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Through high-order harmonic generation driven by intense ultrashort vortex infrared or midinfrared lasers, a
nonzero orbital angular momentum can be imprinted onto extreme ultraviolet (XUV) or soft-x-ray (SXR) light
pulses. Here we simulate the generation of vortex XUV harmonics in the gas medium as well as their propagation
in vacuum till reaching the far field. We find that the intensity and phase of generated high harmonics are very
sensitive to the position of gas jet with respect to the laser focus. The topological charge of the qth harmonic is
found to be q times that of the driving Laguerre-Gaussian beam. Each harmonic in the far field appears as a single
ring in the transverse plane with an invariant diameter which is scalable with the fundamental topological charge
only when the gas jet is placed after the laser focus. The underlying phase-matching mechanism is analyzed
by examining the spatial map of the coherence length and by calculating the evolution of harmonic emission in
the medium. We anticipate this work to stimulate interest in generating intense vortex XUV or SXR attosecond
pulses for probing dynamics of molecules where special molecular features are difficult to be detected with linear
or circular XUV or SXR pulses.
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I. INTRODUCTION

An optical vortex is a light beam with helical phase that
possesses a spiral wave front [1–3]. The azimuthal phase
change of the wave front around the propagation axis is 2π l ,
thus carrying an orbital angular momentum (OAM) of l h̄ per
photon, where h̄ is the reduced Planck constant and the vortex
light beam is said to have a topological charge l . In a light-
matter interaction, the OAM can be transferred to matter, such
as in atomic and molecular systems [4–7]. A prominent exam-
ple of such a vortex field is a Laguerre-Gaussian (LG) beam
with OAM, which is related to the annular spatial profile with
a null central region, first demonstrated in a pioneering work
by Allen et al. in 1992 [8]. Due to the unique features of the
vortex beam, it has been applied to numerous different fields,
including optical manipulation [9], quantum information pro-
cessing [10], optical communications [11], phase-contrast
interferometry [12], chiral recognition in molecules [13,14],
and so on.

In the infrared (IR) and visible spectral range, light beams
with OAM can be created with optical elements [2]; it is quite
difficult to use the same technology to create vortex extreme
ultraviolet (XUV) or soft-x-ray (SXR) beams though [15].
However, using the up-conversion process of high-order har-
monic generation (HHG) by an intense ultrashort vortex IR
pulse interacting with a gaseous [16,17] or solid medium [18],
vortex XUV beams have been reported. The first experiment
was performed by Zürch et al. [19] in 2012. It was found
that low-charged XUV vortices are generated but the phase
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of harmonic does not scale with harmonic order. Soon af-
ter, Gariepy et al. [20] measured the transverse phase of the
generated vortex harmonics with interferometric technique.
They found that the topological charge of each harmonic
is q times (q is the harmonic order) the topological charge
of the driving laser. Since then, other experimental studies
have been carried out focusing on characterizing attosecond
vortex pulses and generating helical electron bursts [21], con-
trolling the HHG topological charge by mixing two-color
driving beams in a noncollimated scheme [22,23], creating
radially and azimuthally polarized beams [24], generating
time-varying OAM in the HHG [16], and others [25,26].

To fully understand experimentally measured vortex har-
monics generated in a gas using theoretical simulations, one
needs to consider both the generation at the single-atom level
and the propagation of the harmonic field in the macroscopic
medium, including its propagation in free space. The former
can be obtained by solving the time-dependent Schrödinger
equation (TDSE), or by some simpler models. In the first
theoretical study on the vortex HHG by Hernández-García
et al. [27], the single-atom response was calculated with the
improved strong-field approximation (SFA), called SFA+. By
treating the gas target as discretized elementary radiators,
the harmonic emissions were computed with an electromag-
netic field propagator. This method was then applied to study
quantum-path signatures in attosecond helical beams [28],
harmonics generated by nonpure vortex modes [29], and
generation of fractional OAM beams [30]. Later, Paufler
et al. [31,32] used the Fraunhofer diffraction formula to cal-
culate harmonic emissions with tailored OAM in the far field.
With these approaches, the significance of various mecha-
nisms and their interplays for the formation and evolution of
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harmonic field in the gas medium cannot be demonstrated.
Interestingly, to treat phase matching, the standard method of
solving the three-dimensional (3D) Maxwell’s wave equations
for non-OAM beams [33–38] has rarely been applied to high
harmonics generated with intense vortex IR pulses [21,39,40].

