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Optimization of crystal high-order harmonic generation by tailoring the nonuniform irradiations
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High-order harmonic generation (HHG) is expected to produce high-quality coherent ultrashort light sources.
We propose a scheme similar to laser mode locking to selectively enhance and compress HHG in crystals through
nonuniform illuminations and phase matching. The selective enhancement of harmonics reflects attosecond-
resolved electron dynamics. And these harmonic characteristics originate from the interference of harmonics
from different lattices. It paves the way for the practical application of solid HHG with high conversion
efficiencies and the detection of electron-hole dynamics with ultrahigh spatial-temporal resolution.
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I. INTRODUCTION

The laser, first invented by Maiman in 1960, has changed
the world greatly. Mode-locking technology plays a key role
to achieve ultrashort laser pulses [1]. The indirect laser,
high-order harmonic generation (HHG) induced by intense
femtosecond lasers in the gas and condensed phases, has
been widely studied [2–13]. To achieve the high yield of
HHG, phase matching of different atoms or molecules at
different sites should be considered [14–23]. However, low
efficiency is still the bottleneck of attosecond lasers based
on gas samples. Crystals with periodicity, high density, and
inherent directionality are expected to produce efficient HHG
sources [7,8,20,24]. The interband mechanism of crystal HHG
is similar to that in gases: it has the unique chirped structures
(quantum trajectories) corresponding to the recombination
of electrons and holes [25]. Although some characteristics
of crystal HHG, such as different dependence of the cutoff
energy on the driving laser parameters [26,27] and the double-
plateau structure [28], have been demonstrated, the expected
high conversion efficiency still has large room to improve.
As a broad-bandwidth source, HHG may be interesting in a
specific narrow spectral range in some applications. Selective
enhancement of HHG is appealing.

The inherent harmonic phases related to the driving light
intensities play a key role in the formation of clear harmonic
spectra and the control of quantum trajectories [15,21,23].
However, for the detection of dynamics with ultrahigh spatial-
temporal resolution and the realization of high conversion
efficiency in crystal HHG, the significance of nonuniform
irradiation has not been well revealed. In this work, we find
that, although the harmonics induced by a uniform field are
not in phase [15], the interband harmonic fields induced by
nonuniform irradiations [29–31] are similar to the longitudi-
nal modes in lasers and their phases could be locked. The
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mechanism similar to laser mode locking results in the se-
lection of HHG in the time and frequency domains. When
additional phases are not considered, the ultraviolet pulses
are far from the in-phase position (IPP), which significantly
inhibits the yield of crystal HHG. However, the addition of
appropriate optical path differences (OPD) in the range of
≈100 nm could shift the IPP in the range of ≈1000 nm,
thus selectively enhancing and compressing the ultraviolet
pulses. This demonstrates the feasibility of observing and con-
trolling HHG within the time resolution of attoseconds. We
notice that the nonlocality limits the electron diffusion in crys-
tals, so intense radiation is expected in the long trajectories
of crystal HHG when an appropriate OPD is compensated.
Thus, the inherent advantages of crystal HHG can be utilized.
Moreover, we find that parts of a Bloch electron can evolve in-
dependently under the drive of ultrafast inhomogeneous field,
and the harmonic characteristics caused by the nonuniform
irradiation actually originates from the interference in real
space. This is of great significance in the study of nanometer-
resolution electron dynamics in solids.

The calculation details are shown in Sec. II. In Sec. III, we
demonstrate the nonuniform field-induced HHG and illustrate
the mode-locking mechanism in HHG. Our work is summa-
rized in Sec. IV.

