
PHYSICAL REVIEW A 102, 033102 (2020)

Light-ellipticity and polarization-angle dependence of magnetic resonances in rubidium vapor
using amplitude-modulated light: Theoretical and experimental investigations
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We report on experimental and theoretical investigations of the polarization dependence of magnetic resonance
generated by synchronous optical pumping. Magnetic resonances with narrow linewidth are generated experi-
mentally using a rubidium vapor cell with octadecyltrichlorosilane antirelaxation coating on inner walls. We
studied the effect of light ellipticity on the amplitudes and widths of magnetic resonances by matching the light
modulation frequency with 2�L (alignment) and �L (orientation) in a Bell-Bloom interaction geometry, where
�L corresponds to the Larmor frequency. Both 2�L and �L resonance amplitudes showed a strong dependence
on the light ellipticity. In addition, we showed that the duty cycle of light modulation changes the slope of
amplitude variations in 2�L and �L resonances with light ellipticity. As a potential application, we showed that
the difference between 2�L and �L resonance amplitudes can be used for in situ measurement of light ellipticity.
We also studied the dependence of 2�L and �L resonance amplitudes on the polarization angle of linearly
polarized light. These amplitudes oscillate periodically with the polarization angle. We found this oscillatory
behavior to be sensitive to the tilt in magnetic field direction from the polarization plane. Such a property could
be used to realize a vector magnetometer. A density matrix based theoretical model is developed to simulate the
magnetic resonance spectrum for different light polarizations. Our theoretical model accurately reproduces the
above-mentioned experimental observations.

DOI: 10.1103/PhysRevA.102.033102

I. INTRODUCTION

Coherent excitation of atomic ensemble with resonant light
produces atomic coherence (or atomic polarization) in the
ground state of the medium. This causes interesting non-
linear magneto-optical phenomena such as the Hanle effect
[1–3] and nonlinear magneto-optical rotation (NMOR) [4,5]
in the presence of a magnetic field. Typically, these phe-
nomena are observed by monitoring light transmission [6],
scattered-light intensity [7], or light polarization angle [8]
around the zero-magnetic field. Synchronous optical pumping
is a well-established technique in which atomic coherence is
produced by optical pumping of atoms at Larmor frequency,
to create magnetic resonance at a nonzero magnetic field. It
is implemented by modulating the light amplitude [9–11],
frequency [12,13], or polarization [14–16]. This method has
been widely used in atomic magnetometry [17,18] and also
in precision measurement of a permanent electric-dipole
moment [19–21].

In synchronous optical pumping experiments, a spectrum
containing multiple magnetic resonances is produced due to
interaction of atoms with the frequency sidebands of mod-
ulated light [9,11]. Light polarization decides the type of
magnetic resonance produced in the spectrum. Primarily, two
types of magnetic resonances are produced due to (i) preces-
sion of the atomic dipole moment (known as “orientation”)
and (ii) precession of the atomic quadrupole moment (known
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as “alignment”) [22–24]. In NMOR, linearly polarized light
is used to produce alignment resonance in a Faraday ge-
ometry where the magnetic field is applied along the light
propagation direction [12]. Balanced polarimetric detection
is used in NMOR to measure the polarization angle with
high sensitivity [17,18,25]. Both frequency and amplitude
modulation of light have been explored in NMOR magne-
tometry. Most synchronous optical pumping experiments to
date have been performed using either circular or linearly
polarized light, after it was first demonstrated by Bell and
Bloom [26] using amplitude-modulated light and by apply-
ing a magnetic field perpendicular to the light propagation
direction. Unlike NMOR, the Bell-Bloom technique produces
an orientation resonance using circularly polarized light. Re-
cently, this technique has been extended for remote detection
of a geomagnetic field by exciting sodium atoms in the meso-
sphere [26–29].

It is known that the sensitivity of an optical magnetometer
depends on the relative orientation between the light propaga-
tion direction and the magnetic field direction. For example,
using the Bell-Bloom technique, a longitudinal magnetic field
parallel to the light propagation direction cannot produce a
magnetic resonance (considered a “dead-zone”). Studies have
shown that periodic modulation of light polarization between
two orthogonal states (right and left circular or orthogonal lin-
ear) can eliminate the dead-zone problem by simultaneously
producing alignment and orientation resonances [16,30]. Al-
ternatively, excitation using elliptical light polarization could
improve the directional response of the optical magnetome-
ter [31]. However, the effect of light ellipticity on magnetic
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FIG. 1. A two-level atomic system Fg = 3 → Fe = 2 interacting with (a) linear and (b) elliptical polarized light. Here “g” refers to the
ground, and “e” to the excited state. �L is the Larmor frequency. mg and me are the magnetic quantum number of the ground- and excited-
state sublevels, respectively. �mg is the coherence among the ground-state sublevels and �meg represents the coherence between ground-
and excited-state sublevels. The axis of quantization is considered parallel to the magnetic field B (i.e., along the x axis) as shown in the
insets (a), (b).

resonances produced by synchronous optical pumping has not
been very well studied.

In this work, we present our studies on the dependence
of the magnetic resonance spectrum on light ellipticity and
polarization angle. A rubidium (Rb) vapor cell with octade-
cyltrichlorosilane (OTS) antirelaxation coating has been used
in our experiment to produce narrow linewidth magnetic reso-
nances. We show that excitation using elliptically polarized
light can simultaneously produce 2�L (alignment) and �L

(orientation) resonances in a Bell-Bloom interaction geome-
try. We have developed a theoretical model to calculate the
resonance spectrum using light with a varying degree of ellip-
ticity. Amplitudes of 2�L and �L resonances show a strong
dependence on the light ellipticity. Further, our study shows
that the duty cycle of light modulation can effectively control
the amplitude variations of 2�L and �L resonances with ellip-
ticity. Finally, we have presented a simple scheme for vector
magnetometry to determine the magnetic field direction by
measuring the oscillations in 2�L and �L resonance ampli-
tudes with the light polarization angle.