In this work, our main goal is to present a complete the-
oretical analysis of the generation of high harmonics with
OAM, thus identifying how the different factors affect the
phase-matching conditions, which determine the amplitude
and phase of the vortex harmonics in the XUV regime. The
theory includes the solution of the 3D Maxwell’s wave equa-
tions for the propagation of harmonic field in the medium,
the quantitative rescattering (QRS) model for the single-atom
response, and Huygens’ integral under the paraxial approxi-
mation for the far-field harmonic emission. We will investigate
the characteristics of intensity and phase of vortex harmonics
in both the near and far fields driven by LG beams by varying
the position of gas medium with respect to the laser focus, and
will analyze the spatial coherence length and the accumulated
field strength of high harmonics in the medium. The vortex
harmonics generated with different fundamental topological
charges will also be discussed.

II. THEORETICAL METHODS

To calculate high harmonics generated inside a gas medium
driven by an OAM laser beam, two parts have to be accounted
for as follows. (i) Single-atom response in which each atom
interacts with a local field at a given spatial position of the
OAM beam. The laser-atom interaction can be treated under
the dipole approximation [41]. (ii) Macroscopic response, in
which responses from atoms within the interaction region are
added up coherently. The near-field harmonics emitted at the
exit of the gas medium continue to propagate in vacuum using
Huygens’ integral until they reach the detector where far-field
harmonics are obtained.

A. Propagation equations of high-harmonic field

We assume the fundamental beam with OAM is not mod-
ified within the ionized gas medium, i.e., it propagates as in
free space. This is valid when laser intensity is low and gas
pressure is low. The propagation of vortex harmonic field in
the ionizing medium is governed by (in a Cartesian coordi-
nate) [42]

∇2Eh(x, y, z, t ) − 1

c2

∂2Eh(x, y, z, t )

∂t2
= μ0

∂2Pnl (x, y, z, t )

∂t2
,

(1)

where

Pnl (x, y, z, t ) = [n0 − ne(x, y, z, t )]D(x, y, z, t ) (2)

and

ne(t ) = n0

{
1 − exp

[
−

∫ t

−∞
w(τ )dτ

]}
. (3)

Here, Pnl (x, y, z, t ) is the nonlinear polarization, n0 is the neu-
tral atom density, ne(x, y, z, t ) is the free electron density, and
w(τ ) is the tunnel ionization rate. The induced dipole moment

D(x, y, z, t ) is calculated in the local laser field. Effects of
absorption and free electron dispersion are neglected.

By employing a moving coordinate frame (z′ = z and t ′ =
t − z/c) and applying paraxial approximation (i.e., neglecting
the ∂2Eh/∂z′2 term), one obtains

∇2
⊥Eh(x, y, z′, t ′)− 2

c

∂2Eh(x, y, z′, t ′)
∂z′∂t ′ =μ0

∂2Pnl (x, y, z′, t ′)
∂t ′2 .

(4)

In this equation, the transverse Laplace operator ∇2
⊥ =

∂2/∂x2 + ∂2/∂y2.
Using Fourier transform, the temporal derivative in Eq. (4)

can be eliminated and

∇2
⊥Ẽh(x, y, z′, ω) − 2iω

c

∂Ẽh(x, y, z′, ω)

∂z′

= −μ0ω
2P̃nl (x, y, z′, ω), (5)

where

Ẽh(x, y, z′, ω) = F̂ [Eh(x, y, z′, t ′)] (6)

and

P̃nl (x, y, z′, ω) = F̂ [Pnl (x, y, z′, t ′)]. (7)

Here F̂ is the Fourier transform operator acting on the tempo-
ral coordinate.

An operator-splitting method is used to solve Eq. (5). The
advance of electric field from z′ to z′ + �z′ is separated in two
steps:

∂Ẽh(x, y, z′, ω)

∂z′ = − ic

2ω
∇2

⊥Ẽh(x, y, z′, ω) (8)

and

∂Ẽh(x, y, z′, ω)

∂z′ = − icμ0ω

2
P̃nl (x, y, z′, ω). (9)

Once the harmonic field at the exit plane of gas medium
(z′ = zout) is computed, the total HHG power spectrum is
obtained by integrating over the transverse plane:

Sh(ω) ∝
∫ ∞

−∞

∫ ∞

−∞
|Ẽh(x, y, z′, ω)|2dx dy. (10)

B. Fundamental Laguerre-Gaussian beams

For the fundamental driving laser, we employ a Laguerre-
Gaussain (LG) beam. Under the paraxial and slowly varying
transverse amplitude approximations, its electric field can be
expressed in cylindrical coordinates as

LGl,p(r, φ, z′)

= E0
w0

w(z′)

(
r

w(z′)

)|l|
L|l|

p

(
2r2

w2(z′)

