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In classical scattering theory, the term “glory scattering” implies the divergence of the classical differential
cross section that occurs as soon as the deflection function goes through zero for a nonzero value of the
impact parameter. This critical effect also occurs in slow photoelectron imaging where near-threshold atomic
photoionization is performed in the presence of an external static electric field. In this case, glory scattering
manifests itself by the appearance of an intense peak at the center of the photoelectron momentum distribution.
In the present work we examine the magnitude variation of this central peak as a function of electron energy.
We experimentally study near-threshold two-photon ionization of ground state magnesium atoms, below as well
as above the field-free ionization limit. It is found that, apart from its behavior of classical origin, the glory
signal additionally exhibits strong oscillations and beating effects over the full spectral range of the recordings.
Of particular interest are its oscillations above the zero-field limit, many aspects of which are expected to be
independent of the atomic target. Our results are analyzed with the help of classical, semiclassical, and quantum
mechanical calculations devoted to the hydrogenic Stark effect. It is theoretically found that these continuum
glory oscillations are related to the resonantlike Stark structures appearing under certain conditions in the total
photoionization cross section and implying energy quantization in the continuum. The striking outcome of the
present study, however, is that both theory and experiment clearly support the connection between the energy-
and static field-dependent periodicity of glory oscillations with the classical dynamics of electron motion. In
particular, it is shown that the Fourier transform of the glory signal provides information on the differences
between the origin-to-detector times of flight corresponding to specific pairs of classical electron trajectories.
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I. INTRODUCTION

The interaction of an atom with an external static electric
field is a fundamental problem in quantum physics. Due to the
presence of the field, the bound states of the atom are, strictly
speaking, converted to quasibound ones (resonances), while
its ionization threshold is lowered with respect to its zero-field
value (set at zero energy, E = 0). Between the field-induced
and the zero-field limits continuum states and resonances
coexist. Furthermore, even for E > 0 resonantlike structures
appear in the total ionization cross section. These static-field-
induced structures imply energy quantization in the contin-
uum and have no counterpart when the field is turned-off.
The above specific features explain the rich phenomenology
associated with near-threshold atomic photoionization under
the presence of the field. This phenomenology is nowadays
suitably studied by photoionization microscopy (PM) [1], the
term denoting a high-resolution experimental technique where
the two-dimensional flux of slow (meV) photoelectrons is
imaged by a position sensitive detector (PSD). In an attempt
towards the categorization and classification of the above-
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mentioned phenomenology, photoionization was described
in terms of classical particle scattering in conjunction with
the source-to-detector trajectories followed by the electrons
under the action of the field [1–6]. These studies revealed
that the classical differential photoionization cross section
exhibits divergences leading to critical scattering effects such
as the so-called rainbow and glory scattering [7–9]. Rainbow
scattering is responsible for the appearance of concentric
structures of different radii in the images, despite the fact
that these images are formed by slow single-energy elec-
trons. This is in contrast to the usual hypothesis made in
standard (eV range) electron imaging spectroscopy, where a
one-to-one correspondence is assumed between the number
of image rings and the number of electron groups of different
energy. Moreover, as long as a given photoionization scenario
leads to the production of electrons with zero projection of
the electron’s orbital angular momentum on the static field
axis, glory scattering is responsible for the appearance of a
high intensity central peak on the images. As mentioned in
Ref. [4], this peak might occasionally be erroneously in-
terpreted as originating from zero energy electrons in the
analysis of threshold photoelectron spectroscopy data.

The above signatures of classical critical effects in slow
photoelectron imaging were experimentally observed at sev-
eral instances [6,10–15]. They are also clearly imprinted in
the presently acquired images obtained by near-threshold two-
photon ionization of ground state Mg atoms in the presence of
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FIG. 1. (a) Experimental photoionization microscopy images
Jυdet (ρ ) obtained by near-threshold two-photon ionization of ground
state Mg atoms in an external static electric field of strength F =
680 ± 10 V/cm. The gray scale is the same for all images and it is
stretched from zero (white) to 100% (black). The energy scale at the
bottom of the figure refers to the zero-field limit. Linear laser beam
polarization parallel to the field (m = 0 final Stark states, explaining
the absence of angular dependence in the images). The glory electron
signal at the center of the image and the radii corresponding to
primary (ρI ) and secondary (ρII ) rainbow scattering are noted in
the two images. In fact, the radius ρII is practically identical to the
maximum classical radius ρcl

max. The intensity variation with energy
of the outer rainbow and the glory signal is obvious. (b) Detailed
energy evolution of the glory intensity, where, in addition to the data
extracted from the images shown in (a), the plot includes all measure-
ments within the given interval. For eliminating any dependence on
the variation of the laser pulse energy during the recordings, the glory
signal is scaled to the total one, the latter obtained by integrating over
the whole surface of the detector. This total signal is proportional to
the total ionization cross section σtot . (c) Detailed energy evolution
of the signal of the outer rainbow ring (ρII ) scaled to the total one.
At this energy range bright rainbow signals occur when the glory
intensity exhibits minima and vice versa. The intensity y axis units
are arbitrary but common to (b) and (c).

a static electric field. A sample of these images is given in
Fig. 1(a). In fact, because of the high spatial resolution of our
photoionization microscope, the images also show important
quantum interference and beating phenomena. Additionally,
due to the adequate spectral resolution of the experiment,
quite noticeable among these phenomena is the intensity
modulation of the glory signal as a function of the energy.
This modulation is more clearly observed in the plot of
Fig. 1(b) which includes the full set of measurements within
the corresponding fraction of the “glory spectrum.” It is
also interesting to notice in the images of Fig. 1(a) and the
“spectrum” of Fig. 1(c) the similar intensity modulation of
the outer (rainbow) image ring, where at this energy range

bright rainbow signals occur when the glory intensity exhibits
minima and vice versa.

The thorough investigation of these oscillations and their
implications is the subject of the present work. Our intention
is to go beyond the classical description of critical scattering
phenomena given in Ref. [4] and consider these additional
features whose interpretation requires at least a semiclassical
[1,6,10] or, better, a quantum mechanical description. To this
purpose we employ hydrogenic calculations based on the
formulation of Ref. [16] and experimental results regarding
the nonhydrogenic Mg atom. Such a comparison is important
because it allows for the distinction of those features which
are of global nature, from those that are specific to the
examined atom and excitation scheme. However, due to the
(occasionally abrupt) variation of the bow radius with energy,
the rainbow signals probe interferences occurring at different
points of the detector. This fact makes them conceptually
more difficult to interpret and they are only partially discussed
in connection with the glory ones. Therefore, the present arti-
cle focuses mainly on the glory effect, because the signal at the
image center is easy to define and record, its relative intensity
near threshold dominates over all other image features and its
observation does not require any particular performance from
the imaging spectrometer. It is shown that the oscillations of
this signal bear a connection with the aforementioned positive
energy static-field-induced resonant structures. Furthermore,
and even more importantly, it is undoubtedly proved theoreti-
cally and verified experimentally that glory oscillations in the
continuum contain time-domain information. Specifically, it
is found that the Fourier transform of the glory signal leads
to the knowledge of the differences between the times of
flight towards the detector that correspond to specific pairs
of classical electron trajectories. From this point of view, our
observations share some similarities with a subject of active
present discussion within an apparently different context, i.e.,
within the search of alternative approaches towards the infer-
ence of electron dynamics from spatial electron interference
effects into which they are encoded [6,17], particularly when
dealing with the interaction of atomic and molecular systems
with ultrashort laser pulses.