II. METHODS FOR SOLVING TIME-DEPENDENT
SCHRÖDINGER EQUATION

A. Velocity gauge

The one-dimensional Bloch states in a lattice [−a0/2,

a0/2] are obtained by calculating the stationary Schrödinger
equation using Bloch theorem, and the time-dependent
Schrödinger equation (TDSE) is solved by the Crank-
Nicolson method under the velocity gauge [32]. We choose
250 Bloch states within the first Brillouin zone (BZ) on the
highest valence band as the initial states and integrate har-
monics throughout the BZ. Atomic units are used unless stated
otherwise.
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The driving field used in this paper is

F̃ (F, t ) = Fe−4 ln(2) t2

τ2 sin(ωt + ϕ), (1)

where τ is the full width at half maximum (FWHM), and
ϕ = 0 is the carrier-envelope phase (CEP). Once the time-
dependent wave function � is obtained, the harmonic field
can be calculated by the dipole acceleration

ã(F, t ) =
∫

BZ
dk

∫
RS

dx�∗ ∂V

∂x
�, (2)

where V is the periodic potential. The Mathieu-type potential
is used in this work. The inner integral range is the whole real
space, and the outer integral range is the whole BZ.

B. Length gauge

The Bloch states are obtained by the same method, but
real space here extends over [−500a0, 500a0], and the TDSE
is calculated in the length gauge by using the split-operator
method. The peak value of the driving field in real space is
a Gaussian distribution. The inhomogeneous driving field can
be written as

F̂ (x, t ) = F0e−4 ln(2)
(

x2

σ2 + t2

τ2

)
sin(ωt + ϕ), (3)

where σ is the FWHM of the field in real space, which re-
flects the inhomogeneity of the driving field. If F in Eq. (1)
represents the spatial-dependent field peak strength of this
inhomogeneous field, then

F = F0e−4 ln(2) x2

σ2 . (4)

Two hundred and fifty Bloch states in the BZ are uniformly
sampled as the initial states, and harmonics are integrated
throughout the BZ. To weaken the reflection of wave packets
at the boundary, the wave function is multiplied by an absorp-
tion function of the form cos1/8 with |x| > 495a0 at each time
step. To further avoid the influence of the edge, a part of the
wave function near the boundaries is ignored when calculating
the harmonics.

To extract the spatial information of harmonics, we add a
Gaussian filtering G(x0) in real space with the FWHM of 5a0,
where x0 is the center of the filtering. The selection of the
filtering width is based on the consideration of smoothing out
the oscillations in lattices while preserving the oscillations on
the nanometer scale. We get the real-space-dependent dipole
acceleration

â(x0, t ) =
∫

BZ
dk

∫
RS

dx�∗ ∂V

∂x
�G(x0), (5)

which depicts the harmonic space profile.

III. RESULT AND DISCUSSION

To illustrate the uniform-field-induced HHG, we solve the
TDSE under the velocity gauge first, as described in Sec. II A.
The HHG spectrum calculated by using the driving field with
a wavelength of 3250 nm, the field peak strength F = 0.003
a.u., and the FWHM of five cycles is shown in Fig. 1(b) by a
black curve. Similar to the calculations in many papers [8,9],
there are no clear integer peaks in the first plateau.

FIG. 1. (a) Schematic diagrams of nonuniform illumination of
the driving field. The driving pulses with Gaussian field strength in
the cross section irradiate the 1D, 2D, and 3D materials, respectively.
(b) HHG spectra induced by the uniform driving fields (black), aver-
aged with 1D (blue), 2D (green), and 3D (red) weights, respectively.
The vertical dashed line indicates the minimum band gap.

Imitating the situation in atomic HHG, the driving field
is considered to be uniform in a small range. We use the
weighted average of harmonics induced by the uniform driv-
ing fields to represent the harmonics induced by a nonuniform
field, the weight W (F ) is the atomic population as a function
of the driving field intensity. So the weighted average har-
monic spectrum is I (ω) = |FT [

