)

describe the effective flexural cooling and heating rates, re-
spectively. These processes are a result of the coupling to
the dissipative atomic bath, characterized by its steady-state
spectral density [48]

S(ω) = Re

[∫ ∞

0
dτeiωτ 〈δσz(τ )δσz〉ss

]
. (18)
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FIG. 3. (a) Real part of the atomic spectrum for 
 = 0.85 ωm

(dashed line), 
 = ωm (solid line) and 
 = 0.4 ωm (dotted line),
with peaks ωs = ±(
2 + �2)1/2. Optimal driving is achieved for

 = 0.85 ωm. For 
 = ωm, the heating and cooling peak balance
each other, therefore, the coupled atomic system does not work as
a cold bath. (b) Net cooling rate �c (in units of kHz) of the graphene
resonator. (c) Steady-state phonon number nss. (d) The same as in
panel (c) but considering a dephasing rate �̃ = 0.015 ωm. For panels
(b)–(d), we have set ωm = 2π × 20 MHz and m = 1.6 × 10−18 kg.

The spectrum is determined by the correlation of the atomic
steady-state fluctuation operator δσz = σz − 〈σz〉ss and ob-
tained by solving Bloch’s equations for the Rydberg atom
alone [cf. Eq. (14)] and by applying the quantum regression
theorem [48] (see more information in Appendix B). Note that
the cooling and heating rates are evaluated at positive ωm and
negative −ωm frequencies. This characterizes the ability of the
atom to respectively absorb and emit phonons at that very fre-
quency [49]. As one can see from Eq. (15), one must enhance
the phonon absorption in detriment of its emission, in order to
increase the effective flexural cooling rate. This means that we
need to look at optimal parameters that enhance the positive
frequency component of the (asymmetric) spectrum.

In Fig. 3(a), we have plotted the steady-state spectrum
for different Rabi frequencies. As we can see, S(ω) exhibits
three well-resolved peaks at ω = 0 and ω = ±ωs. In the
resolved sideband regime, � � ωs, the optimal cooling con-
ditions (i.e., when the phonon absorption capacity by the
atom is maximized) are achieved at resonance ωs = ωm for
a driving strength of 
 � 0.85 ωm [44,50] (see more details in
Appendix B). In the interaction picture, the process |−, n〉 �→
|+, n − 1〉 corresponds to cooling, which is manifested by
the peak at ω = ωs. Such cooling is obtained for red detuned
driving, ωl − ωa = −�. From Eq. (15), one can recast the rate
equation for the mean flexural number,

〈ṅ〉 ≡ Tr[ ˙̂ρmb̂†b̂] = −�c〈n〉 + A+, (19)

(a) (b)

2 6 10 14×105
0.1

0.5
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5
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n s
s

2 6 10 14×105

Q

FIG. 4. (a) Final occupation number nss for optimal cooling
conditions (see text) as a function of mechanical quality factor Q. Ry-
dberg state |80S1/2〉 with T = 30 mK. (b) Rydberg state |60S1/2〉 with
T = 15 mK. In both panels, distances correspond to d = 0.7 μm
(solid line), d = 0.8 μm (dashed line), and d = 1.0 μm (dotted line).
The horizontal dashed line sets the ground-state cooling threshold.

where the net cooling rate is given by �c = A− − A+. Ground-
state cooling is achieved if the steady-state flexuron number,
nss = A+/�c, satisfies the condition nss < 1. Using Eq. (15)
leads us the optical cooling rate γopt and the minimal occupa-
tion number n0 (see Appendix C for further details), reading

γopt = 2g2[S(ωm) − S(−ωm)], (20)

n0 = S(−ωm)

S(ωm) − S(−ωm)
. (21)

The net cooling rate �c and the steady-state phonon number
nss take the form

�c = 1

2
(γopt + γm), nss = γoptn0 + γmn̄th

γopt + γm
. (22)

Since γopt ∼ (g2/�) � γm, one can then write nss � n0 +
(γmn̄th/γopt). Given that the heating process [related to the
peak S(−ωm)] is highly suppressed, the final occupation num-
ber is limited by the smallness of the ratio γmn̄th/γopt, which
is guaranteed for large values of g and the small values of �.
The high polarizability of the Rydberg state provides such a
requirement.