This paper is organized as follows. In Sec. II below, we
discuss the theoretical model developed for studying the de-
pendence of the magnetic resonance spectrum on the light
ellipticity and the polarization angle. A description of our
experimental setup is provided in Sec. III. Results and dis-
cussions including comparisons between experimental and
theoretical results are presented in Sec. IV.

II. THEORETICAL MODEL

Our theoretical model is based on atomic density matrix
equations. We consider a resonant excitation between the hy-
perfine ground state Fg = 3 and the hyperfine excited state
Fe = 2 in the 85Rb D1 manifold, including all Zeeman sub-
levels in each hyperfine state. To study magnetic resonances,

we considered a laser field propagating along the z axis:

�E (t ) = êLEoe−i ω t + c.c., (1)

where Eo is the amplitude of the laser field with resonant fre-
quency ω. The polarization vector êL of the field is described
by

êL = êx cos ε + iêy sin ε, (2)

where êx and êy are the unit vectors along the x and y axes,
respectively, and ε is the ellipticity angle of the laser field.
All polarization states of the laser can be described by a value
of ε ranging between 0° to 45°. For our modeling purposes,
we have considered (i) linear (ε = 0◦) and (ii) elliptical po-
larizations (ε �= 0◦) of the optical field corresponding to a
transition from ground state Fg = 3 to excited state Fe = 2.
Figure 1 depicts both of these scenarios. In Fig. 1(a) (inset),
for linearly polarized light, we consider the light propagation
along the ẑ direction; the electric field vector is chosen along
the y axis and a magnetic field B is considered parallel to the
x axis (B = Bx). To give a physical picture of the light-atom
interaction, we choose the axis of quantization to be along the
magnetic field direction (i.e., x axis). In the presence of a mag-
netic field, the Zeeman sublevels shift by integer multiples
of the Larmor frequency �L, i.e., ±mF �L (mF γRbBx), where
γRb is the gyromagnetic ratio of the Rb atom and mF is the
magnetic quantum number of the sublevels. Since the linearly
polarized field is chosen perpendicular to the quantization
axis, it produces equal σ+ and σ− transitions corresponding to
�meg = ±1 between the ground- and excited-state sublevels,
as shown in Fig. 1(a).

These two transitions create a three-level � system involv-
ing one common excited-state and two ground-state Zeeman
sublevels with �mg = 2, shown using a curved arrow in
Fig. 1(a). A magnetic resonance is formed by coherent pop-
ulation trapping (CPT) due to a dark superposition of the
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participating ground-state Zeeman sublevels. Magnetic reso-
nance can also be produced by other � systems (not shown
in the figure) that could be formed in the Fg = 3 → Fe = 2
transition involving other Zeeman sublevels of Fg and Fe that
satisfy the same condition, |�mg| = 2. The transitions corre-
sponding to elliptically polarized light are shown in Fig. 1(b).
In this case, an additional π transition corresponding to
�meg = 0 is introduced between the ground- and excited-state
sublevels when the light electric field vector becomes parallel
to the quantization axis. This creates additional � systems
involving a superposition of ground-state sublevels satisfying
�mg = ±1 [shown with curved arrows in Fig. 1(b)]. The
strength of a π transition increases with light ellipticity and
becomes equal to the circular σ components at ε = 45◦.

In the synchronized optical pumping scheme, the ampli-
tude of the laser field is modulated using a square-wave
modulation function ξ (t ) with a duty cycle η. The laser field
with amplitude modulation (AM) in the model is described as

�E (t ) = êLEo[η + �Mξ (t )]e−i ω t + c.c., (3)

where �M is the modulation depth. The Fourier series expan-
sion of the square-wave function ξ (t ) can be written as

ξ (t ) =
m=∞∑

m=1

gm(η) cos (m� mod t ), (4)

gm(η) = 2

mπ
sin[mπη]. (5)

Here, the terms gm are the Fourier coefficients of the
square-wave modulation function ξ (t ) and the integer index m
corresponds to different harmonics of ξ (t ). At a fixed modu-
lation frequency � mod , the optical field consists of frequency
sidebands at ω ± m � mod along with a carrier at the laser fre-
quency ω. The amplitude gm of a particular sideband depends
on the duty cycle η of ξ (t ) [32]. For example, at 50% duty

cycle (η = 0.5), the gm value for all even-integer harmonics
(even values of m) will be equal to zero and odd harmonics
(odd values of m) will be nonzero. The modulated field has
dominant first-order sidebands at frequencies ω ± � mod for
which the gm value is maximum. These sidebands in the
modulated field cause synchronous pumping of the atoms to
create multiple magnetic resonances at nonzero magnetic field
satisfying the condition

� mod = k�L, (6)

where k is the rank of the atomic spin polarization mo-
ment of the density matrix. These moments of the angular
momentum state Fg are related to coupling (or coherence)
between Zeeman sublevels with �mg( �=0) [23,33]. For a
given choice of the quantization axis, these coherences con-
tribute to all atomic polarization moments with k � |�mg|
and have a maximum possible rank k equal to |�mg| = 2Fg.
Generation and detection of multipole moments of rank k � 2
could be accomplished by using weak light, whereas higher
rank moments (k > 2) require multiphoton interactions [33].
Our study is focused on magnetic resonances formed due to
multipole moments of rank k � 2 at different light elliptic-
ities. For linearly polarized light [Fig. 1(a)], the coherence
condition |�mg| = k = 2 (quadrupole moment, also known
as “alignment”) creates a resonance at �L = � mod /2. For
elliptically polarized light [Fig. 1(b)], the coherence condi-
tions |�mg| = k = 2 (quadrupole moment) and |�mg| = k =
1 (dipole moment, also known as “orientation”) create two
resonances at �L = � mod /2 and �L = � mod , respectively.
For an arbitrary duty cycle η (�0.5), each frequency sideband
corresponding to integer index m produces two resonances at
�L = ±m � mod /k corresponding to k = 2 and k = 1. As a
general rule, when elliptically polarized light is used and mag-
netic field Bx is varied, resonances may occur at the following
frequencies:

m = 1 2 3 4 · · ·
�k=2

L = ±� mod

2
±� mod ±3� mod

2
±2� mod . . .