)
exp

(
− r2

w2(z′)

)

× exp

(
− ik0

r2

2R(z′)
− iζ (z′) − ilφ

)
. (11)

Note that the above expression is written in the moving frame;
thus the factor of exp(−ik0z) in the rest frame was omitted.
The negative sign in the phase is consistent with the conven-
tion of Fourier transform in Eq. (5) [32]. In Eq. (11), w0 is
the beam waist at the focus, w(z′) = w0

√
1 + (z′/z0)2 is the
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FIG. 1. Left: intensity [(a) and (b)] and phase [(c) and (d)] of the transverse profiles of the fundamental LG beams at the focus position
(z′ = 0) (the near field). Beam waist w0 = 25 μm; peak intensity is 2.5 × 1014 W/cm2. I0 = 1014 W/cm2. Right: Intensity [(e) and (f)] and
phase [(g) and (h)] distributions in the far field (z′ = +∞). Intensity has been normalized. Upper row: LG1,0 mode; lower row: LG2,0 mode.
The phase is defined from −π to π .

beam width, and z0 = πw2
0/λ0 is the Rayleigh length with

the laser wavelength λ0. L|l|
p (x) is the associated Laguerre

polynomial. R(z′) = z′[1 + (z0/z′)2] is the radius of curvature
of the wave front and Gouy phase is given by ζ (z′) = −(|l| +
2p + 1) arctan(z′/z0). The index l = 0,±1,±2, . . . gives the
topological charge and p = 0, 1, 2, . . . is associated with the
number of radial nodes.

We consider two LG beams with l = 1 and l = 2 while
p = 0. Laser wavelength is 800 nm and the beam waist is
w0 = 25 μm; thus the Rayleigh range z0 = 2.45 mm. By
properly adjusting the amplitude of the field E0, the peak
intensity at focus is set as 2.5 × 1014 W/cm2. The intensity
and phase distributions are shown in Fig. 1. At the laser
focus (z′ = 0), because the radial node is set to zero, there
is only one ring in Figs. 1(a) and 1(b), respectively. The term
exp(−ilφ) in Eq. (11) imprints an azimuthal phase variation
of 2π and 4π on the beams in Figs. 1(c) and 1(d), respectively.
In these plots the range of phase is defined within [−π : π ].
In the far field (z′ = +∞), the intensity profiles remain the
same as those at focus. However, the phase distributions are
varied; see Figs. 1(g) and 1(h). This is due to the shift of
Gouy phase ζ (z′). From z′ = 0 to +∞, the phase shift is
−π (or −3π/2) for LG1,0 (or LG2,0) mode. One can also
see that the radius of the maximum intensity ring for LG2,0

mode is
√

2 times larger than that for LG1,0 mode, in both
near and far fields. This can be derived from Eq. (11) that the
radial coordinate of maximum intensity of a LGl,0 beam is at
rl,max(z′) = w(z′)

√|l|/2.

C. Separation of spatial and temporal dependence
in the nonlinear polarization

The spatial electric field of the LG beam in Eq. (11) can be
simply expressed as

LGl,p(r, φ, z′) = ε(r, z′)eiϕl (r,φ,z′ ), (12)

where ε(r, z′) is the amplitude of the field and ϕl (r, φ, z′) is the
phase. The spatiotemporal electric field of a linearly polarized
ultrashort laser pulse is written as

E (r, φ, z′, t ′) = Re[ε(r, z′)eiϕl (r,φ,z′ )A(t ′)ei(ω0t ′+ϕcep )], (13)

where ω0 is the central frequency, A(t ′) is the temporal enve-
lope, and the carrier envelope phase is represented by ϕcep.

To separate the temporal and spatial dependence in
Eq. (13), we define a new time frame as

t ′′ = t ′ + ϕl (r, φ, z′)/ω0. (14)

Then the electric field becomes

E (r, z′, t ′′) = ε(r, z′)A(t ′′) cos(ω0t ′′ + ϕcep). (15)

Here we ignore any time shift in the temporal envelope A(t ′),
which is valid for a long-duration pulse. The spatial depen-
dence can be reduced to the dependence of peak field only.

