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We introduce the concept of magic subspaces for the control of dissipative N- level quantum systems whose
dynamics are governed by the Lindblad equation. For a given purity, these subspaces can be defined as the
set of density matrices for which the rate of purity change is maximum or minimum. Adding fictitious control
fields to the system so two density operators with the same purity can be connected in a very short time, we
show that magic subspaces allow us to derive a purity speed limit, which only depends on the relaxation rates.
We emphasize the superiority of this limit with respect to established bounds and its tightness in the case of
a two-level dissipative quantum system. The link between the speed limit and the corresponding time-optimal
solution is discussed in the framework of this study. Explicit examples are described for two- and three-level
quantum systems.
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I. INTRODUCTION

Controlling quantum dynamics to achieve a specific task
in minimum time is a crucial prerequisite in many fields
extending from quantum technologies and quantum optics to
magnetic resonance and molecular physics [1–5]. This prob-
lem can be solved by using tools of optimal control theory [6].
However, deriving a rigorous optimal solution is a highly non-
trivial task which can only be done in low-dimensional closed
or open quantum systems (see Refs. [7–16] to mention a few).
Different numerical optimization methods have been devel-
oped to approximate the time-optimal trajectory [17–21]. The
many local minima of the control landscape make it very
difficult to find a good approximation and lead generally to
an upper bound of the minimum time. On the other side,
lower bounds on the time can be established in the framework
of quantum speed limits (QSLs) [22,23] where the time is
expressed as a ratio between the distance to the target state
and the dynamical speed of evolution. This approach has been
the subject of an intense development in recent years with
applications in quantum computing [24,25], quantum metrol-
ogy [26–29], and quantum thermodynamics [29–31]. Speed
limits have been also introduced in classical systems, showing
that this concept is not limited to quantum dynamics [32,33].
The tightest of these bounds is generally difficult to estimate
[34,35] and very few connections exist with optimal con-
trol protocols [9,21,36]. First established for closed quantum
systems on the basis of Heisenberg time-energy uncertainty
relation, QSLs have been recently extended to open systems
in Markovian and non-Markovian regimes [37–45]. QSLs can
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also be derived for the generation of a target unitary trans-
formation. Different bounds have been found depending on
the Hamiltonian, the target state, or constraints on the control
field [46–49]. In the case of open quantum systems, different
QSLs have been proposed according to the target state to
reach by the quantum system [22]. In particular, bounds are
known for a specific final density operator [39,41,49] but also
for the rate of entropy or purity evolution [42–45]. In this
paper, we consider the purity speed limit (PSL) established
in Ref. [42] for systems coupled to a Markovian environment
as a reference for the minimum time of purity evolution. The
bounds of Ref. [42] are said to be cumulative in the sense
that they do not describe the instantaneous variation rate but
the global dynamics of the purity between the initial and final
states. A key advantage of this point of view is the fact that this
limit can be determined directly from relaxation parameters
without computing the dynamics of the density operator.

This paper explores the time-optimal control of purity
evolution in dissipative quantum systems whose dynamics
are governed by the Lindblad equation. Many works have
investigated the control of these open quantum systems. Note
that driven non-Markovian dynamics have been also studied
(see Refs. [1,50–53] and references therein, to mention a few).
In the framework of Lindblad theory, controllability results
have been established and the set of reachable states can be
characterized [54–58]. Numerical optimal control procedures
have been applied with success (see a recent review [50]
and references therein). Geometric or analytic optimal control
results can be achieved in low-dimensional open quantum sys-
tems. The time-optimal control of a two-level system has been
solved in a series of papers [15,59–63], showing the key role
of geometric objects, namely, the magic plane and axis [59] in
the derivation of the optimal control process. In the Bloch rep-
resentation, the magic plane is parallel to the equatorial plane
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and is defined as the set of points for which the shrinking of
the purity of the density operator is maximum. The magic axis
is the axis corresponding to diagonal density matrices in the
eigenbasis of the field-free Hamiltonian. The generalization of
this approach to higher dimensional quantum systems is dif-
ficult and much more involved from a mathematical point of
view. Some results have been established in the optimal cool-
ing process of three-level quantum systems [64]. A difficulty
of the control problem comes from the fact that all the density
matrices of a given purity cannot be connected by unitary
dynamics generated by the control fields [65]. Relaxing this
constraint by adding fictitious control terms, we show in this
paper that the time-optimal control of the purity evolution can
be solved. To this aim, we introduce magic subspaces, which
are higher-dimensional generalizations of the magic plane and
axis. For a given purity of the density operator, magic sub-
spaces can be defined as the set of density matrices for which
the rate of purity change is maximum or minimum. They can
be viewed as the counterpart of decoherence-free subspaces
[66], which are defined as subspaces with no decoherence and
thus a constant purity. The addition of nonphysical control
parameters leads only to a lower bound of the original control
time. In other words, this approach can also be interpreted as
a new way to derive PSL. This limit is tight for a two-level
quantum system and corresponds exactly to the time-optimal
solution. In a three-level quantum system, the minimum time
is estimated by using numerical optimization techniques [17].
We show that the speed limit time gives a good approximation
of this minimum time. In the general case, we highlight the
efficiency of this method by comparing this new bound to
the speed limits derived in Ref. [42]. We provide a simple
asymptotic expression of PSL when the dephasing rate goes to
infinity. Explicit computations are presented for a three-level
quantum system.