∫ F0

0 dFW (F )ã(F, t )]|2, where
FT represents Fourier transform. 180 F values are uniformly
sampled from 0 to F0 = 0.003 a.u. We assume several atomic
populations irradiated by an inhomogeneous field to inves-
tigate the nonuniform-irradiation effects. The one-, two-,
and three-dimensional (1D, 2D, and 3D) weights shown in
Fig. 2(a) are explained in Appendix A, which respectively
represent the atomic populations in the 1D, 2D, and 3D ma-
terials (considering the laser attenuation in the propagation)
irradiated by a laser with Gaussian intensity distribution in the
cross section, as exhibited in Fig. 1(a). The weighted average
harmonic spectra are shown in Fig. 1(b). With increasing di-
mensions, the harmonic intensity in the plateaus is obviously
weakened and the integer harmonic peaks become clear in the
first plateau.
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FIG. 2. (a) The 1D (blue solid line), 2D (green dashed line), and
3D (red dotted line) weights. (b) The optimized OPD for enhanc-
ing the 15th (blue solid line), 19th (green dashed line), and 25th
(red dotted line) harmonics, respectively. The cyan dot-dashed line
represents the OPD for weakening harmonics.
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FIG. 3. (a) Time-frequency analysis of the uniform-field induced
harmonics and averaged harmonics with (b) 1D, (c) 2D, and (d) 3D
weights. The color scale is logarithmic. The red and green dots
indicate the semiclassical trajectories of the first and second recom-
binations with F = 0.003 a.u. The size of the dots is proportional to
the driving field strength at the tunneling time.

Figure 3 shows the time-frequency analysis [33] of the har-
monics in Fig. 1. These inherent chirp structures are consistent
with the semiclassical trajectories obtained by the saddle-
point approximation (marked by dots) [25]. Analogous to
atomic HHG, the front and back of the energy maxima in the
first recombination are called the short and long trajectories,
respectively. In Fig. 3(a), the radiation in long trajectories is
much brighter than that in short trajectories, and the trajec-
tories of the second recombination are also obvious. This is
because most electrons tunnel near the peak of driving fields
[34] and they recombine near the end of the long trajectory,
according to the semiclassical model [25]. When the effect
of a nonuniform driving field is not considered, as far as we
know, the mechanisms leading to the attenuation of long tra-
jectories are from the electron diffusion [15,35] and dephasing
[8]. Diffusion of tunneling electrons in 3D space results in
obvious attenuation of long trajectories and multiple recom-
bination trajectories for atomic HHG. However, the diffusion
of nonlocal electrons (Bloch electrons distributed in infinite
space in our calculations) is negligible, and the electrons in the
actual crystals are obviously nonlocal. Some works [23,36]
indicate that the electrons driven by intense fields in crystals
can maintain coherence within one optical cycle. Therefore,
when T0 is comparable to or shorter than the dephasing time,
intense radiation is expected to be obtained in long trajectories
for crystal HHG. This is the manifestation of electron nonlo-
cality, which distinguishes crystal HHG from atomic HHG.

Frequency doubling peaks in the frequency domain are the
responses of the periodicity in the time domain. The intense
radiation in the long and multiple recombination trajectories
increases the aperiodicity of harmonics. This is the reason
why the simulated crystal HHG spectra (such as Ref. [8])
lack clear integer peaks when using the driving pulse with
a Gaussian envelope. Note that, if the driving pulse with a
trapezoidal envelope is adopted (such as Ref. [37]), the har-
monic spectrum naturally has a clear integer multiple peak,
because the electric field itself has strict periodicity. However,
as shown in Figs. 3(b)–3(d), the radiation in the long and
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FIG. 4. Harmonic spectra in one-cycle lasers. The solid curves
are the same as those in Fig. 1, but the FWHM of the driving field
is one cycle, CEP = 0 rad. The magenta dotted and cyan dot-dashed
curves represent the enhanced and weakened spectra using the 2D
weight, respectively. The yellow dashed and black dotted curves
represent spectra obtained under the length gauge, the FWHM of the
driving field in real space are 100 and 20 nm, respectively.

multiple recombination trajectories is effectively suppressed
after the average. This results in a significant reduction in the
harmonic yield above the band gap and clear harmonics.