The rest of the paper is organized as follows: In Sec. II we
make a brief successive presentation of the classical, semi-
classical, and quantum theoretical frameworks of the Stark
effect in the vicinity of the ionization threshold. This section
also includes a first comparison among theoretical results on
critical scattering effects, as computed by all of the above
three approaches. Section III gives a short description of the
experimental setup and procedure. Experimental results are
presented and discussed in connection with the theoretical
ones in Sec. IV. Finally, in Sec. V we give our concluding
remarks and discuss directions for further work.

II. THEORY

A. Classical and semiclassical description of slow photoelectron
imaging and its connection to critical scattering phenomena

Critical phenomena, such as the glory signal, can be pre-
dicted by the classical scattering theory. Therefore, it would
be helpful for the reader to begin with a brief reminder of the
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connection of this theory with the classical features of slow
photoelectron imaging [1–6,10–15].

Let us first consider the classical electron trajectories in
the combined presence of an attractive Coulomb center and
a homogeneous static electric field F = Fz. The classical
equations of motion for the electron are separable in parabolic
(or “semiparabolic” as they are also labeled quite frequently)
coordinates [18,19] χ = (r + z)1/2 � 0, υ = (r – z)1/2 � 0,
and ϕ = tan−1(y/x), with r = (x2 + y2 + z2)1/2 being the dis-
tance of the electron from the residual structureless ion of
charge Z (for hydrogen atom Z = 1). In particular, we are
interested in those trajectories that lead to ionization, i.e., to
the ejection of the electron towards the PSD whose plane
is perpendicular to the z axis and positioned at z = zdet =
–υ2

det/2 < 0. Therefore, the energy range of interest lies above
the classical saddle-point energy [20], E cl

sp = –2(ZF )1/2 [in
atomic units (a.u.) h̄ = e = me = 1], i.e., the classical field
ionization threshold, which is located below the zero-field
ionization limit (at energy E = 0). For convenience, in what
follows, we employ alternatively to the energy of the system
E, the reduced energy variable

ε ≡ E∣∣E cl
sp

∣∣ . (1)

Furthermore, since in our case the appearance of the glory
effect is associated solely with zero projection of the or-
bital angular momentum on the field z axis [4], the present
discussion is restricted to this situation leading to a planar
electron motion (where the coordinate ϕ is time independent
and equal to an initial value ϕo which can be conveniently
set equal to zero, ϕ = ϕo = 0). It turns out that the χ motion
(perpendicularly to the field direction when z tends to –�) is
bound and periodic. Along the υ coordinate (i.e., along the
field direction when z tends to –�) the electron escapes and
reaches the detector at υ = υdet. For a given energy E � E cl

sp
(ε � –1), a classification of the different types of trajecto-
ries may be accomplished via two parameters: First, by the
electron’s initial ejection angle β with respect to the external
electric field, where β = 0 denotes uphill ejection (+z) and
β = π downhill ejection (−z) towards the PSD. Second, by
the number Q(ε,β) of half-χ oscillations performed until the
electron reaches the detector. The analytical expression for
Q for |zdet| (and υdet) → � is given in the Appendix. The
integer part of Q provides the number of intersections between
the trajectory and z axis. Thus, values Q > 1 correspond
to complicated (hereafter called indirect) electron trajectories
which intersect the negative z axis at least once and appear
for ε � –1. The simpler 0 < Q < 1 range characterizes quasi-
parabolic source-to-detector (direct) trajectories that do not
intersect the z axis. The distinction between direct and indirect
trajectories is achieved by solving the equation Q(ε, β0) = 1
for the critical angle β0 � π . This equation has no meaning-
ful solution for ε < εdir ≈ –0.775 [11] and, therefore, direct
trajectories exist only for ε � εdir, with β0(εdir ) = π . Finally,
for –1 � ε � 0 any type of trajectory corresponds to angles
β � βc ≡ arcsin[|ε|] (for β < βc the electron does not escape
from the atom), while βc = 0 for ε � 0.

The distribution of photoelectron impacts on the PSD gives
rise to images that may be computed by means of the classical

trajectories described above. For an isotropic electron source
[3,11] and for the planar, ϕ-independent, motion discussed
here, it suffices to calculate the distribution of electron im-
pacts R as a function of the impact radius ρ = χυdet on the
detector. From the perspective of classical particle scattering
photoionization is treated as a half-collision process [4,5] and
the distribution R(ρ) corresponds to the classical differential
ionization cross section. The latter may be written as

R(ρ) ≡ dσ

dA
(ρ) =

∑
j

sin β j

ρ

∣∣∣∣ dρ

dβ j

∣∣∣∣
−1

, (2)

where dA = 2πρdρ is the elementary detector surface and the
summation runs over all ejection angles β j leading to the same
radius ρ. Equation (2) bears a striking formal similarity with
the classical scattering differential cross section for a particle
scattered by a central potential [7]. By regarding the impact
radius on the detector as a generalized scattering deflection
function, Eq. (2) shows that critical phenomena (i.e., singu-
larities) are expected whenever ρ(β) shows an extremum or
whenever it goes through zero while sinβ �= 0. By analogy
with atmospheric optics the first type of singularity is named
as rainbow scattering and the second one as glory scattering,
respectively [7–9]. As the example of Fig. 2(a) shows, within
the interval [βc, π ], this function exhibits several maxima and
several zeros. The maxima of ρ(β) give rise to rainbow scat-
tering. For ε � εdir there is a single maximum ρI within the in-
terval [β0, π ], the so-called primary rainbow radius stemming
from the direct trajectories. Generally speaking, the primary
bow is more intense in the photoelectron image than all
other secondary bows stemming from the maxima ρII > ρI ,
ρIII > ρII , etc. that occur within the [βc, β0] interval. All these
maxima are practically indistinguishable from ρII , which,
in turn, is almost identical to the analytically known [3–5]
maximum radius of impact ρcl

max. The existence of primary and
secondary maxima leads to a particular characteristic of slow
photoelectron imaging, i.e., to the appearance of two concen-
tric structures in the recorded images with radii ρI and ρII

[see Fig. 1(a)]. These structures progressively merge together
at high positive energy. As for the zeros of ρ(β), they occur at
β = π as well as at those angles βk that correspond to integer
values of Q(ε, βk ) = k + 1, k = 0,1,2, … [see Fig. 2(b)]. For
βk �= 0 and βk �= π these zeros give rise to glory scattering,
which is responsible for the appearance of a high intensity
central peak in the photoelectron images. Experimentally the
glory peak is generally found to be more intense than any
bow. Figure 3(a) shows a classical calculation of the evolution
of the glory intensity with energy. As already discussed in
Ref. [4], the classical “glory spectrum” is characterized by
two peaks, one located at the saddle-point energy (ε = –1) and
the second brighter one at ε ≈ εdir. Apart from these peaks
the magnitude of the glory signal decreases smoothly with
increasing reduced energy ε.