Using the time frame t ′′, the nonlinear polarization of
Eq. (7) in the moving frame can be rewritten as

P̃nl (r, φ, z′, ω) = F̂ [Pnl (r, φ, z′, t ′)]

= F̂ [Pnl (r, z′, t ′′)]ei(ω/ω0 )ϕl (r,φ,z′ ). (16)

In the calculation, we first compute Pnl (r, z′, t ′′) for a num-
ber of laser peak intensities. When we solve Eq. (5), the
nonlinear polarization in the t ′′ frame can be obtained by
interpolating the peak intensity |ε(r, z′)|2. As seen in Eq. (16),
a harmonic-order dependent factor, which accounts for the
effect of the laser geometric phase, is added to restore the
moving frame. Note that the use of the interpolation method
greatly improves the computation efficiency for the propaga-
tion of harmonic fields.
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D. Far-field harmonic emission

Once the high harmonics are emitted from the exit face of
a gas medium at z′ = zout (near field), they further propagate
in vacuum. The far-field harmonic emissions can be obtained
from near-field ones by using Huygens’ integral under the
paraxial and Fresnel approximations (in a Cartesian coordi-
nate) as [43]

E f
h (x f , y f , z f , ω)

= (ik/2πL)
∫∫

Ẽh(x, y, zout, ω)

× exp

{
−(ik/2L)[(x f − x)2 + (y f − y)2]

}
dx dy, (17)

where L = z f − zout, z f is the far-field position from the laser
focus, x f and y f are the transverse coordinates in the far
field, and the wave vector k is given by k = ω/c. Note that
Eq. (17) is used to calculate the harmonic field on a plane
at z f perpendicular to the propagation axis, while far-field
harmonics are computed in a spherical surface with a radius
L. Note that Eq. (17) gives an equivalent solution of Eq. (5) in
vacuum for each ω.

E. Quantitative rescattering model for single-atom response

Since polarization of the laser pulse is linear, single-atom
induced dipole moment D(t ) in Eq. (2) can be accu-
rately calculated by using the quantitative rescattering (QRS)
model [44,45]. In this model, the D(t ) is given in the fre-
quency domain D(ω), which can be written as [44,46]

D(ω) =
√

NW (ω)d (ω), (18)

where N is the ionization probability taken at the end of the
laser pulse, d (ω) is the complex photorecombination (PR)
transition dipole matrix element, and W (ω) is the complex
microscopic wave packet. The QRS improves the strong-field
approximation (SFA) by replacing the plane wave used in the
SFA with accurate scattering wave in the PR transition dipole
matrix elements, while the returning wave packet is the same
as that in the SFA. In practical applications, the QRS obtains
the induced dipole moment by

Dqrs(ω) = Dsfa (ω)

√
Nqrs

N sfa

dqrs(ω)

d sfa (ω)
, (19)

where both Dsfa (ω) and dqrs(ω) are complex numbers, while
dsfa (ω) is either a pure real or pure imaginary number. Nqrs

is calculated by using the ADK theory [47,48]. Within the
single active electron (SAE) approximation, dqrs(ω) can be
calculated by using “exact” numerical wave functions for the
bound and continuum states. For Ar, the atomic potential takes
the following form [48]:

V (r) = −Zc + a1e−a2r + a3r e−a4r + a5e−a6r

r
, (20)

where Zc is the charge seen by the active electron asymptot-
ically and a1, . . . , a6 are parameters obtained by fitting V (r)
to the numerical potential from self-interaction free density
functional theory. Using such a single electron model, the
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FIG. 2. Simulated macroscopic harmonic spectra integrated over
the exit plane of the gas medium generated with a LG1,0 beam. The
gas jet is taken at three positions as indicated. The peak intensity at
the center of the gas medium is fixed at 1.5 × 1014 W/cm2. See text
for additional laser parameters.

minimum in the calculated PR transition dipole for Ar occurs
at 40 eV [42].

III. HIGH-HARMONIC GENERATION WITH
LAGUERRE-GAUSSIAN BEAM (l = 1, p = 0)

A. Dependence of total harmonic spectra
on the position of gas jet

In our simulation, we first take the fundamental laser to
be a LG1,0 beam. The beam waist at the focus is fixed as
w0 = 25 μm, which is considered to be tightly focused. The
pulse is linearly polarized, with wavelength at 800 nm, pulse
duration at 10 optical cycles (26.7 fs), and ϕcep at 0. The laser
pulse interacts with a uniformly distributed Ar gas jet with
length of 1 mm. Typically, in the calculation we discretize the
space in the transverse direction using 500 grid points and the
longitudinal direction 400 grid points.

We consider three cases where the center of the gas jet
is placed at 2 mm after, at, or 2 mm before the laser focus,
respectively. The peak intensity at the center is always fixed
at 1.5 × 1014 W/cm2. The simulated total HHG spectra cal-
culated by Eq. (10) are shown in Fig. 2. There are two most
notable features when the gas jet is located 2 mm after the
laser focus: (i) it has the best well-resolved odd harmonics and
(ii) it has the most flat plateau and the most efficient genera-
tion of higher-order harmonics. These are similar to harmonic
generation by using a Gaussian beam without OAM [42].