The paper is organized as follows. The model system and
the general approach for an N-level quantum system are de-
scribed in Sec. II and III. Sections IV and V focus on two
specific examples in two- and three-level quantum systems,
respectively. A comparison with the existing PSL and nu-
merical optimal computations is made in Sec. VI. Conclusion
and prospective views are given in Sec. VII. Technical com-
putations are reported in the Appendices. PSLs of Ref. [42]
are briefly recalled in Appendix A. The computation of these
limits for two- and three- level quantum systems is discussed.
The dynamics and the PSL of dissipative three-level quantum
systems are, respectively, described in Appendices B and C.

II. THE MODEL SYSTEM

We consider a dissipative N-level quantum system whose
dynamics are governed by the Lindblad equation [67]. The
system is described by a density operator ρ(t ) which is a pos-
itive Hermitian operator acting on a Hilbert space H spanned
by the canonical orthonormal basis {|k〉}k=1,N of the field-free
Hamiltonian H0. The evolution equation can be written in
atomic units (with h̄ = 1) as

iρ̇ = [H0 + HI , ρ] + LD(ρ), (1)

where the unitary and dissipative parts of the equation are
represented, respectively, by the Hamiltonian H = H0 + HI

and the operator LD. In the Lindblad equation, LD [68,69] can
be expressed as

LD(ρ) = 1

2

N2−1∑
l,m=1

alm([Vkρ,V †
k′ ] + [Vk, ρV †

k′ ], (2)

where the operators Vk are trace zero and orthonormal,
Tr(V †

k′Vk ) = δk′k . A canonical choice is given by the general-
ized Pauli matrices:⎧⎪⎨

⎪⎩
σ x

m,n = 1√
2
(|m〉〈n| + |n〉〈m|)

σ
y
m,n = i√

2
(|m〉〈n| − |n〉〈m|)

σ z
m,n = 1√

m+m2 (
∑m

k=1 |k〉〈k| − m|m + 1〉〈m + 1|),
(3)

with 1 � m � N − 1 and m < n � N . Diagonalizing the pos-
itive matrix a = (al,m), Eq. (2) can be rewritten as follows:

LD(ρ) =
∑

k

γk (LkρL†
k − 1

2
{L†

k Lk, ρ}), (4)

where the parameters γk are the eigenvalues of the matrix
(al,m). After a rotating wave approximation, the field-free
Hamiltonian can be removed and we assume that the inter-
action Hamiltonian depends on Nc time-dependent control
fields, uk (t ). The Hamiltonian HI can be expressed as HI =∑Nc

k=1 uk (t )Hk , where Hk are the different interaction terms.
We make a standard controllability assumption for which any
transformation of SU (N ) can be generated in an arbitrarily
short time with respect to the relaxation times [70]. This
hypothesis is verified if the Lie algebra generated by the
Hermitian operators Hk is su(N ) and if the maximum intensity
of the control fields is very large with respect to the relaxation
rates. This latter assumption is generally justified for the con-
trol of spin systems in nuclear magnetic resonance [11].

The quantum state ρ can be expressed through a coherence
vector s [65,71] whose coordinates sk , k = 1, · · · , N2 − 1
are the expectation values of the N2 − 1 generalized Pauli
matrices. The purity p = Tr[ρ2] of the density matrix is
given by

p = 1

N
+

N2−1∑
k=1

s2
k = 1

N
+ s2,

with s2 = s · s. The map which sends ρ to s is an embedding
from the space of density matrices to RN2−1. The N2 − N first
components of the coherence vector can be written as the sum
of off-diagonal terms of the density matrix, while the N − 1
others depend on the diagonal elements (the case of a three-
level quantum system is described in Appendix B). We denote
by so and sd the projections of s on the two subspaces, the
indices o and d being associated to off-diagonal and diagonal
terms. We have s = (so, sd ).

The Lindblad equation can be written in the coherence
vector formalism as follows:{

ṡo = Roso + ∑Nc
k=1 uk (t )

(
A(k)

oo so + A(k)
od sd

)
ṡd = qd + Rd sd + ∑Nc

k=1 uk (t )
(
A(k)

do so + A(k)
dd sd

)
,

(5)

where the vector q = (0, qd ) and the matrix R represent, re-
spectively, the inhomogeneous and homogeneous terms of the
relaxation process. Note that R is a block-diagonal matrix
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which does not couple so and sd . Ro is a diagonal matrix
whose elements �i j , i �= j, are the dephasing rates of the
transitions from level i to j. The full matrix Rd and the vector
qd only depend on γi j , the rates of population relaxation
from level j to i [72]. The block operator A(k) of compo-
nents (A(k)

oo , A(k)
od , A(k)

do , A(k)
dd ) corresponds in this space to the

interaction Hamiltonian Hk . Note that Add is a zero matrix.
The unitary dynamics are described by rotations on a sphere
of radius ||s|| and the generators A(k) are elements of the Lie
algebra so(N2 − 1) of skew-symmetric matrices which verify
A(k) = −A(k)ᵀ. However, all the rotations of SO(N2 − 1) can-
not be realized by the set {A(k)} and only states belonging to
the unitary orbit of the initial density matrix can be reached
[65]. At the density matrix level, this orbit is defined by the
invariance of the spectrum of ρ(t ) by unitary dynamics.

To be able to derive time-optimal trajectories, we introduce
a fictitious control fields so any rotation of SO(N2 − 1) can
be generated. This idea is the key point of the approach pre-
sented in this paper. More precisely, instead of considering
the optimal control problem defined by Eq. (5), we now study
the dynamical system controlled by Ñc > Nc fields such that
Lie[{A(k)}k=1,··· ,Ñc

] = so(N2 − 1). We deduce that any point
of the hypersphere ||s|| = s f can be reached in an arbitrary
small time from any other point. The increase in the number of
controls available implies that the duration of the new process
is less than the original control time and can be interpreted as
a speed limit time of the problem.