Finally, for getting a smoother connection with the fol-
lowing quantum description, Fig. 3(a) also shows for com-
parison the semiclassically calculated energy evolution of
the glory signal. The semiclassical theory of photoionization
microscopy has been abundantly documented in the past
[1,2,11,12,21]. Briefly, one first computes the phase S ac-
cumulated along each classical electron trajectory from the
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FIG. 2. (a) Classically calculated impact radius on the detector ρ

as a function of the ejection angle β at E = ε = 0. It is assumed
that the detector is placed at infinity. The impact radius is scaled
to the maximum radius of impact ρcl

max(ε = 0) [3–5]. Two maxima
of ρ(β) are marked (out of their infinite number), corresponding to
the primary bow (ρI ) and first secondary bow (ρII ), respectively.
The number of zeros of ρ(β) is also infinite. These zeros occur at
β = π and at the angles β = βk , k = 0,1, 2 …, (β0 − β3 are noted
in the graph) obtained by solving the equation Q(ε, βk ) = k + 1,
where the function Q(ε,β) is defined in the text and in the Appendix.
Note the logarithmic x scale, chosen in order to emphasize the
large magnitude difference between the angles βk as k increases.
(b) Evolution of the critical angle βc and the angles β0 − β3 with
reduced energy. The angle β0 is defined for ε � εdir ≈ –0.775, while
for k > 0 angles βk are defined for energies practically coinciding
with ε = –1, just like βc (which is zero for ε � 0). The logarithmic
y scale is chosen for the same reasons as in (a).

source to a given point of the detector. Subsequently, this
phase provides the contribution of that trajectory to the final
electron wave function [11],


SC(ρ) =
∑

j

√
sin β j

ρ

∣∣∣∣ dρ

dβ j

∣∣∣∣
−1

c je
iS j (ρ), (3)

where the index j is defined as in Eq. (2) and where the weight
c j of each contribution is introduced. The radial distribution
R(ρ) is proportional to |
SC|2. In the semiclassical calculation

FIG. 3. (a) Energy dependence of the classical and semiclassical
glory signals for a field strength F = 680 V/cm in the case of the
planar motion. The signals are computed under the assumption of
an isotropic initial photoelectron emission and by integrating the
corresponding radial distributions [Eq. (2) and squared modulus of
Eq. (3), respectively] over a radius equal to 1% of ρcl

max(ε = 0). Both
curves exhibit local maxima at ε = –1 (onset of indirect trajectories)
and at ε = εdir ≈ –0.775 (onset of direct trajectories). The semi-
classical curve additionally shows oscillations and beating effects.
(b) Quantum mechanical total ionization cross section [Eq. (9)] for
the same field as above and for two-photon excitation of m = 0 final
Stark states out of the hydrogenic ground state. The spectrum shows
both quasibound states (ε < 0) and static-field-induced ones (ε > 0).
(c) The corresponding glory signal [Eq. (10) computed with υdet =
2000 atomic units, i.e., |zdet| ≈ 106 μm] and (d) the corresponding
secondary bow signal, defined here as Jsbow ≡ Jυdet (ρII ) where ρII is
approximated by the smooth expression for ρcl

max, the latter scaled
to the outermost inflection point of the radial distribution R(ρ) at
ε = 0. The intensity y-axis units are arbitrary but common to (c) and
(d). The insets in (a)–(c) display magnified views of the respective
signals at positive energies.

of Fig. 3(a) the most frequent choice of equal weights c j is
employed. Apart from the gross energy dependence, which is
common with its classical counterpart, the semiclassical curve
is additionally characterized by oscillations of appreciable
amplitude and intense beating effects [see inset of Fig. 3(a)].
The “carrier frequency” of these oscillations appears to be
field strength and energy dependent.
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B. Quantum mechanical Coulomb-Stark problem: Current
probability density and the glory signal

Let us now recall the essential elements of the quan-
tum mechanical theory of the Stark effect, by which one is
led to the calculation of PM images, total photoionization
cross sections, and glory and bow signals [16]. Like the
classical equations of motion, the Schrödinger equation for
the hydrogen atom in the presence of a homogeneous static
electric field F = Fz is separable in parabolic coordinates
[22]. Separability is achieved by writing the wave function
in the product form ψ (r) = [2πχυ]–1/2X (χ )Y (υ )eimϕ (with
m = 0, ±1, ±2, … the magnetic quantum number). Then,
the Schrödinger equation splits into two differential equations
concerning the functions X and Y, respectively, which are
(in a.u.)

[
−1

2

d2

dχ2
+ UX,eff (χ ) − 2Z1

]
X (χ ) = 0,

UX,eff (χ ) = 4m2 − 1

8χ2
+ Fχ4

2
− Eχ2, (4a)

[
−1

2

d2

dυ2
+ UY,eff (υ ) − 2Z2

]
Y (υ ) = 0,

UY,eff (υ ) = 4m2 − 1

8υ2
− Fυ4

2
− Eυ2, (4b)

where the separation constants Z1 and Z2 are connected
through Z1 + Z2 = Z . The problem is solved for given, fixed
E, m, and F sets.

The form of the effective potential UX,eff forces the bound
electron motion along the χ coordinate. The small-χ asymp-
totic behavior of wave functions X is

X (χ )
χ→0

→ AX χ |m|+ 1
2 [1 + O(χ2)], (5)

where the normalization constant AX is positive by definition.
Furthermore, the solution of Eq. (4a) ensuring the proper
X → 0 wave function behavior for χ → ∞ involves the
quantization of Z1. The obtained Zn1,|m|

1 (and Zn1,|m|
2 ) set is

characterized by the number n1 = 0, 1, 2, . . . of nodes of the
corresponding wave functions Xn1,|m| in the interval (0,∞).
The latter functions are normalized to unity and it turns out
that AX decreases slowly with increasing energy and becomes
negligible for Z1(ε) < 0.

The small-υ asymptotic behavior of the wave func-
tions Y is identical to that of Eq. (5), i.e., Y (υ )

υ→0
→

AY υ |m|+1/2[1 + O(υ2)]. Similarly to AX , the normalization
constant AY > 0 is negligible when Z2(ε) < 0 (Z1 > Z) and
stabilizes to a constant value at large ε. Thus, the wave
function of each particular n1 channel exhibits appreciable
amplitude solely within the energy range imposed by the
classically allowed Z � Zn1,|m|

1 � 0 interval. On the other
extreme of large υ we may write [22,23]

Y
υ→∞

∝ 1

k1/2(υ )
sin [θ (υ ) + ϕ], (6)

where k(υ ) = {2[2Zn1,|m|
2 –UY,eff (υ )]}1/2 is the wave number

function. In Eq. (6),

θ (υ ) =
∫ υ

υo

k(υ ′)dυ ′ (7)

and φ is a υo-dependent constant phase which carries infor-
mation for the inner part of Y and particularly AY .

Consider next the photoexcitation of the Stark
states ψE ,F

n1,m (for ε � –1) out of an initial state ψi.
The resulting outgoing flux of ionized electrons is
described by the current probability density Jυ (χ, ϕ) ∝
i[χ2 + υ2]–1/2[ψ (∂ψ∗/∂υ ) – ψ∗(∂ψ/∂υ )], along a
paraboloid of constant υ = υdet. For υdet → ∞ and for
the whole range of values of importance for the electron
impact radius ρ ∝ χ , this paraboloid practically coincides
with the PSD plane at zdet and the expression for the PM
image is written as

Jυdet (ϕ, ρ ) ∝ 1

χ

∣∣∣∣∣
∑
n1,m

ei[θn1 ,|m|(υdet )+φn1 ,|m|]dn1,meimϕXn1,|m|(χ )

∣∣∣∣∣
2

,

(8)

where dn1,m = 〈ψE ,F
n1,m |T̂ |ψi〉 are (single- or multiphoton)

dipole transition matrix elements between ψE ,F
n1,m and ψi and

T̂ stands for a relevant transition operator. Details about
the computation of the wave functions Xn1,|m|, the phases
θn1,|m|(υdet ) + φn1,|m| and the matrix elements are given in
Ref. [16].