B. Intensity and phase distributions of high harmonics
in the near and far fields

For the three gas-jet positions above, in Figs. 3, 4, and 5,
we show the intensity and phase distributions in space for two
selected harmonics in the plateau region and one harmonic at
the cutoff. Both near- and far-field harmonics are considered.
We first take a close look of Fig. 3 where the gas jet is placed
after laser focus. In the near field, the harmonic intensity is
distributed over one single ring primarily, see Figs. 3(a)–3(c),
and the phase distributions in Figs. 3(d)–3(f) do not show
any nodes along the radial direction. Over one circle, we can
identify that the phase change of 2πq and thus the topological
charge is q for the qth harmonic. In the far field, there is one

033113-4



PHASE-MATCHING ANALYSIS IN HIGH-ORDER … PHYSICAL REVIEW A 102, 033113 (2020)

FIG. 3. Left: intensity [(a)–(c)] and phase [(d)–(f)] distributions of high harmonics generated with a LG1,0 beam in the near field (at the
exit plane of the gas medium). Right: angular profiles of the intensity [(g)–(i)] and phase [(j)–(l)] of high harmonics in the far field. First
row: 15th-order harmonic (H15); second row: H23; third row: H31. The intensity in the near and far fields are normalized separately. The
topological charge can be read from the rapid change of the phase, which is defined within [−π :π ]. The gas jet is placed at 2 mm after the
laser focus.

major ring in the intensity profile with about the same radius
for different harmonic orders; see Figs. 3(g)–3(i); thus har-
monics are emitted with similar divergence at about 7 mrad.
The phase distributions in Figs. 3(j)–3(l) are quite different
from those in the near field but the topological charges remain
unchanged. The evolution of intensity and phase profiles from
near to far fields is mostly due to two factors: one is the
focusing effect of the harmonic field which contributes to the
phase shift similar to the shift of the Gouy phase; the other
is the interference of short- and long-trajectory emissions
(discussed in the later sections). Note that the conclusion
of similar divergence for different harmonic orders in our
simulation is consistent with results from other theory [27]
and experiments [21]. These results, however, are different
from harmonics generated with Gaussian beams where the
divergence changes with the harmonic order [49].

We next inspect the cases when the gas jet is located
at and before the laser focus as shown in Figs. 4 and 5,
respectively. First, multiple rings can be identified in the in-
tensity distribution in the near field, see Figs. 4(a)–4(c) and
Figs. 5(a)–5(c), meaning the existence of a number of radial
nodes in the harmonic beams. This also indicates that dif-
ferent phase matching occurs by varying the position of the
gas jet. From the phase distributions in Figs. 4(d)–4(f) and

Figs. 5(d)–5(f), we can clearly see the phase jump between
rings, but the topological charge does not change with the
gas-jet position. Second, in the far field, both intensity and
phase profiles reveal extra radial rings, implying that the radial
index p is not zero. In addition, the radius of the brightest ring
changes with harmonic order, which is different from the case
when the gas jet is located after the focus.

In the far field, if the gas jet is before the laser focus, the
intensity patterns tend to show a few rings, distinct from that
with a single ring where the gas jet is behind the focus. When
the gas jet is at the laser focus, the intensity profiles tend
to have the most multiple rings. This conclusion is identical
to the results in Ref. [39], where full 3D propagation of the
harmonic beam in the medium has been taken into account.
These results, however, contradict the simulated results in
Fig. 2 of Ref. [28]. We suspect that this is due to a different
propagation method being implemented in the simulation.

C. Analysis of phase-matching conditions
for OAM harmonics in the gas medium

To explain the dependence of HHG on the gas-jet posi-
tion, one can either investigate the phase-mismatch conditions
of harmonics in terms of coherence length or examine the
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FIG. 4. Same as Fig. 3 except that the gas jet is placed at the laser focus.

accumulation of harmonic strength inside the gas medium.
Here we use both approaches to show that they are consistent:
the first method is to check the spatial coherence length of
harmonics by the analytical formulation of phase mismatch;
the second method is to follow the growth of harmonic field
in space by solving the 3D Maxwell’s wave equations numer-
ically.