In Fig. 3(b), we plot the cooling rate �c. The maximum
of the cooling rate occurs at resonance ωs = ωm with the
(optimal) driving 
 � 0.85ωm, for which the asymmetry in
the atomic spectra is the largest, thus manifesting the ut-
most phonon absorption capacity by the atom. Moreover, the
steady-state phonon number is shown in Fig. 3(c). For the
optimal cooling conditions, we get a record value nss � 0.7 for
an atom-surface distance d = 0.7 μm. However, ground-state
cooling of the flexural modes might be obtained also for larger
atom-surface distances by tuning the mechanical quality fac-
tor of the graphene sheet. In Fig. 4(a), we plot the ground-state
occupancy against the quality factor for the range of values
achievable in state-of-the-art experiments [51]. Furthermore,
in Fig. 4(b), we show that, if we set the initial temperature
T = 15 mK, a Rydberg state |60S1/2〉 can also lead to ground-
state cooling at d = 0.8 μm with Q = 106.

Finally, we investigate how robust the ground-state cooling
protocol can be in the presence of dephasing, which may
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FIG. 5. Schematic representation of a possible experimental
setup, not to scale. A vertical atom-chip surface is used to magneti-
cally trap a Rydberg atom next to a suspended graphene membrane.
The horizontal distance a is much larger than the vertical atom-
graphene distance.

enter the cooling dynamics as a result of the atomic trap
fluctuations and surface-induced noise. In fact, provided that
the condition �̃ < ωm is satisfied, ground-state cooling is
still attained. This fact is patent in Fig. 3(d), revealing that
nss � 1 for �̃ = 0.015 ωm, which is estimated to be met in
typical conditions [52,53]. These dephasing effects will set a
cooling threshold, clearly shortening the region of parameters
for which ground-state cooling is achievable. It is therefore
desirable to understand at which extent dephasing effects
can be mitigated or controlled in state-of-the-art experimental
conditions, although our calculations seem to suggest that our
protocol is quite robust.

V. EXPERIMENTAL FEASIBILITY

Trapping and control of single Rydberg atoms has quite
recently become a reality [54]. It has been experimentally
possible to trap [55,56] and excite to Rydberg states at large
[57] and submicron distances [58] from the surfaces. By com-
bining these methods with our proposal, it would be possible
to experimentally realize the cooling protocol described here.
In Ref. [57], 87Rb Rydberg atoms have been trapped in a
chip-surface magnetic field. This scheme is obtained at a
chip-atom distance of 100 μm. At such distances, CP effects
are very small, even for Rydberg atoms. In our setup, we pro-
pose to magnetically trap atoms in a staircase configuration,
as shown in Fig. 5. The chip surface would then be placed
perpendicular to the graphene sheet. This would then allow
us to trap magnetically the atom at horizontal distances a of
the order of hundred micrometres, but at the same time to have
vertical atom-graphene distances d of the order of hundreds of
nanometers. Another possibility would be to prepare a host-
ing surface of 87Rb using the same techniques as presented
in Ref. [31] for Er3+. Furthermore, while we have demon-
strated the cooling effects through fully available transition
data of 87Rb, solid-state semiconductor Rydberg excitons in
bulk Cu2O [59] could also be used to implement our cooling
scheme.

VI. CONCLUSIONS

We have constructed a protocol enabling ground-state side-
band cooling of out-of-plane (flexural) mode in suspended
graphene based on vacuum forces. Our setup consists of a
driven Rydberg atom placed a few micrometres away from a
graphene nanoresonator, which is coupled with the help of CP
forces. Given the high atomic polarizability of Rydberg atoms,
the conditions for resolved-sideband cooling are achievable,
enabling us to bring the fundamental flexural mode down
to the quantum limit. Our findings overcome the difficulty
associated with cooling schemes based on optomechanical
laser cooling (a fact inherited from the large light absorbency
of graphene in usual optomechanical interfaces), thus paving
the way towards practical applications in quantum technology
for which quantum motion is necessary. Moreover, this may
also contribute to the enrichment of condensed-matter plat-
forms, because flexural modes are known to strongly affect the
electronic mobility in suspended graphene [60]. For example,
we anticipate that our scheme could be used to control the
emission of graphene plasmons [31], eventually potentiating
the generation of plasmon lasers and control of the emission
properties of atomic Rydberg states [61,62].
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APPENDIX A: SURFACE-SCATTERED GREEN’S
FUNCTION AND GRAPHENE PROPERTIES

The scattered EM field is characterized by the dyadic
Green’s function G, which is the solution of the Helmholtz
equation

[(∇ × ∇×) − (ω2/c2)ε(r, ω)]G(r, r′, ω) = δ(r − r′) ⊗ I.