To reveal the dynamics with short time resolution, we use
a single-cycle (FWHM) pulse in the TDSE. The solid black
curve in Fig. 4 indicates the HHG spectrum induced by the
uniform driving field with CEP = 0 rad, its time-frequency
analysis is presented in Fig. 5(a). The pulse is so short that
we can clearly see a continuous chirp structure composed
of a bright long trajectory and a dim short trajectory, and
multiple recombinations disappear. In the spectrum, there is
a weak structure of interference between the long and short
trajectories in the first plateau and the odd peaks caused by
the interference between intercycles disappear. However, the
interference structure is more obvious in the average harmonic

FIG. 5. Time-frequency analysis of the harmonics shown in
Fig. 4. (a) The uniform-field-induced harmonics. (b)–(d) Averaged
harmonics with 2D weight, 3D weight, and 2D weight with a com-
pensation OPD. The color scale is logarithmic. (e) The harmonic
temporal profile ã(F, t ) with F = F0 = 0.0030 (blue solid line) and
0.0028 a.u. (red dotted line). The pink and gray shadows mark the
range of short and long trajectories, respectively.
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spectra with 1D and 2D weights (shown in Fig. 4 with solid
blue and green lines, respectively), because the nonuniform
irradiation weakens the long trajectory [as shown in Fig. 5(b)].
When 3D weight is used, the interference structure (shown in
Fig. 4 with a solid red line) is weakened again due to the very
dim long trajectory [as shown in Fig. 5(c)]. Thus, the interfer-
ence between the long and short trajectories is sensitive to the
nonuniformity of the driving field, which can be controlled by
adjusting the distribution of the driving-field intensity.

To see the selection mechanism of the quantum trajecto-
ries, the harmonic temporal profiles induced by driving fields
with F = 0.0030 and 0.0028 a.u. are shown in Fig. 5(e). Since
the signals in multiple recombination and higher plateaus are
negligible, the oscillations in the figure are the short and
long trajectories contributing to the first plateau. The inherent
harmonic phase comes from the phase differences between the
recombined electrons and holes [4,8]. These phase differences
are zero at the starting point of the short trajectory (generally
at the time when the driving field crosses zero, here means
t = 0), since the tunneling and recombination occur simulta-
neously. This means that all the harmonic fields induced by the
driving fields with different intensities have the same phase
at these times (called IPP in the paper, here is t = 0). Since
the phase differences between electrons and holes accumu-
late during their separation and depend on the driving-field
strength, the two harmonic temporal profiles gradually di-
verge afterwards (the attenuation of the driving light leads to
the phase delay and intensity attenuation of harmonics), as
shown in Fig. 5(e). Long trajectories far from IPP are greatly
suppressed due to frequent destructive interferences after av-
eraging the harmonics. Although the harmonics near IPP
(mainly short trajectories) remain, the intensity itself is weak.
This is reminiscent of the laser mode-locking mechanism.
Interestingly, the harmonic fields induced by the driving fields
with different intensities are similar to longitudinal modes
in lasers, but these “modes” have chirps. Furthermore, the
nonuniform weight can adjust this mechanism, which leads to
harmonic conversion efficiency decreasing with the increase
of dimensions. For example, the laser attenuation in the prop-
agation causes a steep drop in 3D weight, which effectively
compensates for the attenuation of the harmonic intensity, thus
greatly suppressing the harmonic radiations [23,31].

In addition to the inherent phase, the laser propagation in
vacuum (an example is discussed in Appendix B) and the
refractive index of the medium generally introduce additional
phases, which can compensate for the phase delay caused
by the attenuation of the driving fields. We assume that the
optical path from the position where the harmonics are gener-
ated (the position of the molecules or lattices that radiate the
harmonics) to infinity (the position of the detector, because its
distance from the material is far enough relative to the spot
size irradiated on the material) is P(F ), which is a function
of the field peak strength of the driving laser because of the
spatial dependence of the laser intensity. Then, the OPD is
defined as

D = P(F0) − P(F ). (6)

One can see in Fig. 5(e) that, if the harmonic induced by the
weaker driving field is shifted a little to the left to compensate
for the lagging phases [it means adding an D(F = 0.0028) >