�k=1
L = ±� mod ±2� mod ±3� mod ±3� mod · · ·

. (7)

The resonance condition for a particular harmonic for k = 1 could also match with the one for a different harmonic for k = 2.
For example, resonances for k = 2, m = 2 and k = 1, m = 1 occur simultaneously at �L = ±� mod . The combined resonances
due to both k = 1 and 2 can be written as

�L = ±� mod

2
, ±� mod , ±3� mod

2
, ±2� mod , ±5� mod

2
, ±3� mod · · ·

n ± 1 ±2 ±3 ±4 ±5 ±6
. (8)

Here, the integer index n is used to label the position of all
resonances formed by elliptically polarized light modulated
with an arbitrary duty cycle η. The resonance at zero magnetic
field (Hanle resonance) due to the carrier is represented by
n = 0.

We calculate the magnetic resonances using the time evo-
lution of atomic density matrix ρ given by the Liouville
equation:

∂ρ

∂t
= 1

ih̄
[H̃, ρ] − 1

2
{�̂, ρ} + R. (9)

Here H̃ represents the total Hamiltonian of the atomic sys-
tem in the rotating wave frame. It includes the internal atomic
energy levels, light-atom interaction, and magnetic field-atom
interaction. The diagonal relaxation matrix �̂ includes the
spontaneous decay rate � of the excited state and the transit
relaxation rate γ of each sublevel due to the exit of atoms from
the laser beam. Matrix R describes the repopulation of ground-
state sublevels due to decay rates � and γ . The theoretical
model is simplified by not considering the atomic motion (or
velocity distribution), the effect of neighboring transitions,
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FIG. 2. Schematic diagram of the experimental setup. λ/2, half-wave plate; λ/4, quarter-wave plate; L1 and L2, convex lenses; PBS,
polarizer beam splitter; MS, magnetic shield; ND, neutral density filter; PD, photodiode; AOM1-2, acoustic optic modulator; SAS, saturation
absorption spectroscopy. The choice of our coordinate system is shown in the figure inset.

and the spatial distribution of laser intensity. Time-dependent
density matrix equations obtained from Eq. (9) are solved
numerically to calculate the light absorption coefficient of the
medium for ellipticity ε using the following expression:

α(t ) ≈
∑

eig j

�

π�R

{
βeig j cos[ε]Im

[
ρeig j (t )

]

+β ′
eig j

sin[ε]Re
[
ρeig j (t )

]}
, (10)

where �R = 〈Fg‖D‖Fe〉Eo is the reduced Rabi frequency of
the laser field and D is the dipole operator. The ground-state
and excited-state sublevels involved in the optical transition
decide the strength of coefficients βeig j and β ′

eig j
. To keep

consistency with our experimental observation, we calculate
the power P(t) in transmission using the following expression:

P(t ) = P0 e−α(t )L ≈ P0 (1 − α(t )L). (11)

Here, P0 is the initial laser power which is set to unity to
simplify our calculations. We have also assumed that αL �
1 which is true for an optically thin medium. The in-phase
and quadrature components of the magnetic resonances are
calculated by demodulating α(t ) [Eq. (10)] and P(t) [Eq. (11)]
at the first harmonic of ±� mod [34].

III. EXPERIMENTAL SETUP

A schematic diagram of the experimental setup is shown
in Fig. 2. A tunable external cavity diode laser with reso-
nant wavelength 795 nm matching the 85Rb D1 transition and
linewidth less than 500 kHz is used in the experiment. Using
a combination of half-wave plate λ/2 and a polarizing beam
splitter (PBS), the laser beam is split into two paths. The re-
flected beam from the PBS is passed through an acoustic-optic
modulator (AOM1) driven by an 80-MHz radio-frequency
signal of fixed amplitude. The first-order diffracted beam from
the AOM1 is utilized in a saturation absorption spectroscopy
(SAS) setup [35]. The laser is locked to the Fg = 3 → Fe = 2
transition of the 85Rb D1 line using the Doppler-free ab-
sorption peak produced in the SAS setup. Light transmitted

through PBS is amplitude modulated via AOM2 driven by
an 80-MHz radio-frequency signal using a rectangular pulse
waveform generated through a function generator with an ar-
bitrary duty cycle η. The diameter of the first-order diffracted
beam is expanded from 2 to 8 mm using a couple of lenses
in a telescopic configuration. The expanded beam increases
the interaction time of the atoms with the laser beam. Laser
power to the vapor cell is controlled using a neutral density
(ND) filter. Light ellipticity is varied from 0° to 45° using a λ/4
plate placed in the beam path. A buffer gas free OTS-coated
rubidium vapor cell (length = 2 cm, diameter = 2.5 cm) ob-
tained from Precision Glassblowing is mounted at the center
of a four-layer magnetic shield (MS) with a shielding factor
of ∼106. The MS contains a printed three-axis magnetic field
coil installed inside its innermost layer. The coils are con-
nected to three independent current sources to independently
apply static and/or scanning magnetic field in any arbitrary
direction as required in the experiment. The Rb vapor cell
is kept at room temperature. Light transmitted through the
cell is detected using a photodiode (PD). The OTS coating
in the Rb vapor cell allows us to produce narrow linewidth
magnetic resonances by reducing the effect of wall colli-
sions and thereby reducing the depolarization of Rb atoms
[36,37]. Laser excitation of the Fg = 3 → Fe = 2 transition
creates magnetic resonances with approximately 3% contrast,
which are measured by demodulating the PD output using a
lock-in amplifier operating at the first harmonic of the laser
modulation frequency �mod. The two channels of the lock-in
amplifier allow us to measure simultaneously the in-phase
(or amplitude) and quadrature (or phase) components of the
magnetic resonances.