All the important observables are derived from Eq. (8). The
radial distribution R(ρ) is obtained by angularly integrating
Jυdet over the full 0 � ϕ � 2π interval. Note that if only m = 0
final states are excited, Jυdet is independent of ϕ. Then, the
integration is trivial and leads to R(ρ) ∝ Jυdet (ρ). Moreover,
the total ionization cross section is obtained by integrating Jυdet

over the whole PSD surface. This leads to

σtot ∝
∑
n1,m

∣∣dn1,m

∣∣2
. (9)

As for the glory signal, it is simply given by the value of
Jυdet at the center of the image (χ = 0). With the help of Eq. (5)
this signal is written as

JGlory ∝
∣∣∣∣∣
∑

n1

dn1,0AX,n1,0ei[θn1 ,0(υdet )+φn1 ,0]

∣∣∣∣∣
2

(10)

and obviously only m = 0 waves contribute to it (in agreement
with the classical picture where the glory effect appears only
for zero projection of the orbital angular momentum on the
field axis).

For –1 � ε < 0 the potential UY ,eff exhibits a barrier and
supports both continuum states (where the electron escapes
over this barrier) and quasibound ones (where the electron
may escape solely via tunneling through the barrier). The
latter states are also termed as “resonances” and they are
fairly long-lived. They may be further classified according
to their localization in space and consequent semiclassical
quantization conditions (for details see Refs. [24,25]). On the
other hand, for ε > 0 the potential UY ,eff does not form a bar-
rier and cannot support any quasibound states. Nevertheless,
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n1-channel “switching-on” and “switching-off” continues to
occur due to the aforementioned behavior of the normalization
constants AY and AX , respectively, with energy and this leads
to a modulated total ionization cross section. Therefore, a
simple approximate way to predict the locations of these
resonantlike modulations is by imposing energy quantization
along the χ coordinate for the fixed Z1 = Z value [26,27]
(channel switching-on). Since these positive energy struc-
tures have no counterpart when the static field is absent,
they were recently referred to as static-field-induced-states
(SFIS) [24,25]. Experimentally they were first observed in
the positive energy spectra of nonhydrogenic atoms [26] and
subsequently in the ε > 0 range of the hydrogenic ones
[28,29] for m = 0 final Stark states and static field strengths of
several kV/cm. In either case, the SFIS periodicity is expected
to remain the same [30,31]. On the other hand, for m �= 0
and/or weak fields the experimental and theoretical [2,30,32–
37] results showed quite weak or no modulation contrasts at
all. Furthermore, even for m = 0, the contrast was found to
critically depend on the particular initial state and excitation
scheme as well [16,38]. An example employing the same field
as in Fig. 3(a) is given in the σtot calculation of Fig. 3(b),
corresponding to two-photon excitation of m = 0 final Stark
states out of the hydrogenic ground state. The spectrum shows
both quasibound state and SFIS resonances superimposed
over an appreciable background. The field strength is weak
(albeit compatible with present day PM studies [16]) and
this results in positive energy structures with a quite low
modulation contrast.

Remarkably, quasi-bound state or SFIS imprints of much
higher contrast than in σtot are evident in the quantum me-
chanically calculated glory spectrum of Fig. 3(c). A first
comparison between this glory curve and its classical and
semiclassical counterparts of Fig. 3(a) reveals the common
presence of local overall maxima around ε = –1 and (mainly)
around ε = εdir. Additionally, the periodicity of this signal
at positive energy is very close to that of σtot and appar-
ently the same as the semiclassical glory curve. The quan-
tum beating structures, however, are evidently much more
complicated and richer, occasionally comprising almost com-
plete cancellations of the glory signal. These differences
should be attributed to the equal weighting among the in-
terfering terms employed in the semiclassical calculation of
Eq. (3), as opposed to the unequal weighting implied by
Eq. (10). In fact, the dependence of the glory signal on the
transition matrix elements dn1,0 makes its detailed structure
strongly dependent on the initial state and the excitation
scheme.

Let us conclude this first comparison between calculated
results by a presentation of the secondary bow signal Jsbow.
This signal should be strictly defined as Jsbow ≡ Jυdet (ρII )
and, according to recent suggestions [13,16,38], ρII may
be associated with the outermost inflection point ρip of the
radial distribution R(ρ). In turn, the radius ρip follows in
general closely the simple analytic expression of ρcl

max [3–5],
but additionally exhibits some localized abrupt magnitude
variations. For ε < 0 these variations are due to either the
transformation of n1 channels to continua or the presence of
resonances [38], while for ε > 0 they are due to the presence
of SFIS [16]. For the purpose of obtaining the bow signal over

a smoothly energy-varying and atom-independent radius we
adopt throughout in the present work the approximation ρII ≈
ρcl

max, which is very good for ε < 0 and excellent for ε � 0
[4,5]. The outermost inflection point of R(ρ) at ε = 0 is then
just employed for scaling purposes and this ρcl

max(ε = 0) =
ρip(ε = 0) scaling is followed for either the computed or
the experimental data. Tests involving radii differing slightly
from the scaled ρcl

max (say ρ = ρcl
max ± �ρ, with �ρ/ρcl

max ≈
5% at ε = 0) resulted in practically identical secondary bow
curves (apart from small magnitude differences). Therefore,
for fairly small �ρ, the choice of the secondary bow radius
is not critical (as long as it behaves smoothly with energy)
and our approximation is justified. The so obtained Jsbow

curve is given in Fig. 3(d). Clearly this signal and the JGlory

spectrum of Fig. 3(c) appear to contain equivalent and perhaps
even complementary information on quantum interferences.
For example, within the reduced energy range –0.2 < ε <

+0.2 intensity maxima of one signal coincide with the other’s
minima, thus reproducing qualitatively the behavior noticed
in the experimental data of Fig. 1(a). Nevertheless, the glory
signal is much stronger than the corresponding secondary bow
one [compare the y axes of Figs. 3(c) and 3(d)].

III. EXPERIMENTAL SETUP AND PROCEDURE

Details about the experiment were previously provided in
Refs. [16,38] and we will only give a brief description here.
Magnesium vapor is produced in an oven mounted at the top
of the laser-atom interaction chamber held at a background
pressure of ≈7 × 10−7 mbar. An atomic beam is formed
which enters the interaction chamber. Magnesium atoms are
excited from their 3s2 1S0 ground state to the vicinity of
the ionization threshold (IP(Mg) = 61 671.05 cm−1 [39]) by
two-photon nonresonant excitation in the 305–335 nm UV
range. This radiation is produced by frequency doubling the
610–670 nm output light of a Nd:YAG pumped dye laser
using a KDP crystal. The laser operates at a repetition rate of
10 Hz. The fundamental visible radiation pulses have ∼5 ns
duration and a linewidth of ∼0.2 cm−1. A small part of it is
sent to a frequency calibration system providing the fringes
of a Fabry-Perot interferometer with a free spectral range
of 0.4729(2) cm−1 and the optogalvanic spectrum of a Ne
discharge lamp. Judging from the smallest recorded spec-
tral width of the two-UV-photon excited Stark resonances,
our overall spectral resolution is about 0.5 cm−1. The linear
polarization of the UV radiation is purified and rotated by
passing it through a Rochon prism linear polarizer and a
double-Fresnel rhomb (acting as a λ/2 retarder), respectively.
Finally, the UV light is focused in the interaction region
through a ≈20 cm focal length lens. The atomic and laser
beams are perpendicular to each other and to the static electric
field oriented along the axis of the electron spectrometer.
The latter is based on the standard three-electrode velocity-
map-imaging (VMI) design [40]. The interaction region is
positioned midway between the first solid repeller electrode
held at voltage VR and the second hollow extractor one held
at VE. This structure is completed by a third grounded hollow
electrode and operates as a lens due to the resulting electric
field inhomogeneity (VMI VE/VR condition [40,41]). In the
vicinity of the limited laser-atom interaction volume, however,