III. THE GENERAL APPROACH

We show in this section how to find the trajectories which
optimize the rate of purity change of the quantum system. We
have found it more convenient to express the corresponding
optimal control problem in a Lagrangian formalism.

We introduce a Lagrangian L, which is defined as

L = 1

2

d

dt
s2 + μ

(
s2 − s2

f

)
,

where μ is a Lagrange multiplier and s f a constant with
0 � s2

f � 1 − 1
N . The Lagrangian L allows us to determine

the coherence vector s which optimizes the time evolution of
the purity within the constraint of a fixed purity, ||s|| = s f .
The Lagrangian can be expressed as

L = sᵀq + sᵀRs +
∑

k

uksᵀA(k)s + μ
(
sᵀs − s2

f

)
.

The maximization condition ∂L
∂s = 0 leads to

q + (R + Rᵀ + 2μ)s = 0,

and does not depend on the control fields because A(k) is a
skew-symmetric matrix. Decomposing the coordinates of the
coherence vector, we arrive at{

(Ro + μ)so = 0

qd + (
Rd + Rᵀ

d + 2μ
)
sd = 0.

(6)

To simplify the discussion, we assume that all the dephasing
rates are equal so Ro = −�I , where I is the identity matrix.
If it is not the case, then only the coordinates of so associated
to the maximum dephasing rate have to be accounted for. We

deduce from Eq. (6) that μ = � or so = 0. These two con-
ditions define two geometric objects in the coherence vector
space that are called magic subspaces.

The first one, Md , for which so = 0 is a subspace of di-
mension N − 1 and corresponds to diagonal density matrices.
The second subspace Mo is characterized by the equation

qd + (
Rd + Rᵀ

d + 2�I
)
sd = 0,

which gives, if det[Rd + Rd
ᵀ + 2�I] �= 0, that

s(m)
d = −(

Rd + Rd
ᵀ + 2�I

)−1
qd .

This set is a subspace of dimension N2 − N whose elements
are density matrices with fixed diagonal coordinates. Note
that this set is not empty only if (s(m)

d )2 � 1 − 1
N . In the limit

� → +∞, we obtain s(m)
d 	 − qd

2�
. Since qd only depends on

the relaxation rates γi j , it is straightforward to show that this
subspace converges toward the set of density matrices with
zero diagonal elements.

The next step consists of computing the time evolution of
the system along the two magic subspaces. We introduce the
relative purities po = s2

o and pd = s2
d , with po + pd = s2. On

Mo, we have ṡd = 0 so the control fields depend only on so

and fulfill the following relation:∑
k

u(m)
k

(
A(k)

do so + A(k)
dd s(m)

d

) = −qd − Rd s(m)
d ,

which leads to∑
k

u(m)
k s(m)

d

ᵀ
A(k)

do so = −s(m)
d

ᵀ
qd − 1

2
s(m)

d

ᵀ(
Rd + Rᵀ

d

)
s(m)

d ,

(7)

since A(k)
dd is a skew-symmetric matrix. Note that different tra-

jectories can be followed on this space but the global evolution
will not depend on this choice. Indeed, using Eq. (5), it can be
shown that

ṗo = 2sᵀo Roso − 2
∑

k

u(m)
k s(m)

d

ᵀ
A(k)

do so,

which, from Eq. (7), transforms into:

ṗo = −2�po + 2s(m)
d

ᵀ
qd + s(m)

d

ᵀ(
Rd + Rᵀ

d

)
s(m)

d .

It is worthwhile to mention here that all the coefficients of
this differential equation can be expressed in terms of the
relaxation parameters. The general solution can be written as

po(t ) = po(0)e−2�t + λ

�
(1 − e−2�t ),

with λ = s(m)
d

ᵀ
qd + 1

2 s(m)
d

ᵀ
(Rd + Rᵀ

d )s(m)
d . The purity po is

equal to zero when

to = 1

2�
ln

(
λ − �po(0)

λ

)
.

Note that, since po(t ) decreases along the trajectory, we have
λ − �po(0) > 0. Here again, we can analyze the behavior of

to when � → +∞. In this limit, we have λ 	 − qᵀ
d qd

2�
. Starting

from a pure state with po(0) = 1 − 1
N − (s(m)

d )2, we arrive at

to 	 ln �

�
.
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The same analysis can be done on Md , where so = 0.
In this case, the goal is to determine the time evolution of
the Lagrange multiplier μ(t ). Along Md , we first have sd =
−M−1qd , where M = Rd + Rᵀ

d + 2μI . Using pd = sᵀd sd , we
obtain

ṗd = 2sᵀd ṡd = qᵀ
d − 2μsᵀd sd .

However, the time derivative of pd can also be expressed as

ṗd = μ̇
d

dμ
pd

where d
dμ

denotes the derivative with respect to μ. Since
d

dμ
sd = −2M−1sd , we finally get

μ̇ = 2μsᵀd sd − qᵀ
d sd

4sᵀd M−1sd
. (8)

Integrating analytically or numerically Eq. (8), we obtain the
time evolution of μ in Md , and therefore the evolution of sd

and pd in this space. This approach will be used in Secs. IV
and V for two- and three- level quantum systems.

IV. THE CASE OF A TWO-LEVEL QUANTUM SYSTEM

We analyze in this section the evolution of the purity in
a dissipative two-level quantum system. Since no control pa-
rameter is added in this case, the general approach developed
in Sec. III allows us to recover the results established in
[15,59] by optimal control theory. The lower bound for a two-
level quantum system corresponds exactly to the minimum
time of the control process and is therefore tight.