IV. RESULTS AND DISCUSSION

A. Dependence of magnetic resonances on the light ellipticity

Figure 3(a) shows the in-phase and quadrature compo-
nents of experimentally observed magnetic resonances in the
transmitted light for three different values (0°, 15°, and 45°)

033102-4



LIGHT-ELLIPTICITY AND POLARIZATION-ANGLE … PHYSICAL REVIEW A 102, 033102 (2020)

FIG. 3. Experimentally measured (a) and theoretically calculated (b) magnetic resonances using modulated light (η = 0.5 and �mod =
3 kHz) with different light ellipticity values in each row. Average laser intensity in the experiment is set to 0.2 mW/cm2. Parameters used in
simulations: �R = 0.01 �, γ = 3 × 10−5 �. Vertical axis corresponds to “normalized amplitude” as each plot is normalized with respect to the
maximum amplitude in the respective signal. All the resonances are labeled using the integer index n described in Sec. II.

of the light ellipticity. These measurements are performed
by scanning the transverse magnetic field Bx around the
zero field. Modulation frequency of the laser is kept fixed
at �mod = 3 kHz with duty cycle η = 0.5. Average intensity
of the laser beam is set to 0.2 mW/cm2. For zero ellipticity
(ε = 0◦) corresponding to linearly polarized light, the in-
phase signal shows a resonance (labeled as n = 0) around
the zero magnetic field. As explained in Sec. II, the n = 0
resonance occurs due to coupling between degenerate ground-
state Zeeman sublevels with |�mg| = 2 produced by the σ+
and σ− polarization components of the carrier at laser fre-
quency ω. The presence of a peak suggests a dark resonance,
as expected for the Fg → Fe = Fg–1 transition [3]. The in-
phase and quadrature signals also show resonances at �L =
±� mod /2, the so-called n = ±1 resonances, due to first-
order sidebands at ω ± � mod of the modulated laser field.
These two sidebands along with the carrier introduce coupling
between ground-state Zeeman sublevels with |�mg| = 2 to
produce n = ±1 resonances at nonzero magnetic field. Al-
ternatively, n = ±1 alignment resonances can be described
as being produced by synchronous pumping of atoms with
modulated light at Larmor frequency with atomic polarization
moment k = 2. Since the magnetic field direction is trans-
verse to the light propagation direction, resonances labeled
as n = 0 and ±1 cannot be observed in polarization rotation
measured using a balanced polarimeter setup; i.e., the ampli-
tude of polarization rotation decreases as a cosine of the angle
between the light propagation direction and the magnetic
field [38].

As light ellipticity is increased from zero, the π and σ±
components tend to form additional �-type systems satisfying
the condition |�mg| = 1 between the ground-state Zeeman
sublevels. Therefore, for nonzero ellipticity, both |�mg| = 1

and |�mg| = 2 coherence conditions will contribute to pro-
duce resonances at zero magnetic field. Due to the presence
of sidebands, coherence condition |�mg| = 1 creates orien-
tation resonances at �L = ±� mod labeled as n = ±2 with
polarization moment k = 1 [Fig. 3(a) (middle row)]. At light
ellipticity ε = 15◦, the amplitudes of n = ±1 and n = ±2
resonances are approximately equal in both in-phase and
quadrature signals. When ellipticity is further increased, the
amplitudes of n = ±1 resonances decrease and nearly van-
ish at ε = 45◦ corresponding to circularly polarized light
[Fig. 3(a) (bottom row)]. On the other hand, the amplitudes
of n = ±2 resonances increase with increase in ellipticity and
become maximum at ε = 45◦. This behavior can be inferred
from the increase in strength of the π transition responsible for
|�mg| = 1 coherence with increase in ellipticity. Theoretical
results shown in Fig. 3(b) show good agreement with our
experimental observations shown in Fig. 3(a). However, we
observed a difference between theory and experiment in terms
of the relative amplitudes of resonances for each ellipticity
case. For example, unlike the experimental results shown in
Fig. 3(a) (middle row), the calculated resonances n = ±1
and n = ±2 in Fig. 3(b) (middle row) do not have equal
amplitudes for ellipticity ε = 15◦. This discrepancy could
have resulted from the simplification of our theoretical model
discussed in Sec. II.