033101-6



GLORY OSCILLATIONS IN PHOTOIONIZATION … PHYSICAL REVIEW A 102, 033101 (2020)

the static field may be considered as nearly constant, albeit
difficult to accurately estimate. Photoelectrons are accelerated
by the field towards the end of a field-free drift tube. An
electrostatic Einzel lens is placed about halfway through the
tube for magnifying the recorded images by a factor up to
20. Photoelectrons are detected by a two-dimensional PSD
made of a tandem microchannel plate assembly followed by
a phosphor screen. In all experiments we took great care in
working at low signal intensity, avoiding as much as possible
saturation effects by staying in the linear regime of the MCPs.
In addition, working systematically at low signal levels, well
below saturation, avoids detector fatigue and prevents the
deterioration of its sensitivity in regions where the signal
is particularly intense, such as in the center of the image.
This is confirmed by the day-by-day reproducibility of the
measurements over overlapping energy ranges, as well as
by the reproducibility obtained with new channel plates. A
CCD camera records the 2D distribution of light spots on the
screen. Recorded images are transferred to a PC, where they
are accumulated over several thousand laser shots. The entire
spectrometer is shielded by a double µ-metal layer, which
results in a residual magnetic field <1 µT within its interior.

IV. RESULTS AND DISCUSSION

A. Experimental observations

Experimental images from two-photon ionization of Mg
atoms were recorded with the linear laser polarization parallel
to the direction of the static electric field. Consequently, due
to the �m = 0 dipole selection rule only m = 0 final Stark
states can be excited, which allow for the emergence of the
glory effect. The static field strength was estimated by an array
of methods described in Refs. [13,16,38]. Briefly, a rough
estimate of E cl

sp and consequently of F was obtained from the
lowest energy where an image of quantifiable signal could be
recorded. As a second estimate, the energy evolution of the
outermost inflection point ρip of the radial distribution R(ρ)
was fitted to the expression for ρcl

max [3–5] for all the im-
ages where the direct contribution was observable (ε > εdir),
including the positive energy data. Finally, a third estimate
was based on the |m| dependence of the classical saddle point
energy [42]. Setting the laser polarization perpendicular to
the field axis allows for the additional excitation of |m| = 2
final Stark states. The |m| = 2 threshold is then estimated
by the energy evolution of the angular distribution of these
images [38]. All methods converged to F = 680 ± 10 V/cm
(E cl

sp = –160 ± 1 cm−1).
The two-photon excitation energy was scanned by in-

crements of �E ≈ 0.4 cm−1 (�ε ≈ 2 × 10−3), covering the
entire –1 � ε � 1 range. A movie is available in the Sup-
plemental Material displaying the full series of images, a
typical sample of which is already given in Fig. 1(a) [43].
The examination of the sequence of images reveals the spatial
movement of the interference fringes as a function of energy,
along with the modulation of their magnitudes for ρ < ρI

as caused by strong beating effects between the direct and
indirect contributions. The glory signal behaves similarly and
this can be viewed in the full set of measurements given
in Fig. 4(a). More precisely, this plot [as well as the plot
of Fig. 1(b)] shows the energy evolution of the glory signal

FIG. 4. (a) Energy dependence of the glory signal recorded by
employing two-photon near-threshold ionization of ground state
Mg atoms under the presence of a static electric field F = 680 ±
10 V/cm. The energy scale at the bottom of the figure refers to
the zero-field limit and the upper x axis to the reduced energy ε.
The glory intensity is computed by integrating the corresponding
experimental images over a radius equal to ≈2% of ρcl

max(ε = 0).
Nevertheless, even the signal at the single central point of each image
produces an identical (albeit somewhat noisier) curve. Furthermore,
for eliminating any dependence on the variation of the laser pulse
energy during the recordings, y axis actually refers to the glory
intensity scaled by the total electron signal. The latter is calculated
by integrating over the full detector surface and it is proportional to
the total cross section σtot . The inset displays a magnified view of the
scaled glory signal at positive energies. (b) The Mg+ spectrum, also
proportional to σtot and reproducing the total electron signal. Note
that the line strengths of the observed sharp spectral lines near E cl

sp

(≈–160 cm−1) are modulated by envelopes whose locations fall near
the predicted SFIS locations [26]. On the contrary, SFIS oscillations
near the zero-field threshold and at positive energy are not observed.

scaled by the total electron signal [16], the latter obtained
by integrating over the whole surface of the detector. By
keeping the laser intensity to an appropriately low level
(<1010 W/cm2), this signal was intentionally kept unsatu-
rated in order to be proportional to σtot. In fact, the total
electron signal is also completely equivalent to the Mg+
signal shown in Fig. 4(b). The Mg+ spectrum was recorded
by operating the VMI microscope as a simple time of flight
spectrometer with voltages of reversed polarity applied to its
interaction region electrodes and otherwise identical condi-
tions.

Due to the small energy step employed for the mea-
surements, the recording of about 800 images lasted several
days. As a result, it was found impossible to avoid small
gradual drifts of laser pulse energy with time. Hence, the ratio
JGlory/σtot was employed for avoiding magnitude variations of
the glory signal caused by these drifts. As already pointed out
earlier [16], however, the scaling may reduce the strength of
the manifestation of quasibound states but it cannot affect the
details of the interference and beating patterns discussed here.
In particular, it is obvious in Fig. 4(b) that positive energy
(SFIS) modulations are not observed in σtot. We may antici-
pate that these modulations are masked by noise due to their
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low contrast. In turn, this low contrast may be the result of
the employed excitation scheme in conjunction with the low
field strength, since such modulations were observed in Mg
atom only at very high field strengths [44]. Nevertheless, the
consequence here is that the shape and periodicity of the ε � 0
glory oscillations with energy remain unaltered by the scaling
operation. On the contrary, a comparison between JGlory/σtot

and σtot in the vicinity of E cl
sp shows that, in general, the

glory exhibits features that may be attributed to the presence
of near-threshold resonances (whose tunneling properties are
fairly weak in Mg atom [38]), but the scaling helps in partially
“decorrelating” its magnitude from them. Finally, another
consequence of the scaling observed in Fig. 4(a) is the very
large value of JGlory/σtot near ε ≈ −1. This is due to the quite
small (quasizero) value of σtot at this energy range. In fact,
the nonscaled glory signal shows indeed a local maximum at
threshold, but this maximum is weaker than the local one at
ε ≈ εdir ≈ −0.775. This reversal of magnitudes due to scaling
has been already reported in the classical treatment of the
glory signal (see Fig. 11 of Ref. [4]).