In the Bloch representation, the equations of motion of the
coherence vector s = (s1, s2, s3) can be expressed as⎧⎨

⎩
ṡ1 = −�s1 + u2s3

ṡ2 = −�s2 − u1s3

ṡ3 = γ− − γ+s3 + u1s2 − u2s1,

where γ− = γ12 − γ21 and γ+ = γ12 + γ21. We introduce the
dephasing rate � which corresponds, for a two-level quantum
system, to the rates �i j of Sec. II. It fulfills the constraint
� � γ+

2 [72]. The system is controlled by two time-dependent
fields, u1 and u2. The coordinates of the equilibrium point of
the dynamics are (0, 0, s(e)

3 = γ−
γ+

). To simplify the description

of the solution, we assume below that γ− > 0, i.e., s(e)
3 > 0.

We first apply the general theory to find the magic sub-
spaces. The coordinates of the coherence vector s can be
decomposed into so = (s1, s2) and sd = (s3). The Lagrangian
L can be expressed as

L = −�s2
1 − �s2

2 + γ−s3 − γ+s2
3 + μ

(
s2

1 + s2
2 + s2

3 − s2
f

)
.

The extremal conditions are given by⎧⎨
⎩

(� − μ)s1 = 0
(� − μ)s2 = 0
γ− − 2γ+s3 + 2μs3 = 0.

We deduce that there are two magic subspaces. The first one
Mo, a plane for which μ = �, is characterized by a fixed

2 4 6 8 10
-1

-0.5

0

0.5

1

FIG. 1. Position of the magic plane s(m)
3 as a function of �. The

parameters are set to γ+ = 2 and γ− = 0.8, with � � γ+
2 . The two

vertical red (or dark gray) lines delimit the values of � for which
there is no intersection between the magic plane and the Bloch ball:
Dimensionless units are used.

value of s3 = s(m)
3 :

s(m)
3 = −γ−

2(� − γ+)
.

Using the constraint � � γ+
2 , we deduce that s(m)

3 ∈ [−1, 0[
for � ∈ [γ+ + γ−

2 ,+∞[ and s(m)
3 ∈ [s(e)

3 , 1] if � ∈ [ γ+
2 , γ+ −

γ−
2 ]. The position of the different magic planes as a function

of � is displayed in Fig. 1. A trajectory lies on this plane if u1

and u2 satisfy:

γ− − γ+s(m)
3 + u1s2 − u2s1 = 0.

A solution is, for instance, given by u2 = γ−−γ+s(m)
3

s1
[15,59].

The second magic space, Md , corresponds to the s3- axis,
with s1 = s2 = 0. In this case, we have s3 = −γ−

2(μ−γ+ ) and

the Lagrange multiplier is determined by the condition s2
3 =

γ 2
−

4(μ−γ+ )2 = s2
f . Any point of the s3 axis can be reached when

μ ∈] − ∞, γ+ − γ−
2 ] ∪ [γ+ + γ−

2 ,+∞[. We can move along
this space with zero control fields.

As an illustrative example, we consider a control process
which is aimed at steering the system from the equilibrium
state to the center of the Bloch ball of coordinates (0,0,0),
i.e., the completely mixed state. This control process can find
applications in nuclear magnetic resonance [15] or in quantum
computing. The goal is therefore to decrease the purity of
the system as fast as possible. Note that the same analysis
could be done for any other points of the Bloch ball. The time
evolution of the purity on the two magic subspaces can be
written as

ṗo = −2�po + 2γ−s(m)
3 − 2γ+

(
s(m)

3

)2

for Mo and

ṗd = 2γ−s3 − 2γ+s2
3

for Md . It can be shown that the fastest way to shrink the
purity is to follow a path along Mo [15]. We therefore deduce
that the optimal trajectory is the concatenation of an arc of
circle along the Bloch sphere to reach the magic plane, fol-
lowed by a path onto this space up to the s3 axis where po = 0
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FIG. 2. Time-optimal trajectory (red or light gray solid line)
to reach the center of the Bloch ball starting from the north pole
(equilibrium point of the dynamics). The blue (dark gray) horizontal
plane is the magic plane of equation s3 = s(m)

3 , which is parallel to
the equatorial plane. The initial state is the north pole of the Bloch
sphere. We consider the case where γ− = γ+. Dimensionless units
are used.

and an arc along this axis. Since there is no limitation on the
maximum intensity of the control fields, the initial time to
reach the magic plane is negligible. A time-optimal trajectory
is represented in Fig. 2. The last step of the method consists
of computing the corresponding control time. Along Mo, the
purity evolves as

po(t ) = po(0)e−2�t + 2
(
γ− − γ+s(m)

3

) s(m)
3

�
(1 − e−2�t ),

with po(0) = γ 2
−

γ 2+
− γ 2

−
4(�−γ+ )2 . We then deduce the time to:

to = 1

2�
ln

(
1 + 2po(0)�(� − γ+)2

γ 2−(2� − γ+)

)
.

There are two different ways to derive the time td to go along
the s3 axis from s(m)

3 to 0. The simplest approach consists of
using the fact that the two control fields are zero. Since ṡ3 =
γ− − γ+s3, we deduce that

td = 1

γ+
ln

(
2� − γ+

2(� − γ+)

)
.

The second method is based on the computation of the time
evolution of μ as explained in Sec. III. This approach is
described in Appendix C.