1. Coherence length of HHG in space

For low intensity and low gas pressure considered in
this paper, in the phase-matching analysis we only in-
clude the contributions from the spatial phase of driving
laser and the intrinsic phase of single-atom response. Other
contributions such as neutral atom dispersion and plasma
defocusing from free electrons are excluded [50]. Optimum
phase matching can be reached when the following condition
is satisfied [51–54]:

kq = qk1 + K, (21)

where kq is the wave vector of the qth harmonic field and K
is from the single-atom response. The total wave vector k1 for
the fundamental LG beam can be expressed as

k1(r, z) = k0ez − ∇ϕl (r, φ, z), (22)

where ez is the unit vector along the z direction and k0 = ω0/c.
Note that the sign in front of the term ∇ϕl is negative, which
is determined according to the sign convention of the phase

given for the LG beam; see Eq. (11). Since

ϕl (r, φ, z) = −k0
r2

2R(z)
− ζ (z) − lφ, (23)

∇ϕl can be written explicitly in cylindrical coordinates as

∇ϕl (r, φ, z) = ∂ϕl

∂r
er + 1

r

∂ϕl

∂φ
eφ + ∂ϕl

∂z
ez

= ∂ϕl

∂r
er − l

r
eφ + ∂ϕl

∂z
ez. (24)

Here er and eφ are unit vectors in the r and φ directions, re-
spectively. Therefore, there is no dependence on the azimuthal
angle φ in Eq. (24). Note that in Ref. [52] the component of
wave vector along eφ direction was not included. The effective
wave vector K is used to describe the spatial dependence of
the atomic phase as

K(r, z) = ∇ϕq,dip(r, z). (25)

Here the intrinsic dipole phase ϕq,dip(r, z) is accumulated by
an electron in the external field following a specific trajectory.
It can be written as

ϕq,dip(r, z) = −α
q
i I (r, z) = −α

q
i |ε(r, z)|2, (26)

where I (r, z) is the laser peak intensity. The coefficient
of α

q
i depends on short (S) or long (L) trajectories and

harmonic order. For harmonics in the plateau, α
q
i=S ≈
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FIG. 5. Same as Fig. 3, but the gas jet is located at 2 mm before the laser focus.

1 × 10−14 rad cm2/W and α
q
i=L ≈ 24 × 10−14 rad cm2/W. At

the cutoff, α
q
i=S,L ≈ 13.7 × 10−14 rad cm2/W [55,56].

The mismatch of wave vectors between the qth harmonic
and the fundamental laser can be defined as δkq(r, z), its
direction is along the polarization wave vector qk1 + K, and
thus its norm is [51]

δkq(r, z) = kq − |qk1 + K|, (27)

with kq = qω0/c. Finally the coherence length can be intro-
duced as

Lq,coh(r, z) = π

|δkq(r, z)| . (28)

The calculated spatial distributions of coherence length
for high harmonics driven by a LG1,0 beam are shown on
the left column of Fig. 6 where the laser parameters used
in the calculations are the same as those in Fig. 1. Since the
length of the gas medium is 1 mm, a coherence length in the
order of 1 mm or longer can be considered as a condition of
good phase matching [51–54]. In the coherent length plots of
Fig. 6, we use “white” color to stand for good phase match-
ing where the coherence length is greater than or equal to
1 mm. The intensity distribution of the driving laser is given in
Fig. 6(f) as reference. For plateau harmonics, 15th-order har-
monic (H15) and H23, the coherence length of short-trajectory
harmonic emission depends weakly on the propagation po-
sition z, with moderately good phase-matching region (light

to dark blue) surrounded by white ones. This region coin-
cides with an off-axis region where the laser intensities are
large; see Figs. 6(a), 6(b), and 6(f). But the coherence length
varies rapidly with z for long-trajectory harmonic emission.
As shown in Figs. 6(d) and 6(e), in the same off-axis region,
a narrow phase-matching region appears if z > 0; it splits into
two regions when z < 0. For the cutoff harmonic H31 where
long- and short-trajectory emissions coincide, the coherence
length has very strong dependence with z. From Fig. 6(c), we
note that a broad good phase-matching region can be realized
off axis (large r) if z > 1.0 mm. A narrow white region for
z < 1.0 mm cannot contribute to the cutoff harmonics as a
result of small laser intensities.