B. Comparison between experimental and calculated quantities

Apart from the above-mentioned common feature of
JGlory/σtot with the scaled classical signals, the data of
Fig. 4(a) show magnitude oscillations and beating structures
just like the semiclassical curve of Fig. 3(a) does. They
exhibit, however, an even closer overall qualitative resem-
blance with the hydrogenic glory signal of Fig. 3(c) calcu-
lated quantum mechanically at the same field strength. This
resemblance calls for a closer comparison with the scaled
version of the latter calculation. Experimental and calculated
scaled glory signals are given in Fig. 5(a). For the purpose
of unveiling the global, atom-independent features of these
signals, the comparison is restricted to the vicinity of the zero-
field limit and the positive energy range (the lower energy
spectral structures due to quasibound states are expected to
be more strongly atom specific). As the figure shows, at
negative energy the two scaled glory signals are somewhat
different, the theoretical one being more complicated since
its oscillation appears to be double peaked. Their agreement
gets much better at higher energy, where they both show
single-peaked oscillations, which are of the same periodicity
but slightly out of phase. Their periodicity is energy depen-
dent and the distance between successive maxima decreases
from ∼5 cm−1 at E ≈ 0 to about 3 cm−1 at E ≈ 100 cm−1

(ε ≈ +0.625). Furthermore, a complete cancellation of the
oscillations in the theoretical curve occurs at E ≈ 20 cm−1

(ε ≈ +0.125), while the experimental one exhibits a similar
cancellation at E ≈ 5 cm−1 (ε ≈ +0.031). The theoretical
curve exhibits several additional partial cancellations [see the
inset of Figs. 3(c) and 5(a) around E ≈ 75 cm−1, i.e., around
ε ≈ +0.469). Tests with calculated hydrogenic signals show
that the number and location of cancellations are initial state
and excitation-scheme specific. Clearly they should depend on
the target atom as well.

Let us now briefly discuss the similarities and differences
between the experimental and calculated Jsbow/σtot curves
given in Fig. 5(b) (external ring, secondary bow signal). At
a first glance, these curves appear to carry similar information

FIG. 5. (a) Comparison between the experimental scaled glory
signal (two-photon ionization of Mg ground state, solid lines and
points) and the scaled quantum mechanical one (two-photon excita-
tion out of the hydrogenic ground state, short-dashed lines), within
a limited energy range that includes the zero-field limit. The static
electric field is F = 680 ± 10 V/cm and the linear light polarization
is parallel to the field axis (m = 0 final Stark states). For better visi-
bility an offset has been applied to the theoretical curve and its zero is
given in the right y axis. (b) The corresponding scaled secondary bow
signals. The latter are defined as Jsbow/σtot ≡ Jυdet (ρII )/σtot , where
the approximation ρII ≈ ρcl

max is adopted and where the maximum
classical radius is scaled to the outermost inflection point of the
radial distribution R(ρ) at E = 0. Note that the intensity y-axis units
are arbitrary but common to (a) and (b) and that in both graphs
experimental and theoretical curves exhibit the same periodicity but
the oscillations are phase shifted and beating minima and maxima
generally occur at different energy locations.

with the glory signals. Particularly, apart from the small
differences in their detailed structure (attributed to the dif-
ferent target atoms), they exhibit the same periodicity among
themselves. Moreover, their periodicity is quite close to that
of the JGlory/σtot curves. However, bow and glory signals are
found to be completely out of phase by π at negative energy
and this has been already pointed out in the experimental
images of Fig. 1(a). They get in phase, however, at positive
energy. Additionally, the magnitude of the oscillations of the
secondary bow signal is maximized near the location of the
beating minimum of the glory curve. This can be also noticed
in the calculation of Figs. 3(d) and 5(b). In fact, the only
important difference between experimental and theoretical
data lies at the somewhat different aforementioned locations
where the effect occurs. Hence, a first quite general finding is
already emerging at this point. Whether it is the scaled glory
signal, or the scaled secondary bow signal, the agreement
between experiment and theory in the positive energy range is
extremely good. This fact underlines the general character of
these oscillations insofar as the quantum hydrogenic calcula-
tion does not take into account the effects stemming from the
presence of Mg+ residual ionic core of non-negligible size.

As suggested in Ref. [6], the interference phenomena ex-
hibited by the photoelectron momentum distribution R(ε,ρ)
may, under certain conditions, provide information on the
ionization time delays between classes of electron trajectories.
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One may then anticipate that, specifically for the glory signal
R(ε, ρ = 0), this information should concern the arrival time
difference between those classical electron trajectories that
end up at the detector center. In the present work we attempt to
bring out such kind of information by applying the so-called
“short time Fourier transform” (STFT) to the scaled glory
signals. STFT is customarily employed in order to determine
the (possibly varying) frequency and phase content of local
sections of a signal changing with time [45]. A selected
window function is slid along the time axis and the Fourier
transform is applied solely within the interval covered by
the window. In practice, for reducing artifacts at the bound-
aries, there is a certain degree of overlap between successive
window locations. The outcome of such a procedure is a
two-dimensional representation of the frequency content as
a function of time. Note that in our case the two conjugated
variables are still time and frequency (energy), but they are
interchanged and the necessity to use STFT stems from the
energy-varying periodicity of the glory oscillation. After some
experimentation, a fair compromise between frequency and
time resolution (at least for E � 0) was found to be an energy
window length of ≈21 cm−1 that corresponds to a time uncer-
tainty of ≈1.6 ps. It was also found advantageous to choose a
Blackman window function [46]. A smooth STFT distribution
is obtained by setting the overlap between adjacent energy
windows to be the largest possible, i.e., comparable to the
window width. The so-obtained two-dimensional STFT repre-
sentations for the experimental scaled glory signal of Mg and
the computed hydrogenic one [scaled version of that plotted
in Fig. 3(c)] are given in Figs. 6(a) and 6(b), respectively.
As a first remark, it is obvious that a meaningful compar-
ison is quite difficult to make at negative energies, where
the representations are dominated by atom- and excitation
scheme-specific features. The situation is not improved even
with a smaller energy window length that is more compatible
with the negative energy glory structures. On the contrary, the
two graphs reveal a common time-frequency branch at t ≈ 0
and a quite similar structure at positive energy. The t ≈ 0
horizontal branch corresponds to the “DC” Fourier component
at each energy window location. It reflects the “envelope” of
the glory spectrum, that is, its average over the window length
as a function of energy. As for the t > 0 positive energy range,
the representations consist of several other branches evolving
quasilinearly with E (this way confirming the aforementioned
varying periodicity of the glory signal). The slopes of the
two branches observed in the experimental data [Fig. 6(a)],
as well as their values at E ≈ 0 (≈7 and ≈14 ps, respectively)
are practically identical to those observed in the theoretical
representation of Fig. 6(b). The latter shows one more branch
for t � 30 ps. In general, the highest the slope the faintest the
branch, thus necessitating the employment of a logarithmic
color scale covering five orders of magnitude. It is also
interesting to note that the linear branches exhibit beating
modulations of their magnitude. This is particularly evident
in the theoretical data, and the locations of the local minima
differ from one branch to another. Interestingly, the minima
concerning the first, lowest slope, quasilinear branch coincide
with the beating local minima of the glory signal itself [see,
for example, Fig. 3(c) and especially, compare Figs. 5(a)
and 6(b) around E = 20 and 80 cm−1]. This beating structure