The total minimum time tMS is finally given by tMS = to +
td . In the limit � � γ+, this time can be approximated as

tMS 	��γ+
ln �

�
.

V. APPLICATION TO A THREE-LEVEL
QUANTUM SYSTEM

We consider in this section the example of a three-level
quantum system and the same control problem as in Sec. IV.
We denote by 1, 2, and 3 the three energy levels. We assume

that the nonzero relaxation rates are given by

γ12 = 1, γ13 = 0.5, γ23 = 0.5.

The coherence rates satisfy �i j = �̃i j + γi j+γ ji

2 where �̃i j de-
note the pure dephasing terms which fulfill the inequalities
[72],

(
√

�̃b −
√

�̃a)2 � �̃a � (
√

�̃b +
√

�̃c)2,

where the indices a, b, and c are any permutation of 12,
13, and 23. We choose the parameter �̃i j so �i j is the same
for all the energy-level transitions. An explicit derivation of
the coherence vector dynamics is given in Appendix B. In a
compact form, we obtain{

ṡo = −�I + ∑
k uk (Aooso + Aod sd )

ṡd = qd + Rd sd + ∑
k uk (Adoso + Add sd ),

where so and sd are, respectively, six- and a two-dimensional
vectors of coordinates (s1, s2, · · · , s6) and (s7, s8). We denote
by (q7, q8) the components of qd and by

Rd =
(

r77 r78

r87 r88

)
the ones of Rd which can be expressed as a function of the
relaxation rates γi j . We now follow the general procedure
presented in Sec. III and we introduce the Lagrangian L:

L = −�

6∑
k=1

s2
k + q7s7 + q8s8 + s7r77s7 + s8r88s8

+ s7(r78 + r87)s8 + μ
(
s2 − s2

f

)
.

The magic subspaces are the subspaces of diagonal density
matrices such that so = 0 and the subspace defined by ∂L

∂s7
=

0 = ∂L
∂s8

. This leads to{
q7 + 2r77s7 + (r78 + r87)s8 + 2�s7 = 0
q8 + 2r88s8 + (r78 + r87)s7 + 2�s8 = 0,

(9)

with μ = �. Equation (9) gives the position of the six-
dimensional magic subspace defined by s(m)

7 and s(m)
8 . For

� = 2, we deduce that

s(m)
7 = −0.1928; s(m)

8 = −0.1485,

which leads to

ρ11 = 0.1364; ρ22 = 0.4091; ρ33 = 0.4545.

Starting from a purity equal to one at time t = 0, the time
spent along this space such that po(to) = 0 is

to = 1

2�
ln

(
λ − �po(0)

λ

)
	 0.5613.

We now determine the time to go from Mo to the zero
coherence vector. We follow the general approach. The de-
tails can be found in Appendix C. It can be shown that the
Lagrange multiplier fulfills the following equation:

μ̇ = q7s7 + q8s8 − 2μ
(
s2

7 + s2
8

)
2
(
s7

ds7
dμ

+ s8
ds8
dμ

) , (10)

where s7 and s8 are two functions of μ as displayed in Fig. 3.
The explicit expression is given in Eq. (C2) of Appendix C.
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2 4 6 8 10
-0.5

-0.25

0

0.25

FIG. 3. Evolution of pd (black), s7 (blue or dark gray) and s7

(red or light gray) as a function of μ. The parameter μ belongs to the
interval [1.4,10]. The parameter � is set to 2. Dimensionless units
are used.

Equation (10) can be integrated numerically. The time evo-
lution of μ is represented in Fig. 4 in the case � = 2. By
construction, the initial value of μ is �. We observe that μ

diverges for a finite time of the order of 0.337. The coherence
vector is zero at this time. We finally plot in Fig. 5 the
evolution of the minimum time tMS predicted by the magic
subspace approach as a function of �. We show that tMS can
be well approximated by ln �/� when � � 10. Since this
approximation is less than tMS, it can be used as a lower bound
to the original minimum time of the control process.

VI. COMPARISON OF PURITY SPEED LIMITS

This section is aimed at comparing the speed limit derived
in this study with the ones of Ref. [42]. The minimum time is
also estimated by using a numerical optimal control algorithm
[17].

Two PSL have been established in [42] based on a decom-
position of the Lindblad operator either in the Hilbert or in
the Liouville space. The definition and the derivation of the
two PSLs are recalled in Appendix A. We denote by tH and tL,
the two bounds on the minimum control time. For a two-level

0 0.1 0.2 0.3
0

20

40

60

FIG. 4. Time evolution of μ in the interval [0,0.337] for � = 2.
The value of μ at time 0 is taken to be �. Dimensionless units are
used.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

FIG. 5. Evolution of the minimum time tMS as a function of �

(black line). The red (dark gray) line depicts the time ln �

�
, which is a

good approximation of the minimum time when � � 1. Dimension-
less units are used.

quantum system, we get{
tH = ln 2

4[�+ γ+
2 +|γ−|]

tL = ln 2

max(2�,γ++
√

γ 2++γ 2− )
.

while for the three-level system analyzed in Sec. V, we have⎧⎨
⎩

tH = ln 3
16+ 4

√
3

3 +4|�− 5
6 |+4|�− 1

2 |
tL = ln 3

max
(

2�,1+
√

10
2

) .