In Fig. 6, we also show the map of the coherence length of
HHG by using a Gaussian beam (or LG0,0 mode) for compar-
ison. Note that the scale of the radial direction is half of that
shown for the LG1,0 beam. The laser intensity distribution,
as shown in Fig. 6(i), is much closer to the propagation axis.
We can see the big difference in the coherence length map
between the two beams. Take the position at z = 2 mm for
an example. For plateau harmonics, the coherence length is
either larger than or close to 1 mm for short-trajectory emis-
sions, while it is much shorter for long-trajectory ones. This
is consistent with the general knowledge that short-trajectory
harmonic emission can efficiently survive the propagation
in the medium if the gas jet is placed after the laser
focus.
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FIG. 6. Map of coherence length for high harmonics along radial and propagation directions driven by LG1,0 (left) and Gaussian (right)
beams. The laser intensity distributions for the two beams are plotted in (f) and (i) and I0 = 1014 W/cm2. First row: H15; second row: H23;
third row: H31. For plateau harmonics (H15 and H23), the coherence length is shown in terms of short- or long-trajectory contributions,
respectively. H31 is at the cutoff. Note that the “white” area indicates that the coherence length is longer than 1 mm and the scale of the radial
distance in the LG beam and Gaussian beams are not the same.

2. Evolution of harmonic fields inside the medium

The coherence length map in Fig. 6 reflects the degree
of phase matching at each point in the gas medium and
it will determine how the harmonic field builds up in the
gas medium. The calculated harmonic emissions inside the
1-mm-long medium are displayed along the z − r plane as
z increases in Fig. 7 for the three gas-jet locations being
considered. Before discussing these results, we first isolate
the contribution of emissions due to long-trajectory electrons
for plateau harmonics. This is accomplished by truncating the
electron excursion time to less than 0.65 optical cycle in the
SFA [57,58], thus modifying the electron wave packet used in
the QRS model. The resulting harmonic emissions are shown
in Fig. 8.

There are some general features that can be easily dis-
cerned in Fig. 8. If the exit face of the gas medium zout is
before the laser focus, from Figs. 8(a) and 8(b), we can see
that the harmonic emissions are converged. If zout is after the
laser focus, in accordance with the direction of wave vector
of the fundamental laser, the opposite behavior can be seen in
Figs. 8(c)–8(f). For H15, there are three emission branches,
two narrow ones at the longer and shorter radial positions, re-
spectively, sandwiched with another broader one in between.
The middle one is very strong in Fig. 8(e) if the gas jet is
located 2 mm after the laser focus because the coherence
length is pretty long around z = 2 mm in Fig. 6(a). For H23,
we also can identify three emission branches. These general

features are slightly dependent on the position of the gas jet,
which agrees with the dependence of coherence length on z
position as shown in Figs. 6(a) and 6(b). Along the r direction,
the split of harmonic emissions is due to the strong intensity
dependence of the driving laser [55] as seen in Figs. 6(f).

We then return to take a careful look at Fig. 7, in which
both short and long trajectories contribute to the single-atom
response. For H15 and H23, the upper and lower emission
branches caused by short-trajectory electrons can be clearly
identified when the gas jet is before or at the laser focus, and
there are additional narrow emission branches between them
due to long-trajectory electrons; see Figs. 7(a), 7(b), 7(d),
and 7(e). These results strictly follow the change of coherence
length in space seen in Figs. 6(d) and 6(e). When the gas jet is
after the laser focus, in Figs. 7(g) and 7(h), the interference be-
tween short and long trajectories becomes significant, and the
two emission branches from short-trajectory electrons either
disappear or are weakened. For H31, in Figs. 7(c) and 7(f),
the harmonic emissions are gained over short distances. At
after-focus jet position, as seen in Fig. 7(i), the harmonic field
increases steadily with the propagation distance z over the
whole 1 mm length, in agreement with the coherence length
in Fig. 6(c).

In short, from the analysis shown in Figs. 7 and 8, we
learn the following: (i) for plateau harmonics, when the gas
is placed after the laser focus, short and long trajectories
strongly interfere in space, resulting in single-ring structure of
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FIG. 7. Evolution of harmonic emissions (normalized) in space for H15 (first row), H23 (second row), and H31 (third row) when a gas
jet is placed 2 mm before (first column), at (second column), or 2 mm after (third column) the laser focus. These correspond to near-field
harmonics in Figs. 3, 4, and 5.

harmonic emission at the exit plane; (ii) if the gas is located
before or at the laser focus, short- and long-trajectory emis-
sions are spatially separated, leading to multiple rings in the
intensity distribution of near-field harmonics; (iii) for cutoff
harmonics, since there is only one trajectory contributing to
emission, the near-field harmonic profile is regular with one
relatively narrow ring.