It encompasses the effects of graphene via its optical con-
ductivity σ and the transverse electric RTE (s polarized) and
transverse magnetic RTM (p polarized) reflection coefficients
[26],

G(z, z, ω) = i

8π

∫ ∞

0
dk‖

k‖
k⊥

e2ik⊥z

× diag

[
RTE −

(
c2k2

⊥
ω2

)
RTM, RTE

−
(

c2k2
⊥

ω2

)
RTM,

(
2c2k2

‖
ω2

)
RTM

]
. (A1)

Here, diag[·, ·, ·] is a 3 × 3 diagonal matrix. The free-space
wave vector satisfies k2 = k2

‖ + k2
⊥ = (ω2/c2), while k′

⊥ =
(εk2 − k2

‖ )1/2 denotes the wave vector in the graphene plane
(for suspended graphene, the medium is vacuum, so ε = 1).
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FIG. 6. (a) Photonic conductivity behavior of graphene. (b) Di-
mensionless function f (α).

The Fresnel refection coefficients RTE = RTE(ω, k‖), RTM =
RTM(ω, k‖) are explicitly given by [30]

RTE = − μ0σω

2k⊥ + μ0σω
, (A2)

RTM = k⊥σ

k⊥σ + 2ε0ω
. (A3)

To calculate the nonresonant part of the energy shift, we in-
troduce the imaginary frequency ω = iξ , allowing for a better
evaluation of the poles [26]. For the real-frequency depen-
dence, the two regions 0 < k‖ < ω/c (propagating waves) and
k‖ > ω/c (evanescent waves) are considered in the numerical
computation of Eq. (A1). Moreover, the graphene conductiv-
ity σ = σ (ω) is given within the random phase approximation
(RPA), whose real σR(ω) and imaginary σI (ω) parts take the
form [30]

σR(ω) = e2EF

π h̄2

1/τ

ω2 + 1/τ 2
+ e2

4h̄
θ (h̄ω − 2EF), (A4)

σI (ω) = e2EF

π h̄2

ω

ω2 + 1/τ 2
− e2

4π h̄
ln

∣∣∣∣2EF + h̄ω

2EF − h̄ω

∣∣∣∣, (A5)

where τ = 1/γg denotes the electron-scattering time. The typ-
ical behavior of both the real and imaginary parts of the optical
conductivity is shown in Fig. 6(a). For EF � 0.5 max[h̄ωrk],
the conductivity is mostly real and the atomic transition
decay dumps energy into the particle-hole (interband) contin-
uum. In the region 0.5 max[h̄ωrk] � EF � 0.7 max[h̄ωrk], the
atom decays into free space, while for EF � 0.7 max[h̄ωrk]
the decay process results in a plasmon excitation (intra-
band), as witnessed by a positive imaginary part in the
conductivity [31].

It is well known (and hereby also verified by our numerical
calculations) that the shift in the state |n̄S1/2〉 is mainly due
to the neighboring transition |n̄S1/2〉 → |k = (n̄ − 1)P1/2,3/2〉
(n̄ being the principal quantum number), i.e., the transition of
lowest frequency (i.e., min[h̄ωrk] � 0.0308 meV) and largest
dipole moment [34]. For n̄ = 80, the choice of the Fermi en-

ergy in the main text (EF = 0.8 eV) suggests that emissions in
this frequency range result in plasmon excitations for almost
�97% of the whole transition manifold, as the condition EF �
0.7[h̄ωrk] is fulfilled. Therefore, only a small percentage of
the transitions (and thus with a negligible contribution to the
atomic energy shifts) will emit in the particle-hole continuum.
Both intra- and interband emissions could potentially heat
graphene via the sequential excitation of in-plane phonons.
However, their effect in the heating via the production of
out-of-plane phonons (flexurons) are unknown. Although in-
teresting, the latter are out of the scope of the present work.