Note that, for tH , we use here the basis of the normalized
Pauli matrices. The tightness of a speed limit represents how
precisely the corresponding time bounds the actual minimum
time spent by the system to reach a suitable target state. A
measure of the tightness is given by tMS/tL,H for a two-level
quantum system. We also consider this ratio for higher-
dimensional systems to estimate the gain obtained from the
speed limit of this study. Figure 6 displays the evolution of this
measure as a function of �. As expected, tL is a better bound
than tH , but a large ratio is observed for the two PSLs. Such

2 4 6 8 10
0

10

20

30

40

FIG. 6. Evolution of the ratios tMS/tH (black line) and tMS/tL (red
or light gray line) as a function of � for two- (solid line) and three-
(dashed line) level quantum systems. Numerical parameters for the
two-level quantum system are set to γ+ = 1, γ− = 0.5 and � � 2.
Dimensionless units are used.
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0.9 0.925 0.95 0.975

-14
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-10

-8
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-4
l

FIG. 7. Evolution of the square modulus of the coherence vector
(crosses) generated by numerical optimization as a function of the
control time t f in the case of the three-level quantum system. The
solid black line is just to guide the eye. The vertical line in red (or
dark gray) indicates the minimum time, which is estimated to be of
the order of 0.9735. Dimensionless units are used.

results show on these two examples the interest of the speed
limit formulation presented in this paper. The same conclusion
holds true in the general case of an N-level quantum system
when � � 1. Indeed, a rapid analysis of tH and tL shows that
they evolve, up to a constant factor, as 1

�
in this limit, while tMS

is of the order of ln(�)
�

. More precisely, for an N-level quantum
system, we have {

tH 	��1
ln(N )
2N �

tL 	��1
ln(N )

2�
,

while tMS 	��1
ln(�)

�
. For a fixed number of levels, the corre-

sponding ratio, which goes as ln(�), diverges. Note also that
the limit of tMS does not depend on the number of levels N .

In the case of the three-level quantum system with � = 2,
we finally present numerical optimization results to estimate
the minimum control time t∗ in the original control problem.
We consider a gradient algorithm, GRAPE, which has been
described in detail elsewhere [17]. We start from a point of
Mo with a purity equal to 1. The goal is to reach the zero
coherence vector in a fixed control time t f . The cost functional
to minimize is s2(t f ), i.e., the final square modulus of the
coherence vector. There is no bound on the control fields. The
computations are done for different control durations. As can
be seen in Fig. 7, we observe that the value of the cost function
decreases as t f increases. At a certain control time, the pulse
performance is numerically saturated. The corresponding time
t f can be regarded as the minimum time t∗ of the control
process. This time is estimated to be of the order of 0.9735.
For the same control problem, the different speed limit times
are tMS 	 0.8985, tL 	 0.275 and tH 	 0.038. We observe
that tMS gives a much better estimation of the minimum time,
with an error of the order of 8%.

VII. CONCLUSION

In this study, we have introduced an approach for finding
PSLs in dissipative quantum systems. The basic idea consists

of enlarging the number of controls available to connect two
density matrices with the same purity. In a standard unitary
framework, only a density matrix with the same spectrum as
the initial state can be reached. Such fictitious fields have the
key advantage of simplifying the corresponding time-optimal
control problem. If there is no constraint on the maximum in-
tensity of the fields, we show that the time-optimal trajectories
belong to two magic subspaces, which can be defined in the
coherence vector formalism. The two- and three-level cases
have been discussed. The bound derived in this study is tight
for two-level quantum systems because it corresponds exactly
to the time obtained by optimal control theory. For a specific
three-level quantum system, we have estimated that the error
with respect to the minimum time is of the order of a few
percent. This work can therefore be viewed as a step forward
in the understanding of the link between QSLs and optimal
control. It also opens the way to studies in the same direction
in which the number of control fields is enlarged to determine
the minimum time to control a given process. Finally, we have
also shown the superiority of this bound with respect to the
PSLs derived in Ref. [42]. A comparison with other QSLs
for open quantum systems is a direction of future research to
evaluate the efficiency of this approach. Finally, it would be
interesting to explore the potential applications of this study
in quantum thermodynamics or quantum computing in which
the concept of QSL plays a key role.
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APPENDIX A: DERIVATION OF PURITY SPEED LIMITS

We recall in this paragraph the definition of the two PSL
derived in Ref. [42]. We consider an N-level quantum system
whose dynamics are governed by the Lindblad Eq. (1).

Using the Frobenius norm of an operator A defined by
||A|| =

√
Tr(AA†), a first PSL in Hilbert space can be derived.

We denote by tH a lower bound on the minimum time evolu-
tion. We have

tH = | ln(p(t f )/p(0))|
4

∑N2−1
k,k′ |ak,k′ | × ||Vk|| × ||Vk′ ||

,

where p(0) and p(t f ) are the initial and final purities of the
system. Note that this bound depends on the operator basis
used to express the Lindblad generator. This point is clarified
below for the case of a two-level quantum system.

The Lindblad Eq. (1) can be written in a Schrödinger-like
form,

i
∂

∂t
|ρ〉 = H|ρ〉,

where the density matrix ρ is written as a column vector
and denoted |ρ〉, and H is the Hamiltonian superoperator
of the dynamics. A second PSL can be established in this
Liouville formalism and leads to the bound tL, which can be
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expressed as

tL = | ln(p(t f )/p(0))|
||H − H†||SP

,

where SP means the spectral norm, i.e., the largest absolute
value of the eigenvalues of the operator. Note that tL � tH , so
the Liouville speed limit is always tighter than the Hilbert one.

We now derive the expression of the two speed limits in
the case of two- and three-level quantum systems. The com-
putation can be done in the same way for higher-dimensional
spaces.