Figure 4(a) shows experimentally measured peak ampli-
tudes of in-phase n = 0, 1, and 2 resonances as a function
of light ellipticity ε for duty cycle η = 0.5. Since zero-field
n = 0 resonance has contributions from many degenerate
ground-state superpositions of sublevels satisfying conditions
|�mg| = 1 and/or |�mg| = 2, it has much higher amplitude
compared to n = 1 and n = 2 resonances. Increase in the
amplitude of n = 0 resonance with ellipticity is in agreement
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FIG. 4. Experimentally measured (first row) peak amplitudes (a)
and FWHM widths (b) of magnetic resonances in the in-phase signal
as a function of the light ellipticity. Corresponding theoretical results
are shown in the second row (c), (d). The experimental and theoreti-
cal parameters are similar to that chosen for the results presented in
Fig. 3.

with previous reports where continuous laser excitation was
utilized [39,40]. Since the strength of |�mg| = 2 coherence
weakens with an increase in ellipticity from 0° to 45°, the am-
plitude of n = 1 resonance consequently diminishes, as shown
in Fig. 4(a). Figure 4(b) shows the plots of full width at half
maximum (FWHM) of in-phase n = 0, 1, and 2 resonances
as a function of light ellipticity. The width of a resonance
depends on the dephasing between the ground-state sublevels,
and on the Rabi frequencies (or matrix elements and field
strengths) of the optical transitions involved in a particular �

system. Closer to zero ellipticity, n = 0 and n = 1 resonances

have approximately equal FWHMs. The width of n = 0 reso-
nance is increased by nearly 60% from 0.35 mG to 0.56 mG
when ε is changed from 5° to 25° and becomes approxi-
mately constant thereafter for higher ellipticities. On the other
hand, the width of n = 1 resonance does not vary much with
ellipticity. The n = 2 resonance shows a broader linewidth
compared to n = 0 and n = 1 resonances for all ellipticity
values. Theoretical results shown in Figs. 4(c) and 4(d) are
consistent with the corresponding experimental results shown
in Figs. 4(a) and 4(b), respectively. The amplitudes and widths
of n = 1 and n = 2 resonances were also measured from the
quadrature signals, and found to exhibit similar dependen-
cies on light ellipticity as the ones measured from in-phase
signals.

Next, we describe the effect of light ellipticity on the mag-
netic resonances for a lower duty cycle of light modulation
η = 0.3 and by keeping the average laser intensity fixed at
0.2 mW/cm2. In Fig. 5(a), higher-order magnetic resonances
are observed due to the presence of all sidebands in the mod-
ulated light. For ε = 0◦, the in-phase signal shows resonances
up to second order (i.e., n = ±2) and the quadrature signal,
which is phase sensitive, shows resonances up to the fourth or-
der (i.e., n = ±4) satisfying the resonance condition of �L =
±m � mod /2 with m = 4 (i.e., fourth sideband of modulated
light) and k = 2. The quadrature signal shows a dispersive
line shape with the same sign for the first three orders and an
opposite sign for the fourth-order (i.e., n = ±4) resonances
[Fig. 5(a) (top row)] indicating a 180° phase change, possibly
due to a sign reversal of the Fourier coefficient g4.

As the light ellipticity is changed from zero, resonances
up to eighth order (i.e., n = ±8) are observed [Fig. 5(a)].
As discussed in Sec. II, the k = 1 resonance (for which
�L = m � mod ) and the k = 2 resonance (for which �L =
m � mod /2) are produced simultaneously due to nonzero light

FIG. 5. Experimentally measured (a) and theoretical calculated (b) magnetic resonances for different light ellipticities (as labeled) using
modulated light with η = 0.3 and �mod = 3 kHz. Other parameters used in simulations remain the same as in Fig. 3. Vertical axis corresponds
to normalized amplitude as each plot is normalized with respect to the maximum amplitude in the respective signal. All the resonances are
labeled using the integer index n described in Sec. II.
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FIG. 6. Variation of experimentally measured (a) and theoreti-
cally calculated (b) difference D in amplitudes of n = 1 and n = 2
resonances as a function of light ellipticity for different values of
η. Other parameters used in the simulation are the same as those
described in Fig. 3.

ellipticity. The �L values for these k’s are satisfied by two
different m values that correspond to two different sidebands
of the modulated light. The dominance of a particular side-
band to form this type of higher-order resonance is decided by
the strength of ground-state coherence | �mg |. For example,
n = 4 resonance at �L = 2 � mod is produced by the fourth
sideband (m = 4) with polarization moment k =| �mg |= 2
and also, by the second sideband (m = 2) with polariza-
tion moment k =| �mg |= 1. For a nonzero light ellipticity
[Fig. 5(a) (middle and bottom row)], n = 4 dispersive reso-
nance in the quadrature signal switches its sign with respect
to n = 4 dispersive resonance for the zero light ellipticity
case [Fig. 5(a) (top row)]. The switching of sign in n = 4
dispersive resonance with ellipticity is due to the dominance
of the participating sideband from m = 4 to m = 2 (no sign
reversal in g2) satisfying the coherence condition |�mg| = 1
for k = 1. Similarly, the intersign reversal of n = 8 dispersive
resonance with respect to n = 4 dispersive resonance at el-
lipticity ε = 15◦ or 45° can be explained by the fact that it
is predominantly formed by the strong fourth sideband (i.e.,
m = 4 with a sign reversal in g4) of the modulated light.
Figure 5(b) shows corresponding theoretical results obtained
for the same light ellipticities as in Fig. 5(a). The theoret-
ical results reproduce most of the salient features observed
experimentally in Fig. 5(a). The sign change of n = 4 and
8 resonances in quadrature signals discussed above is also
clearly observed in the simulated results shown in Fig. 5(b).