APPENDIX B: ATOMIC DRESSED STATES
AND THEIR POWER SPECTRUM

Coming back to Eq. (14) of the main text, we can obtain
the dynamics of the Bloch vector �σ = [σx, σy, σz]T from the
isolated Bloch equation, i.e., considering only the atomic part
of the Hamiltonian, thus taking γm = 0. In the limit of pure
atomic decay (i.e., �̃ → 0), the Bloch vector evolves as

∂t 〈�σ 〉 = A〈�σ 〉 − ��, (B1)

where

A =
( −� −ωs cos (α) 0

ωs cos (α) −� −ωs sin (α)
0 ωs sin (α) 2�

)
, (B2)

�� =
( 0

0
2�

)
. (B3)

Using the quantum regression theorem [44], one can write
the spectrum S (ω) = 〈δσz(−iω)δσz(0)〉ss for the steady-state
correlation of the fluctuation operator δσz (defined in the main
text) as

S (ω) = −(0, 0, 1) · [iω1 + A]−1 �B, (B4)

where �B = 〈δ �σδσz〉ss. Given the inverse of the matrix
[iω1 + A]−1 = adj[iω1 + A]/det[iω1 + A] (with adj[.] and
det[.] denoting the adjugate and determinant, respectively),
one can write

S (ω) = h(ω)

(iω + ε0)(iω + ε+)(iω + ε−)
, (B5)

where h(ω) = −(0, 0, 1) · adj[iω1 + A]−1 �B. Here, εi are the
eigenvalues of matrix A. The spectrum generally exhibits three
peaks, whose frequencies and width are respectively given by
the imaginary and real parts of εi. In the resolved sideband
regime, �/ωs � 1, the eigenvalues are given by

ε0 � −�ε0 , ε± � ±iωs − �ε+ ,

where

�ε0 = �

2
[cos (2α) + 3], �ε+ = �

4
[cos (2α) − 5].

It is therefore clear that the spectrum exhibits well-resolved
peaks at ω = (0,±ωs), as illustrated in Fig. 3(a) of the paper.
In the same regime, the real part of the spectrum in the vicinity
of ±ωs reads

S(ω) ≡ Re[S (ω � ±ωs)] = �ε+

�2
ε+ + (ω ∓ ωs)

(P±), (B6)
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with

P± = Re

[ −h(±ωs)

(±iωs − �ε0 )(±2iωs − �ε+)

]
(B7)

To the lowest order in �/ωs, P± is explicitly given by

P+ = sin6 (α) csc4
(

α
2

)
4(cos (2α) + 3)

,

P− = 4 sin4
(

α
2

)
sin2 (α)

cos (2α) + 3
.

For convenience, we finally define a dimensionless function
f (α) = �[S(ω) − S(−ω)], capturing the dependence of the
net cooling rate on the relevant parameters of the problem.
In the limit ω → ωs, the function turns out to be

f (α) = − 8 sin (α) sin (2α)

[cos (2α) − 5][cos (2α) + 3]
. (B8)

As can be seen in Fig. 6, this function is peaked at 
 �
0.85ωs, revealing the optimal configuration for resolved side-
band cooling to take place.

APPENDIX C: CONTRIBUTION BY COUPLED
DISSIPATIVE ATOMIC BATH AND NET COOLING RATE

From Eq. (15) of the main text, one can isolate the effects
of the thermal bath (the uncontrolled reservoir) and that of the
“dissipative atomic bath” (controlled reservoir). This allows

us to write the equation in the form

˙̂ρm = −iωm[b̂†b̂, ρ̂m] + γopt

2
(n0 + 1)Db̂[ρ̂m]

+ γopt

2
n0Db̂† [ρ̂m] + γm

2
(n̄th + 1)Db̂[ρ̂]

+ γm

2
n̄thDb̂† [ρ̂], (C1)

where γopt = 2g2[S(ωm) − S(−ωm)] is the optical cooling
rate and n0 = S(−ωm)/[S(ωm) − S(−ωm)] is the minimal (or
residual) flexural occupation number. Both quantities are a
result of the coupling to the dissipative atomic bath alone.
Conversely, the net cooling rate �c and the steady-state
phonon number nss described in the paper take the form

�c = 1

2
(γopt + γm), nss = γoptn0 + γmn̄th

γopt + γm
. (C2)

Using Eq. (B8) and taking ωs = ωm, the total optical cooling
rate reads

γopt � (2g2/�) f (α) = 8 sin2 (α)
√

1 − sin2 (α)

4 − sin4 (α)

g2

�
. (C3)

The optical cooling rate turns out to be O(g2/�). To achieve
ground-state cooling, γopt must exceed the intrinsic flexural
thermal heating rate γmn̄th. As a consequence, a large value of
the ratio (γopt/γmn̄th ) = g2/�γmn̄th (dubbed the cooperativity
parameter in the literature) is required to achieve ground-state
cooling [50].
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