For two-level systems, we consider the same notations as
in Sec. IV. In the basis of the normalized Pauli matrices, the
matrix a is given by

a =

⎛
⎜⎜⎜⎝

2� − γ+ 0 0

0 γ+ − iγ−
2

0
iγ−
2

γ+
2

⎞
⎟⎟⎟⎠, (A1)

which leads to

tH = | ln(p(t f )/p(0))|
4
[|γ−| + γ+

2 + �
]
.

(A2)

The diagonal form of the Lindblad operator given by Eq. (4)
is defined by

L1 =
(

0 1
0 0

)
; L2 =

(
0 0
1 0

)
; L3 = 1√

2

(
1 0
0 −1

)
,

with γ1 = γ21, γ2 = γ12, and γ3 = � − γ+
2 . We therefore de-

duce that the bound can be expressed as

tH = | ln(p(t f )/p(0))|
4� + γ+

2

, (A3)

which shows in this example that the bound depends on the
basis used to express the Lindblad operator.

In the Liouville space formalism, the dissipative part of the
Hamiltonian H is⎛

⎜⎝
−iγ21 0 0 iγ12

0 −i� 0 0
0 0 −i� 0

iγ21 0 0 −iγ12

⎞
⎟⎠,

whose spectral norm is equal to

||H||SP = max(2�, γ+ +
√

γ 2+ + γ 2−)

and we deduce the corresponding lower bound:

tL = | ln(p(t f )/p(0))|
max(2�, γ+ +

√
γ 2+ + γ 2−)

. (A4)

In the case of a three-level quantum system, we have con-
sidered the following a matrix with the shorthand notation:
a− = γ12 − γ21, a+ = γ12 + γ21, b+ = γ13 + γ31, b− = γ13 −
γ31, c− = γ23 − γ32, c+ = γ23 + γ32 and X =

√
3

6 (a− − γ31 +
γ32). We have

a =
⎛
⎝ M3×3 03×2 Xe3(1, 1)

02×3
1
2 b+12 +

√
2

2 b−σ2 02×3

Xe3(1, 1) 03×2 M′
3×3

⎞
⎠. (A5)

The matrix M3×3 is given by Eq. (A6), where W = 1
2 (a+ +

γ32 + γ31):

M3×3 =
⎛
⎝� − W 0 0

0 1
2 a+ − i

2 a−
0 i

2 a− 1
2 a+

⎞
⎠. (A6)

Also, eN (i, j) represents an N × N matrix with 1 in the (i, j)
entry and 0 elsewhere. The matrix M′

3×3 is given by Eq. (A7)
with Y = 1

6 (a+ + γ31 + γ32) + 2
3 (γ13 + γ23):

M′
3×3 =

⎛
⎝� − Y 0 0

0 1
2 c+ − i

2 c−
0 i

2 c− 1
2 c+

⎞
⎠. (A7)

To compute the Liouville speed limit, the matrix H − H† is
required:

H − H† = ib+

(
N5×5 e5×4(1, 4)

e4×1(1, 4) N′
4×4

)
+ ic+

(
05×5 e5×4(5, 4)

e4×5(4, 5) 04×4

)
,

where

N5×5 =

⎛
⎜⎜⎜⎜⎜⎝

−i(γ31 + γ21) 0 0 0 ia+
0 −i2� 0 0 0

0 0 −i2� 0 0

0 0 0 −i2� 0

ia+ 0 0 0 −i2(γ12 + γ32)

⎞
⎟⎟⎟⎟⎟⎠ (A8)

and

N′
4×4 =

⎛
⎜⎜⎜⎝

−i2� 0 0 0

0 −i2� 0 0

0 0 −i2� 0

0 0 0 −i2(γ13 + γ23)

⎞
⎟⎟⎟⎠. (A9)
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||H − H†||sp is the absolute value of the greatest zero of
its characteristic polynomial (A3z3 + A2z2 + A1z + A0)(z +
i2�)6 with A3 = 1/2, A2 = i(a+ + b+ + c+),

A1 = 1
2γ 2

12 − γ12(2γ13 + γ21 + 2γ23 + 2γ31)

+ 1
2γ 2

13 − (2γ21 + γ31 + 2γ32)γ13 + 1
2γ 2

21 − 2c+γ21

+ 1
2γ 2

23 − (2γ31 + γ32)γ23 + + 1
2γ 2

31 − 2γ31γ32 + 1
2γ 2

32

and

A0 = i(γ13 + γ23)γ 2
12 + (

iγ 2
13 + i(−2γ21 + γ23 − 2γ32

+γ32)γ13 − 2iγ21γ23 − 3i
(
γ23 − 1

3γ31 − 1
3γ32

)
γ31

)
γ12

+iγ 2
13γ32 + (

iγ 2
21 + i(γ23 − 3γ32)γ21 − 2iγ31γ32

)
γ13

× i(γ21+γ31)
(
γ21γ23+γ 2

23 − 2γ23γ32+γ32(γ31+γ32)
)
.

The computation of the Hilbert speed limit requires the de-
termination of 4||h||1 = 4

∑N2−1
l,m |aml |. In this case, this term

can be expressed as

||h||1 = ∣∣� − 1
6 a+ − 2

3γ13 − 2
3γ23 − 1

6γ31 − 1
6γ32

∣∣
+

√
3

3 |a− − γ31 + γ32| + b+ + |b−| + a+ + |a−|
× ∣∣� − 1

2 a+ − 1
2γ31 − 1

2γ32

∣∣ + c+ + |c−|.