Next, we measured the peak amplitudes of in-phase n = 1
and n = 2 resonances as a function of the light ellipticity for
arbitrary duty cycle η of the modulated light. The variation
in amplitudes of these resonances with ellipticity is found
to change with duty cycle η. To study this dependence, we
measured the amplitude difference (D) of n = 1 and n = 2
resonances as a function of the light ellipticity for different
values of η. This is shown in Fig. 6(a). For η = 0.5, the D
value varies from positive to negative and passes through a
zero crossing around ε = 15◦ where n = 1 and n = 2 reso-
nance amplitudes are equal. This is consistent with our results
shown in Fig. 4(a). The zero crossing shifts towards a lower
ellipticity [i.e., ε = 11.7◦] with a decrease in η from 0.5 to
0.3 [Fig. 6(a)]. The plots in Fig. 6(a) show that the difference
D varies quite linearly over ellipticity ε ranging from 10°
to 30° at three different duty cycles η. The red lines show
linear fittings to the experimental data from which the slope
∂D/∂ε is calculated. The slope |∂D/∂ε| increases from 4.1
to 7.7 mV/deg by changing η from 0.5 to 0.3. A curve with

the highest slope can be utilized in applications that require
in situ measurement of the light ellipticity with higher ac-
curacy. Precise measurement of light ellipticity is crucial for
many atom-based systems [41–44]. For example, level shifts
controlled by light polarization in an optical lattice can be
used to implement quantum logic gates, and can be utilized to
estimate frequency error or accuracy of an optical lattice clock
[45,46]. A device for light ellipticity measurement can be real-
ized by doing numerical data fitting to find peak amplitudes of
the resonances and their difference D, and extracting elliptic-
ity information from a calibration curve shown in Fig. 6(a).
Figure 6(b) gives theoretical plots showing variations in D
with ellipticity for the same η values. Theoretical results show
good agreement with the experiment, particularly, in reflecting
the increase in slope |∂D/∂ε| with lowering of duty cycle
η. However, the zero-crossing points for theoretical plots in
Fig. 6(b) do not match with those in Fig. 6(a) due to the
simplification of our theoretical model.

B. Polarization-angle dependence of magnetic resonances
and determination of magnetic field direction

So far, we have discussed the effect of light ellipticity on
the nonzero magnetic resonances formed by σ and π tran-
sitions in the presence of a transverse magnetic field along
the x axis. The σ and π transitions can also be produced by
changing the relative angle between the magnetic field (i.e.,
direction of axis of quantization) and the polarization vector
of a linearly polarized light. Next, we discuss the amplitude
dependence of these resonances on the direction of the mag-
netic field. For this study, we kept the magnitude of the total
magnetic field fixed at B = 5.1 mG (i.e., �L = 2.4 kHz) and
measured amplitudes of n = 1 and n = 2 resonances with
polarization angle by changing the magnetic field direction.
In this case, magnetic resonances are observed by scanning
the modulation frequency �mod of light from 1.5 to 6 kHz.
Average laser intensity is kept fixed at 0.2 mW/cm2 and the
duty cycle η of light modulation is set at 50% (i.e., η = 0.5).
Linearly polarized light is used in this study. The orientation
of the polarization vector E with respect to the magnetic field
B is varied to induce coherence | �mg | for producing n = 1
and n = 2 resonances.

Figure 7(a) shows the geometrical representation of the
polarization vector E and the magnetic field B in a three-
dimensional coordinate system. As shown, the polarization
vector makes an angle φ with the y axis in the x-y plane. The
direction of the magnetic field B is defined by angles θ and ψ

in the spherical coordinate system, where ψ is the azimuthal
angle and θ is the polar angle. To illustrate the concept, we
set the azimuthal angle of the magnetic field ψ = 30◦ for all
our measurements. For a given angle θ of the B field, the
peak amplitudes of resonances at �mod = �L = 2.4 kHz (i.e.,
n = 2) and �mod = 2�L = 4.8 kHz (i.e., n = 1) are measured
by changing the rotation angle φ of the polarization vector
E. The amplitudes of 2�L and �L resonances depend on the
strength of σ and π transitions, which are determined by an
angle between the polarization vector and the orientation of
the magnetic field (i.e., axis of quantization), as discussed in
Sec. II.
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FIG. 7. (a) Geometrical representation of polarization vector E and magnetic field vector B in spherical coordinate system. (b) Amplitudes
of 2�L and �L resonances as a function of polarization rotation angle φ at different tilt angle θ of the magnetic field B. (c) Variations in
oscillation amplitudes of 2�L and �L resonances with θ . Average laser intensity is fixed at 0.2 mW/cm2 and modulation duty cycle η = 0.5.
Experimentally measured (dots) and theoretically calculated (solid lines) data are normalized in all plots with respect to peak amplitude in the
θ = 90◦ (no tilt in B) case. Vertical axis corresponds to normalized amplitude.

Figure 7(b) shows the amplitudes of 2�L and �L reso-
nances as a function of the angle φ corresponding to three
different values of θ . For θ = 90◦, the magnetic field B is
oriented in the x-y plane, i.e., in the plane of light polarization
[Fig. 7(a)]. When the polarization angle φ = 30◦, the electric
field vector E becomes parallel to B resulting in only a π

transition between the Zeeman sublevels of ground and ex-
cited states. In this case, due to the absence of σ transition,
no coupling (or coherence) can be established between the
ground-state sublevels. Thus, amplitudes of both 2�L and �L

resonances become zero at the polarization angle φ = 30◦.
This can be seen in the plots shown in the top row of Fig. 7(b).
The amplitude of 2�L resonance shows a plateau for polariza-
tion angle φ between 10° and 60°. This is because it is only
formed by σ transitions which remain weak over this range
of angle. On the other hand, the amplitude of �L resonance
(which is formed by both σ and π transitions) changes rapidly
and reaches its maximum value at angle φ = 75◦, where the
strengths of σ and π components become equal as the angle
difference (φ–ψ ) = 45◦. When the polarization angle φ is
changed further beyond 75°, the angle difference (φ – ψ)
is increased beyond 45° resulting in a stronger σ transition.
At φ = 120◦ where (φ–ψ ) = 90◦, the light will only have σ

components, which results in a maximum amplitude of 2�L

resonance and minimum amplitude of �L resonance [Fig. 7(b)
(top row)]. The amplitude of 2�L resonance shows the next
plateau around φ = 210◦ due to a resulting π only transition.