0, which causes the harmonic represented by the red dotted
line to reach the detector earlier; that is, to shift to the left
on the time axis], the IPP will move to the right, towards the
long trajectory. As an example, a proper OPD is added to each
harmonic in the averaged harmonic with 2D weight, which
ensures that the 19th harmonic is fully enhanced, so that the
spectrum with the enhanced 19th harmonic (the magenta dot
curve in Fig. 4) is obtained. The time-frequency analysis of
the enhanced harmonic is shown in Fig. 5(d). The harmonic
is enhanced by more than an order of magnitude, meanwhile
it is compressed by nearly an order of magnitude in the time
domain. Figure 2(b) shows the optimized OPD for enhanc-
ing the 15th, 19th, and 25th harmonics. One can see that
the optimized OPD approximates straight lines with specific
slopes. The gradual-to-steep process of these lines causes IPP
to move from the beginning of the short trajectory to the end
of the long trajectory. Since the enhanced pulses come from
the bright long trajectory with a negative chirp, their central
frequencies decrease with the increase of OPD. When a neg-
ative OPD [the cyan dot-dashed curve in Fig. 2(b)] is used,
the yield can be greatly attenuated (the cyan dot-dashed curve
in Fig. 4), because the IPP moves to the left, away from the
trajectories. This shows that the mode-locking mechanism can
selectively enhance and compress harmonics and provides a
way to modulate the ultraviolet coherent light in the frequency
domain. The enhancement of harmonics in the frequency do-
main comes from the selection in the subcycle time domain,
thus realizing the detection of attosecond resolution dynamics.
Besides, the disappearance of quantum trajectories in Fig. 5(d)
implies that the chirp of interband harmonics can be reduced
when the phases are properly matched.

To demonstrate the applicability of the harmonic averaging
method we used, next we calculate the TDSE in the length
gauge and model a 1D inhomogeneous field. The wavelength
and FWHM of the driving field are the same as those in Fig. 4.
Details can be found in Sec. II B. When the FWHM of the
inhomogeneous field in real space is 100 nm, the spectrum
is shown in Fig. 4 with a yellow dashed line, which is in
good agreement with the averaged harmonics with 1D weight.
We reduce the FWHM of the driving field to 20 nm, the
spectrum changes as shown in Fig. 4 with a black dotted
line. Driven by this field, the maximum displacement of the
electron and hole motion is about 5 nm, the field changes
obviously in this range. If the driving field is further tightly
focused, considering the tunneling electrons are localized and
lack the inherent periodicity, their dynamics will change in-
evitably. The calculations of the 1D TDSE explain that the
weighted average method is applicable to simulate the solid
HHG induced by a nonuniform laser when the field varies
little over a few nanometers.

This method of averaging harmonics provides an efficient
calculation scheme, whereas the calculations under the length
gauge can show the interference mechanism in real space
intuitively. We add a Gaussian filtering in real space to extract
the spatial information of harmonics, and obtain the harmonic
spatial profile â(x0, t ). For uniform irradiations, since no lat-
tice has particularity in crystals, harmonics at each lattice are
the same, so â(x0, t ) is a horizontal line (not shown here). The
harmonic spatial profile at t = 0.6T0 induced by the nonuni-
form field used in Fig. 4 is shown in Fig. 6(a); the FWHM in
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FIG. 6. (a) Harmonic spatial profile â(x0, t ) induced by an in-
homogeneous field with a FWHM of 200 nm, t = 0.6T0. (b),
(c) Evolution of the valence-band electron population driven by the
inhomogeneous fields with a FWHM of 100 and 20 nm, respectively.
The color scale is logarithmic.

real space is 200 nm. We notice that the spatially dependent
harmonic â(x0, t ) actually is in agreement with the driving-
field-intensity-dependent harmonic ã(F, t ), when x0 and F
are related by Eq. (4). That is to say, similar to the situation in
gases, harmonics generated locally are equivalent to harmon-
ics induced by uniform fields. The inherent phase difference
of harmonics caused by the difference of driving field strength
is shown as the oscillation of the harmonic spatial profile. This
means that, although electrons are nonlocal in crystals, which
plays an important role in HHG, different parts of an electron
wave can evolve independently without affecting each other
on the ultrafast scale. The inherent phase differences shown in
Fig. 6(a) plus the phases introduced by the propagation effect
determine the harmonic intensity when all harmonics are
superimposed. So the harmonic characteristics caused by the
nonuniform irradiation essentially come from the interference
of harmonics from different lattices in real space.