We consider the numerical example of Sec. V with γ12 = 1,
γ13 = 1/2, γ23 = 1/2, γ31 = 0, γ21 = 0 and γ32 = 0; thus, the
two lower bounds are

	tL = ln(3)

max
(
2�, 1 +

√
10
2

)
,

(A10)

	tH = ln(3)

16 + 4
√

3
3 + 4|� − 5/6| + 4|� − 1/2|.

(A11)

If the dephasing rate � goes to infinity, namely, � � 1, then

	tL 	 ln(3)

2�
, (A12)

	tH 	 ln(3)

23�
, (A13)

where the initial state is ρ(0) = e3×3(1, 1) and the final one is
the maximally mixed state given by ρ(t f ) = diag( 1

3 , 1
3 , 1

3 ).

APPENDIX B: DYNAMICS OF A DISSIPATIVE
THREE-LEVEL QUANTUM SYSTEM

We derive in this paragraph the differential equations gov-
erning the dynamics of a dissipative three-level quantum
system in the coherence vector formalism. For a general den-
sity matrix ρ of the form

ρ =
⎛
⎝ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎞
⎠,

we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s0 = 1√
3

s1 = 1√
2
(ρ12 + ρ21); s2 = i√

2
(ρ12 − ρ21)

s3 = 1√
2
(ρ13 + ρ31); s4 = i√

2
(ρ13 − ρ31)

s5 = 1√
2
(ρ23 + ρ32); s6 = i√

2
(ρ23 − ρ32)

s7 = 1√
2
(ρ11 − ρ22); s8 = 1√

6
(ρ11 + ρ22 − 2ρ33).

If the unitary dynamics of the density matrix are generated by

HI =
⎛
⎝ 0 u 0

u∗ 0 v

0 v∗ 0

⎞
⎠,

where the control fields are expressed as u = u1 + iu2 and v =
v1 + iv2, it can be shown that the coordinates of the coherence
vector fulfill the differential system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ1 = −2u2s7 + v1s4 + v2s3 − �s1

ṡ2 = −2u1s7 − v1s3 + v2s4 − �s2

ṡ3 = u2s5 − u1s6 − v2s1 + v1s2 − �s3

ṡ4 = −v1s1 − v2s2 + u1s5 + u2s6 − �s4

ṡ5 = −u1s4 − u2s3 + v2(−√
3s8 + s7) − �s5

ṡ6 = u1s3 − u2s4 + v1(s7 − √
3s8) − �s6

ṡ7 = 2u1s2 + 2u2s1 − v1s6 − v2s5 + L(s7)

ṡ8 = √
3v1s6 + √

3v2s5 + L(s8),

with⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L(s7) = 1
3
√

2
[−2γ21 − γ31 + 2γ12 + γ32 + γ13 − γ23]

+ s7
2 [−2γ21 − γ31 − 2γ12 − γ32]

+ s8

2
√

3
[−2γ21 − γ31 + 2γ12 + γ32 − 2γ13 + 2γ23]

L(s8) = 1√
6
[−γ31 − γ32 + γ13 + γ23]

+
√

3
2 s7[−γ31 + γ32]

+ s8
2 [−γ31 − γ32 − 2γ13 − 2γ23].

With the notations of Sec. V, we have{
L(s7) = q7 + r77s7 + r78s8

L(s8) = q8 + r87s7 + r88s8.

APPENDIX C: TIME EVOLUTION OF THE
LAGRANGE MULTIPLIER μ

We describe in this paragraph the computation of the time
evolution of μ in the magic subspace Md for two- and
three-level quantum systems. In each case, the final goal is
to compute td , the time to go from Mo to the zero coherence
vector.

We first consider the two-level quantum system analyzed
in Sec. IV. The purity pd = s2

3 in Md is governed by the
following differential equation:

ṗd = 2γ−s3 − 2γ+s2
3.

Using the relation pd = γ 2
−

4(μ−γ+ )2 , we deduce that the dynamics
of μ are given by

μ̇ = (μ − γ+)(2μ − γ+),
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which leads to

μ(t ) = γ+(2� − γ+) − γ+(� − γ+)eγ+t

(2� − γ+) − 2(� − γ+)eγ+t
, (C1)

with μ(0) = �. The zero coherence vector is reached when
μ → +∞, i.e., when the denominator of Eq. (C1) is zero.
Finally, we arrive at

td = 1

γ+
ln

[
2� − γ+

2(� − γ+)

]
,

which is the control time used in Sec. IV.
For the three-level quantum system described in Sec. V, s7

and s8 are solutions of the following system:{
q7 + 2r77s7 + (r78 + r87)s8 + 2μs7 = 0
q8 + 2r88s8 + (r78 + r87)s7 + 2μs8 = 0,

which leads to{
s7 = [q8(r78 + r87) − 2q7(r88 + μ)]/D
s8 = [q7(r78 + r87) − 2q8(r77 + μ)]/D,

(C2)

where D = 4(r77 + μ)(r88 + μ) − (r78 + r87)2. Starting from
the relation pd = s2

7 + s2
8, we can derive the differential equa-

tion verified by μ(t ). First, we have

ṗd = 2s7ṡ7 + 2s8ṡ8 = 2(s7L(s7) + s8L(s8)).

This time derivative can also be expressed as

ṗd = 2

(
s7

ds7

dμ
+ s8

ds8

dμ

)
μ̇.

Identifying the two expressions of ṗd , we arrive after straight-
forward computations at

μ̇ = q7s7 + q8s8 − 2μ
(
s2

7 + s2
8

)
2
(
s7

ds7
dμ

+ s8
ds8
dμ

) . (C3)

Using Eq. (C2), this differential equation allows us to compute
numerically the time evolution of μ.
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