Thus, the amplitude of 2�L resonance oscillates slowly with
a periodicity of 180° in the polarization angle φ. On the other
hand, the amplitude of �L resonance oscillates faster with a
periodicity of 90° in angle φ for the case θ = 90◦.

Next, we considered a tilt in the magnetic field direction
(keeping its strength fixed) from the x-y plane by defining the
angle θ to be less than 90° [Fig. 7(a)]. In this case, rotation
of polarization angle φ cannot make the electric field vector
E parallel to the magnetic field B to produce only a π transi-
tion. Therefore, unlike Fig. 7(b) (top row), polarization angles
φ = 30◦ and φ = 210◦ will produce nonzero amplitudes in
both 2�L and �L resonances for θ < 90° as shown in Fig. 7(b)
(middle and bottom rows). The oscillating amplitudes of 2�L

and �L resonances with polarization angle φ get smaller by
tilting the magnetic field B away from the x-y plane [Fig. 7(b)
(middle and bottom rows)]. Also, for θ < 90°, the oscillation
frequency of �L resonance become equal to the frequency of
2�L resonance (i.e., periodicity in φ = 180◦). Experimental
(dots) and theoretical (solid lines) results in Fig. 7(b) show
very good agreement. When angle θ = 0◦, the magnetic field
B is along the z axis (i.e., longitudinal), which is perpendicular
to E for any choice of polarization angle φ. In this case, the
amplitude of 2�L resonance does not depend on φ; hence
it shows no oscillation. On the other hand, �L resonance at
θ = 0◦ completely vanishes due to the absence of π transition.
The oscillatory behavior shown here in Fig. 7(b) is different
from the one observed in Ref. [16] using a second-harmonic,
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i.e., 2�mod detection scheme with polarization-modulated
light.

Figure 7(c) shows oscillation amplitudes of 2�L and �L

resonances as a function of the magnetic field tilt angle θ .
The oscillations show a strong linear dependence over a range
of tilt angle θ from 15° to 40°. Figure 7(c) can be used as
a calibration curve for determining angle θ of the magnetic
field, whereas locations of maxima and minima in 2�L and
�L oscillations in Fig. 7(b) can be used to find angle ψ of the
magnetic field. Compared to the vector magnetometer based
on a single �L resonance [47], measurements using both
2�L and �L resonances can improve accuracy of the vector
magnetometer based on the synchronous optical pumping.
Similarly, the ratio of relative strengths between 2�L and
�L resonances can be used as a response for avoiding the
commonly encountered dead-zone problem in the Bell-Bloom
magnetometer [25].

V. CONCLUSIONS

We have investigated magnetic resonances at nonzero mag-
netic field created by synchronous optical pumping of the
atoms using an OTS-coated rubidium vapor cell. The ef-
fect of incident light ellipticity on the resonance spectrum is
studied in the presence of a magnetic field oriented perpen-
dicular to the light propagation direction. Our study showed

ground-state coherences responsible for producing two types
of magnetic resonances strongly depend on the light ellip-
ticity. Resonance (�L = ±� mod ) satisfying the coherence
condition |�mg| = 1 becomes stronger with increase in light
ellipticity, whereas resonance (�L = ±� mod /2) satisfying
the coherence condition |�mg| = 2 diminishes at higher el-
lipticity. We showed that the difference in amplitudes of
�L = � mod and �L = � mod /2 resonances varies linearly
with ellipticity between 10° and 30°, which can be used for in
situ measurement of light ellipticity. For nonzero light ellip-
ticity, we also reported sign reversal in fourth-order dispersive
resonance at 30% light duty cycle. We studied the dependence
of 2�L and �L resonance amplitudes on the magnetic field
direction using polarization rotation. The amplitudes of 2�L

and �L resonances showed periodic oscillations with polar-
ization rotation. These oscillations are found to be sensitive to
the orientation of the magnetic field with respect to the plane
of polarization. This aspect can be utilized in developing a
synchronous optical pumping vector magnetometer.
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[14] Z. D. Grujić and A. Weis, Phys. Rev. A 88, 012508 (2013).
[15] I. Fescenko, P. Knowles, A. Weis, and E. Breschi, Opt. Express

21, 15121 (2013).

[16] G. Bevilacqua and E. Breschi, Phys. Rev. A 89, 062507
(2014).

[17] S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J.
Zachorowski, and W. Gawlik, J. Appl. Phys. 103, 063108
(2008).

[18] D. F. J. Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and
L. F. Chan, J. Appl. Phys. 106, 063113 (2009).

[19] J. P. Jacobs, W. M. Klipstein, S. K. Lamoreaux, B. R. Heckel,
and E. N. Fortson, Phys. Rev. A 52, 3521 (1995).

[20] M. V. Romalis, W. C. Griffith, J. P. Jacobs, and E. N. Fortson,
Phys. Rev. Lett. 86, 2505 (2001).

[21] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis,
B. R. Heckel, and E. N. Fortson, Phys. Rev. Lett. 102, 101601
(2009).

[22] S. M. Rochester and D. Budker, Am. J. Phys. 69, 450 (2001).
[23] V. V. Yashchuk, D. Budker, W. Gawlik, D. F. Kimball, Y. P.

Malakyan, and S. M. Rochester, Phys. Rev. Lett. 90, 253001
(2003).

[24] R. S. Grewal and S. Pustelny, Phys. Rev. A 101, 033825
(2020).

[25] D. Budker and D. F. Jackson Kimball, Optical Magnetometry
(Cambridge University Press, Cambridge, 2013).