When the gas jet is placed after the laser focus, the di-
vergence in the far field is the same for all harmonic orders
as the driving LG laser and is equal to 7 mrad. This can
be understood by adopting the analysis used in Ref. [21].
Assuming that each qth-harmonic field is described by a given

LG mode (p = 0), and is characterized by a scaled beam
waist wq(z) = w0q

√
1 + (z/z0q)2, topological charge lq = ql ,

as well as other parameters from the fundamental, where the
Rayleigh length z0q = πw2

0q/λq, with the wavelength λq =
λ0/q. Similar to the fundamental laser, the radial position for
maximum harmonic intensity (or radius of intensity ring) is
given by

rlq,max(z) = wq(z)
√|lq|/2. (29)

Since the emission center of the harmonic field from z = 1.5
to 2.5 mm appears at the same radial position as the maximum
intensity of the fundamental laser, see Figs. 7(g)–7(i) and

FIG. 8. Same as Fig. 7 but including short-trajectory emissions only.
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FIG. 9. Same as Fig. 3 but for a driving LG2,0 beam.

Fig. 6(f), thus

w0

√
1 + (z/z0)2

√
|l|/2 = w0q

√
1 + (z/z0q)2

√|lq|/2, (30)

for 1.5 mm � z � 2.5 mm. One can easily get the following
relations:

z0 = z0q (31)

and

w0

√
|l|/2 = w0q

√|lq|/2. (32)

Therefore, at another propagation position z > 2.5 mm, we
have [21]

rlq,max(z) = w0q

√
1 + (z/z0q)2

√|lq|/2

= w0

√
1 + (z/z0)2

√
|l|/2 = rl,max(z). (33)

In the far field, this equation tells us that the radius of the
harmonic intensity ring is the same as that of the fundamental
one.

IV. HIGH HARMONICS GENERATED BY FUNDAMENTAL
LG2,0 BEAMS

In this section, we check high harmonics generated by a
fundamental LG2,0 beam. We show the intensity and phase
distributions of harmonics in the near and far fields in Fig. 9
with the gas jet being placed 2 mm after the laser focus. One
can clearly see that, for all harmonic orders, the intensity

profiles in both near and far fields are quite similar to those
generated with the LG1,0 beam, but they differ in the spatial
range or the divergence angle. The divergence in the far field
is about 10 mrad for all the harmonic orders. It is

√
2 times

larger than that of the LG1,0 beam, which is consistent with
the scaling law

√|l| of the fundamental. This also agrees
with the experimental measurements in Ref. [21], in which
the diameter of the intensity ring is proportional to

√|l|. The
azimuthal phase change of harmonics in both the near and
far fields demonstrates that the topological charge of the qth
harmonic is 2q.

To explain the similarities of the intensity profiles between
LG1,0 and LG2,0 beams, we also look at the phase-matching
conditions for high-order harmonics from the LG2,0 beam, as
shown in Fig. 10. Compared to the LG1,0 beam, the change of
coherence length with z and its distribution along r are very
similar. We also show the evolution of harmonic fields in the
medium in Figs. 11(a)–11(c). From these figures, it seems that
the small change in coherence length cannot alter the growth
of the harmonic fields. The resulting harmonics are almost
the replica of those with the LG1,0 beam except that emission
patterns are shifted in the radial direction.

V. CONCLUSIONS

In summary, we have presented a thorough study of sim-
ulating high-order harmonics generated by intense Laguerre-
Gaussian beams with orbital angular momentum (OAM). In
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FIG. 10. Same as Fig. 6 but for a driving LG2,0 beam.

comparison with previous theories, we have solved the 3D
Maxwell’s wave equations of harmonic field in the medium
and applied Huygens’ integral to simplify the propagation
of harmonic field in vacuum. We have calculated XUV high
harmonics using linearly polarized 800 nm OAM beams in-
teracting with Ar gas under tight focusing conditions with
low peak intensities in a uniform gas jet at low pressure.
The intensity and phase of near- and far-field harmonics have
been shown to have strong dependence on the gas-jet posi-
tion with respect to the laser focus. Detailed phase-matching
analysis has been carried out by calculating the coherence
length of harmonics in space and by monitoring the buildup
of space-dependent harmonic fields in the medium. It has
been uncovered that only when the gas medium is placed
after the laser focus both short- and long-trajectory electrons
contribute to the harmonic emission to result in similar di-

FIG. 11. Same as Fig. 7 except that the driving laser is a LG2,0

beam.

vergence and a single ring intensity profile in the far field.
We also have found that the diameter of the intensity ring
does not change with the harmonic order and it scales as√|l| with the fundamental topological charge l , which is
consistent with the experimental finding in Ref. [21]. In the
future, further studies would aim at examining the synthesis of
OAM-carrying attosecond pulses [21,27,28,59], extending the
generation of vortex lights to the soft-x-ray region with mid-
infrared lasers [60,61], controlling the topological charge or
radial node in the HHG [31,39], and generating high harmon-
ics by using a laser beam with both spin angular momentum
and orbital angular momentum [62–64].
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