During the evolution, we project the wave function onto
the Bloch states and obtain the population of electrons on each
eigenstate. Figures 6(b) and 6(c) show the valence-band popu-
lations of an electron with the initial momentum k = 0 driven
by the inhomogeneous fields with a FWHM of 100 and 20 nm,
respectively. The population follows the vector potential of
the driving field when the field is homogeneous (not shown
here). However, driven by the inhomogeneous field with a
FWHM of 100 nm, the electron population is scattered, like
the superposition of electrons driven by the fields with differ-
ent intensities. At the end of the pulse, most electrons return
to the initial momentum. But when the FWHM is reduced to
20 nm, most electrons cannot return to the initial point. This
further shows that, driven by inhomogeneous fields, electrons
are a superposition of many electron states which evolve inde-
pendently in local areas. And when the driving field changes
rapidly on the nanoscale, these local states cannot be consid-
ered to be driven by a uniform field.

The discussions in real and momentum spaces show that,
when the spatial variation of the laser is slow, similar to the
localized electrons in gases, different parts of a Bloch elec-
tron can evolve independently without affecting each other
on the femtosecond scale. This is why the weighted average

method only needs W (F ), without considering the specific
pattern of the driving laser intensity distribution [note that
F (x) uniquely determines W (F ), but W (F ) cannot uniquely
determine F (x)]. Therefore, the focus range of the driving
lights in the weighted average method is not limited. And in
Appendix B, the waist radius of the Gaussian beam is about
80 μm, which is common in experiments. Obviously, this
situation makes it easier to meet the application requirements
of the weighted-average method because the driving field
changes more slowly in space. There are many technologies,
such as changing the focus of the laser field, optimizing
the size or structure of the target material [20,38], to realize
accurate control of the field strength distribution and phase
matching on a mesoscopic scale. So the optimization scheme
based on inhomogeneous illumination has more operability.

IV. CONCLUSION

In conclusion, when considering inhomogeneous irradia-
tion, the harmonics induced by lasers with different intensities
are similar to the longitudinal modes in lasers, and they are
in phase when the OPD is appropriate. The optimized OPD
can adjust the IPP on the attosecond scale, thus extracting
the attosecond time-resolved electron dynamics. The selective
enhancement and compression of harmonics in the frequency
and time domains can realize a high conversion efficiency of
the crystal HHG in some specified energy ranges. Moreover,
we find that these interesting phenomena come from the in-
terference of harmonics in real space. The resolution of this
interference can reach the nanometer level, which is helpful
to study the ultrafast dynamics with nanometer spatial resolu-
tion. Our work enriches people’s understanding of the phase
matching of higher harmonics and provides a key link be-
tween experimental and numerical HHG. It will promote the
dynamics research with ultrahigh spatial-temporal resolution.
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APPENDIX A: WEIGHTS

In the main text, the weighted average harmonics are
in good agreement with the nonuniform-field-induced har-
monics calculated under the length gauge. Here, we list the
weights in the several specific cases shown in Fig. 1(a). First,
a laser with the Gaussian intensity distribution in the cross
section irradiates a one-dimensional atomic chain. The driv-
ing field that irradiate the atomic chain can be expressed as
Eq. (3). Since the crystal density is uniform, the weight in the
average can be expressed as dx/dF , i.e., the differential of
the function x = [− σ 2

4 ln 2 ln(F/F0)]1/2 [the inverse function of
Eq. (4)],

W (F ) ∝ dx

dF
∝ 1

[− ln (F/F0)]1/2F
. (A1)
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FIG. 7. Schematic diagram of HHG diffraction. The thin semi-
conductor is perpendicular to the propagation direction of the driving
field. The red arrow indicates the driving field and the blue arrows
indicate the optical path of harmonics.

This function is called the 1D weight in this paper. Then we
consider the atomic distribution in a two-dimensional layer
material irradiated by the field. In this case, the differential
element in real space corresponding to dF is a ring. So the
weight in this case has a simple form, which is a 1D weight
multiplied by the inverse function of Eq. (4), i.e.,

W (F ) ∝ 1

F
, (A2)

which is called 2D weight. When considering the longitudinal
attenuation of the driving field in a bulk material, the weight
can be further changed. We assume that the driving-field
intensity decays exponentially along the direction of propaga-
tion, and the maximum field strength attenuates to 0.9F0. The
material is conceived as many layers in our calculations, and
the distribution in each layer is a 2D weight. The distribution
of all layers added together is called the 3D weight. Note that
the average harmonic with 3D weight contains part of the
propagation effects [23], that is, the attenuation of the driving
pulse during propagation.