[26] W. E. Bell and A. L. Bloom, Phys. Rev. Lett. 6, 280 (1961).
[27] T. J. Kane, P. D. Hillman, C. A. Denman, M. Hart, R. Phillip

Scott, M. E. Purucker, and S. J. Potashnik, J. Geophys. Res.
Space Phys. 123, 6171 (2018).

[28] F. Pedreros Bustos, D. Bonaccini Calia, D. Budker, M.
Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S.
Rochester, Nat. Commun. 9, 3981 (2018).

033102-9

https://doi.org/10.1103/PhysRevA.55.3710
https://doi.org/10.1103/PhysRevA.86.053427
https://doi.org/10.1088/0953-4075/48/8/085501
https://doi.org/10.1103/RevModPhys.74.1153
https://doi.org/10.1364/JOSAB.22.000007
https://doi.org/10.1140/epjd/e2016-70247-9
https://doi.org/10.1088/1361-6455/aa9c36
https://doi.org/10.1103/PhysRevA.97.043832
https://doi.org/10.1063/1.2190457
https://doi.org/10.1088/1674-1056/25/6/060701
https://doi.org/10.1364/OE.382823
https://doi.org/10.1103/PhysRevA.65.055403
https://doi.org/10.1103/PhysRevA.96.033823
https://doi.org/10.1103/PhysRevA.88.012508
https://doi.org/10.1364/OE.21.015121
https://doi.org/10.1103/PhysRevA.89.062507
https://doi.org/10.1063/1.2844494
https://doi.org/10.1063/1.3225917
https://doi.org/10.1103/PhysRevA.52.3521
https://doi.org/10.1103/PhysRevLett.86.2505
https://doi.org/10.1103/PhysRevLett.102.101601
https://doi.org/10.1119/1.1344166
https://doi.org/10.1103/PhysRevLett.90.253001
https://doi.org/10.1103/PhysRevA.101.033825
https://doi.org/10.1103/PhysRevLett.6.280
https://doi.org/10.1029/2018JA025178
https://doi.org/10.1038/s41467-018-06396-7


GREWAL, PATI, AND TRIPATHI PHYSICAL REVIEW A 102, 033102 (2020)

[29] T. Fan, X. Yang, J. Dong, L. Zhang, S. Cui, J. Qian, R. Dong,
K. Deng, T. Zhou, K. Wei, Y. Feng, and W. Chen, J. Geophys.
Res. Space Phys. 124, 7505 (2019).

[30] A. Ben-Kish and M. V. Romalis, Phys. Rev. Lett. 105, 193601
(2010).

[31] G. Zhang, S. Huang, and Q. Lin, IEEE Photonics J. 11, 6100609
(2019).

[32] We have considered only the first ten harmonics in the sim-
ulations to numerically calculate the signals at different duty
cycles.

[33] M. Auzinsh, D. Budker, and S. M. Rochester, Optically Po-
larized Atoms: Understanding Light-Atom Interactions (Oxford
University Press, Oxford, 2010).

[34] S. M. Rochester, ATOMIC DENSITY MATRIX PACKAGE, available
online at http://rochesterscientific.com.

[35] The frequency shift (+80 MHz) introduced by the AOM1
brings the SAS beam and main experiment laser beam from
AOM2 at the same frequency.

[36] S. J. Seltzer, P. J. Meares, and M. V. Romalis, Phys. Rev. A 75,
051407(R) (2007).

[37] S. J. Seltzer and M. V. Romalis, J. Appl. Phys. 106, 114905
(2009).

[38] S. Pustelny, W. Gawlik, S. M. Rochester, D. F. Jackson Kimball,
V. V. Yashchuk, and D. Budker, Phys. Rev. A 74, 063420
(2006).

[39] F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, Phys.
Rev. A 63, 065401 (2001).

[40] N. Ram, M. Pattabiraman, and C. Vijayan, Phys. Rev. A 82,
033417 (2010).

[41] K. Zhu, N. Solmeyer, C. Tang, and D. S. Weiss, Phys. Rev. Lett.
111, 243006 (2013).

[42] A. A. Wood, L. D. Turner, and R. P. Anderson, Phys. Rev. A 94,
052503 (2016).

[43] D. F. Jackson Kimball, J. Dudley, Y. Li, D.
Patel, and J. Valdez, Phys. Rev. D 96, 075004
(2017).

[44] J. Mora, A. Cobos, D. Fuentes, and D. F. Jackson Kimball, Ann.
Phys. 531, 1800281 (2019).

[45] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch,
Phys. Rev. Lett. 82, 1060 (1999).

[46] J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W.
Fox, A. D. Ludlow, and C. W. Oates, Phys. Rev. Lett. 108,
153002 (2012).

[47] Z. Ding, J. Yuan, and X. Long, Sensors (Basel) 18, 1401 (2018).

033102-10

https://doi.org/10.1029/2019JA026956
https://doi.org/10.1103/PhysRevLett.105.193601
http://rochesterscientific.com
https://doi.org/10.1103/PhysRevA.75.051407
https://doi.org/10.1063/1.3236649
https://doi.org/10.1103/PhysRevA.74.063420
https://doi.org/10.1103/PhysRevA.63.065401
https://doi.org/10.1103/PhysRevA.82.033417
https://doi.org/10.1103/PhysRevLett.111.243006
https://doi.org/10.1103/PhysRevA.94.052503
https://doi.org/10.1103/PhysRevD.96.075004
https://doi.org/10.1002/andp.201800281
https://doi.org/10.1103/PhysRevLett.82.1060
https://doi.org/10.1103/PhysRevLett.108.153002
https://doi.org/10.3390/s18051401