FIG. 6. (a) Short time Fourier transform (STFT) applied to the
Mg scaled glory signal given in Fig. 4(a). The employed energy
window is ≈21 cm−1 and results to a time resolution of ≈1.6 ps.
Drawn with white dashed lines are the classically computed [6]
differences �t (βk, π ) between the arrival times on the detector for
the electron trajectories corresponding to launch angles β = π and
β = βk , for k = 0,1. The black dashed-dotted line corresponds to
the prediction of Eqs. (12), which is based on SFIS periodicity.
(b) Same as in (a) but for the scaled version of the glory signal
of Fig. 3(c), corresponding to two-photon excitation of hydrogen
out of its ground state (m = 0 final Stark states). In addition to the
time differences �t (β0, π ) and �t (β1, π ), the classically computed
difference �t (β2, π ) is also plotted as a function of energy. (c) STFT
applied to the calculated hydrogenic total ionization cross section
of Fig. 3(b), along with the differences �t (βk, π ), k = 0 – 2 and
SFIS-based prediction of Eqs. (12), as in (a) and (b).

may be the result of an interference effect involving multiple
closely spaced “frequencies”, a hypothesis which is consistent
with the width of each branch.
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Let us now examine more quantitatively the connection
between time delays and the glory signals. To that purpose
we superimpose on the representations of Fig. 6 with white
dashed lines the classically calculated [6] time differences
�t (βk, π ) ≡ T (βk ) – T (π ), where T (π ) and T (βk ) are the
flight durations of an electron launched from the origin with
angles β = π and β = βk , respectively, which, as discussed
in the theoretical section and as can be visualized in Fig. 2,
all lead to a zero impact radius on the detector. Note that the
time difference �t (βk, π ) does not depend on the source-to-
detector distance as long as this distance largely exceeds the
atomic dimensions (typically the distance between the saddle
point and the origin). Here it is evaluated at a “macroscopic”
distance of 1 mm. The time difference contains no adjustable
parameters and leads to an obviously excellent agreement with
either the experimental data (for k = 0, 1) or the quantum
mechanically computed hydrogenic ones (k = 0, 1, and 2).
The quasilinearity discussed earlier for the positive energy
range is here more evident. To a good approximation this part
of the curves (0 < ε < 1) can be described by straight lines of
the form �tk = αk (ε + 1), where the slopes αk appear to be
proportional to k + 1. Note, however, that at higher energy
(ε > 1) the curves become similar to the photodetachment
case and �tk’s depart largely from a linear evolution. Detailed
classical calculations of electron times of flight as well as
a general discussion on the behavior of the various relevant
classical delays as a function of energy will be discussed
thoroughly in a forthcoming paper.

It is finally instructive to compare the periodicities of the
glory signal and the SFIS structures occurring in σtot. We can
find an expression for the SFIS periodicity by means of the
aforementioned semiclassical energy quantization condition
along the χ coordinate with Z1 = Z and the suggestions of
Ref. [47]. Thus, we start by defining the SFIS phase as

SSFIS ≡ 2
∫ χ+

0
(−Fχ4 + 2Eχ2 + 4Z )

1/2
dχ − π (11a)

with the outer turning point given by

χ+ = 21/2

(
Z

F

)1/4

[ε + (ε2 + 1)
1/2

]1/2. (11b)

The hydrogenic SFIS energy levels En1
SFIS are obtained by

solving the equation Sn1
SFIS = 2n1π [26–28,36]. Now the SFIS

periodicity, expressed in terms of a time difference δtSFIS, is
given by

δtSFIS ≡ ∂SSFIS

∂E
= 23/2Z1/4

F 3/4
[(1 + ε2)

1/2 − ε]1/2

× [E(γ ) − K(γ )], (12a)

where K( …) and E( …) are the complete elliptic integrals of
the first and second kind, respectively [48], and

γ = ε + (1 + ε2)1/2

ε − (1 + ε2)1/2 . (12b)

Equation (12a) is also superimposed in the STFT repre-
sentations of Fig. 6. Obviously δtSFIS is very close to the
periodicity �t (β0, π ). Nevertheless, it is somewhat smaller
and distinctly different from it and describes much less sat-
isfactorily the corresponding linear glory branch of either

Fig. 6(a) or 6(b). On the contrary, and as expected, it fits
better than �t (β0, π ) the first linear branch of the STFT
representation of the calculated hydrogenic total cross section
σtot given in Fig. 6(c). The positive energy structure of this
representation is similar to that of the glory signal, showing
a substantial number of linear branches. In an attempt to
interpret the branch described by the time interval δtSFIS of
Eq. (12a), let us recall that SFIS states were associated with a
bouncing motion of the electron in a resonator formed at z > 0
by a combination of the atomic potential and the static field
[24]. Then, this branch may reflect the round trip time within
the cavity, which is intrinsically, though slightly, different
from �t (β0, π ). As for the other, higher slope, branches in
Fig. 6(c), they exhibit large discrepancies with the �t (βk, π )
curves for k > 0 and their origin and interpretation is not clear
yet. They may also, however, approximately be described by
straight lines of the form bk (ε + 1) with the slopes bk being
proportional to k + 1. Then it may be anticipated that these
branches are connected to multiple round trips.

C. Synthesis and discussion

As discussed above, the observations at negative energy are
rather complicated to explain globally with simple arguments
that allow the derivation of general trends. Therefore, in the
following we will focus exclusively on the ε � 0 energy
range, which is of broader interest from this point of view.

Let us first address the question of the (even small) dif-
ference between the “carrier frequencies” exhibited by the
glory signal and by the total photoionization cross section. A
first qualitative answer has been outlined in Sec. IV B. More
quantitatively, the origin of this difference lies in the different
forms of Eqs. (9) and (10). First, the total cross section as
given by Eq. (9) is an incoherent sum depending only on the
squared moduli of the matrix elements dn1,0, while the glory
signal Eq. (10) is a coherent one, depending on the dn1,0s, the
phase factors exp[θn1,0(υdet ) + ϕn1,0] and the normalization
constants AX . Second, the matrix elements are proportional
to both normalization constants AX and AY , while the phases
θn1,0(υdet ) + φn1,0 carry information connected solely to AY

(through the matching procedure between the inner and outer
parts of the wave function Y(υ) as described, for example,
in Refs. [16,37]). Hence, both the glory signal and the total
cross section exhibit the same dependence on AX , but the
dependence of JGlory on AY is much more (∼twice) important
than that of σtot. AX is slowly varying with the energy and
its role is small. It just smoothly switches-off a given n1

channel (Z1 ∼ 0). Indeed, by performing several tests we
verified that even if this factor is removed from Eq. (10)
the STFT representations remain practically unchanged. On
the contrary, for ε � 0 the normalization constant AY quite
abruptly switches-on each channel when Z1 ∼ Z and it is
the principal factor responsible for the produced structures in
either JGlory or σtot. This explains the fair reproduction of the
glory oscillations by the semiclassical theory [see Fig. 3(a)],
despite the fact that Eq. (3) was employed with equal weights
for each wave and does not depend on the dn1,0s. Additionally,
the aforementioned more complicated dependence of JGlory

on AY explains the more complicated quantum mechanical
glory curve [see Fig. 3(c)]. Note, however, that semiclassical
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computations predict that the difference between the “carrier
frequencies” of JGlory and σtot strongly decreases at the high
energy (ε 
 1) and high field strength limit. Consequently,
it is expected that at these limits the two oscillations would
appear to be almost identical. This is consistent with the
findings of recent studies [25] dealing with extreme field
strengths, where the oscillations of the transverse momentum
distributions and those of SFIS are found to be practically
always in phase.