APPENDIX B: EXAMPLE OF INTRODUCING OPD
AND HARMONIC DIFFRACTION

We assume that a thin semiconductor with negligible thick-
ness is placed vertically in the driving field, as shown in Fig. 7.
The focused driving field can be described by a Gaussian
beam. The field strength on the material is a two-dimensional
Gaussian distribution, and the phase difference of the driving
field in the plane of the material is �ϕ = −k x2+y2

2z[1+(b/z)2] , where

b = πw2
0

λ
is the confocal parameter and w0 is the waist radius.

Positions with z < 0 are usually described as before the focal
point, and positions with z > 0 are usually described as behind
the focal point. Therefore, the OPD of harmonics caused by
the propagation in vacuum is

Dp = �ϕ

k
= − x2 + y2

2z[1 + (b/z)2]
. (B1)

The diffraction of the near-field harmonics results in the
distributions of far-field harmonics. The OPD corresponding
to the diffraction angle θ shown in Fig. 7 is

Dd ≈ xθ. (B2)
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FIG. 8. Location- and diffraction-angle-dependent HHG spectra.
(a)–(d) correspond to θ = 0, 0.001, 0.002, and 0.003 rad, respec-
tively. The color scale is logarithmic.

It leads to the transverse spatial distribution of far-field har-
monics.

In the simulation, we uniformly pick points in the plane
of the material and coherently superimpose all the har-
monics in these points after adding the OPD of Dp + Dd .
The z- and θ -dependent harmonic spectra are obtained during
the calculations with different angles and positions, which
are shown in Fig. 8. b = 6 mm, and other parameters of the
driving field are similar to those in Fig. 4 in the main text.
To avoid the variations of harmonic spectrum caused by the
change of peak field strength when changing the position of
the material, the peak intensity of the driving field is fixed. In
experiments, the intensity attenuation caused by the material
away from the focus can be compensated by increasing the
intensity of the laser. We can see that the spectra vary with
angle, but the harmonics are mainly distributed near the z
axis (θ = 0). Therefore, when considering the variation of
harmonic intensities, it is reasonable to consider only the
harmonic on the z axis.

It can be seen in Fig. 8(a) that the harmonic yield is high
when the material is placed in front of the focus, while the
yield decreases significantly when the material moves behind
the focus. This is qualitatively similar to the gas HHG exper-
iments [14]. In addition, a remarkable feature is that, before
the focus, the enhanced harmonic energy increases gradu-
ally as the material approaches the focus. That is, harmonics
are selectively enhanced by the position of the material. For
example, the positions where the 15th and 25th harmonics
are enhanced are −6 and −2 mm, respectively, the Dp at
these positions are shown in Fig. 9. It can be seen that
these Dp are very close to the optimal OPD for enhanc-
ing the 15th and 25th harmonics in the main text. The Dp

after the focus is negative, which corresponds to the OPD
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FIG. 9. The driving-field-strength-dependent Dp on the Gaussian
beam cross section.

for suppressing harmonics. Therefore, we show an exam-
ple of selectively enhancing harmonics by introducing OPD
through the propagation of a driving field in the vacuum.
As revealed in the main text, the introduction of OPD ac-
curately moves the IPP in the time domain. The harmonics
at the IPP are enhanced, and the harmonics far away from
the IPP are suppressed. Therefore, the z-dependent enhanced
harmonics come from harmonics selected in the time domain;
indeed, Fig. 8(a) is the mirror image of Fig. 5(a) in the
main text. So we demonstrate the feasibility of observing and
controlling HHG within attosecond resolution. Specifically,
the weakening of long trajectories caused by the localization
or dephasing of electrons can be manifested in Fig. 8(a) as
the rapid attenuation of harmonic yields at positions away
from z = 0.
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