Consider finally the multielectron case where Eqs. (8)–(10)
remain unchanged in form and only the dn1,0s differ with
respect to the hydrogenic ones. As it was already pointed out,
for ε � 0 the SFIS oscillations have the same periodicity in
either hydrogen or nonhydrogenic atoms. The oscillations of
the latter, however, may be identical, slightly shifted [31] or
inverted [30] with respect to those of the former, depending on
the quantum defects of the target atom. As for the glory signal,
the hydrogenic phase factors exp[θn1,0(υdet ) + φn1,0] ensure
that the hydrogenic frequency components would be present
here as well. Since, however, generally the multielectron atom
matrix elements become complex [30,49], some modifications
with respect to hydrogen are to be expected, as their phases
enter in the coherent sum of JGlory (while this is not important
when the matrix element moduli are employed, as in σtot).
Consequently, the glory signal may exhibit a number of target-
atom specific features.

Let us now focus solely on the glory signal and its analysis
from a classical point of view. For β ≈ π we have approxi-
mately ρ(β ) ∝ sin(β ) (as in photodetachment [4]) so the term
sin(β)/ρ(β) in Eq. (2) is not singular and does not contribute
to the glory signal. In the vicinity of the other angles βk

leading to zero radius we may, to a first approximation, write
ρ(β ) ∝ |sin(β − βk )|. Then the term sin(β)/ρ(β) is singular
and, in principle, all these angles may contribute to the glory
signal as long as they differ appreciably from zero. As Fig. 2
shows, however, for ε � 0 it is only β0 that has appreciable
amplitude. Additionally, for k > 0 the above approximation
seriously underestimates the derivatives dρ/dβ|β≈βk which
become very large. Hence, the corresponding |dρ/dβ|−1

terms in Eq. (2) become very small, diminishing even more
these contributions. Consequently, at positive energy β0 is
practically the only one responsible for the glory effect.
Nevertheless, this β0 contribution gives only the main “con-
tinuous” component of the glory. If only the electrons ejected
at an angle in the vicinity of β0 contributed to the glory, it
would not present any oscillation as a function of energy.
Therefore, there must necessarily be interference with other
families of trajectories for the oscillations to be observed. In
order to determine those trajectories that contribute signifi-
cantly to the glory modulation we have calculated the indi-
vidual contributions at the center of the image for β ≈ π , β0,
and β1 by assuming an isotropic initial angular distribution.
Figure 7 shows these partial contributions. They were eval-
uated by simply calculating the solid angle around the re-
spective launch angle that corresponds to trajectories falling
on the detection plane at a radius ρ < 0.1 ρcl

max(ε = 0), i.e.,
smaller than 10% of the maximum classical radius at E = 0
(the relative contributions at various angles may vary with this
fraction, but 10% was estimated to be a good compromise).
Clearly the β0 contribution is by far the dominant one. Addi-

FIG. 7. Individual contributions to the signal at the center of the
image for the launch angles β = π (dashed line), β0 (solid line),
and β1 (short-dashed line), under the assumption of an isotropic
initial angular distribution. Each contribution is obtained by cal-
culating the solid angle around the respective launch angle that
corresponds to trajectories falling on the detection plane at a radius
ρ < 0.1ρcl

max(ε = 0). All contributions are scaled to the partial signal
of β0 at ε = 0. Consequently this signal equals unity at the zero-field
threshold, as indicated by the dotted-line cross.

tionally, at ε ∼ 0 the π and β1 contributions are comparable,
while for ε > 0.5 even the β1 contribution is negligible (and
the same holds, even more sharply, for βk , k > 1). Hence, at
ε ∼ 0 the oscillations are formed essentially by three waves
and this explains the more complicated interference patterns
in this region, while for ε > 0.5 there are practically just
two interfering waves (for β ≈ π and β0). This explains the
observation that the �t (β0, π ) branch in Fig. 6(b) is the
strongest one. Nevertheless, the beating effects in this branch
appear to arise from an intermodulation among the various
classes of trajectories and this is a more subtle effect that can
hardly be explained other than by numerical simulation.

It is important to note that the observed oscillations at
the center of the image, and the glory effect itself, are two
distinct phenomena of quite different origin. For example, in
photodetachment where the glory effect is completely absent,
there are magnitude oscillations at the center of the images
stemming from the interference between the waves corre-
sponding strictly to β = π and β = 0 trajectories [50]. In our
case, at sufficiently high energy, we observe the interference
between the waves corresponding to the β = π and β = β0

trajectories, while the strong intensity of the glory effect arises
solely from the β = β0 trajectory. Thus, the emergence of
the glory “intensifies” and makes easier the visualization of
the interference effect stemming from various trajectories.
Consequently, glory oscillations in photoionization are more
visible simply because of the high intensity of the glory,
whereas the oscillations in the center of the image in photode-
tachment are hardly visible because of the low signal intensity.
Interestingly, in photoionization, the oscillations would persist
even at very high positive energy, until the glory effect and
its intensifying action would disappear when β0 becomes
practically zero. There, however, it is rather unlikely that the
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observation of these oscillations would be possible, at least at
weak fields where the contrast is low.

Finally, it is worth pointing out that the aforementioned
quasilinear branch behavior �tk = αk (ε + 1) and particularly
the fact that the slopes αk appear to be proportional to
k + 1 corresponds to approximately equal time differences
�t (β0, π ), �t (β0, β1), �t (β1, β2), etc. It is therefore difficult
to decide which trajectory dominates in the construction of the
glory oscillations solely on the basis of these time differences.
The data of Fig. 7 are necessary to demonstrate that the
oscillation is indeed produced by the (β0, π ) pair.

V. CONCLUDING REMARKS

We have presented experimental results on the glory signal
at the center of photoionization microscopy images, the latter
recorded via near-threshold two-photon ionization of ground
state magnesium atoms. The glory signal is found to exhibit
strong quasiperiodic oscillations and beating patterns as a
function of excitation energy. These data have been analyzed
and interpreted by employing classical, semiclassical, and
quantum mechanical descriptions of the hydrogenic Stark
effect. Attention has been focused on the positive energy
range where the observed structures are much less atom and
excitation scheme dependent. The quantum mechanical de-
scription has first revealed the origin, the similarities, and the
differences between the positive energy glory oscillation and
the concomitant oscillation of the total photoionization cross
section. Subsequently, we have demonstrated the excellent
agreement between the experimental (Mg) and calculated (H)
glory signal’s general behavior and periodicity. Finally, the
“short time” Fourier transform of this signal has allowed for
the visualization of the close correspondence between spectral
features and time delays. The latter refer to classically cal-
culated electron time of flight differences among the various
trajectories leading the electron to the center of the image.

The successful employment of a hydrogenic model for the
description of the glory signal recorded in a complex atom
reveals the global character of this signal; at least as far as
the positive energy range is concerned. This “universality,”
however, needs to be firmly established by performing sim-
ilar measurements on other atomic systems, a priori heavier
than magnesium. These studies should be carried out under
perfectly comparable conditions in order to distinguish the
truly universal from the atom-specific effects. The latter could
be also examined, of course, by means of appropriate Stark
theoretical frameworks involving parameters [23,49] and/or
atomic potentials [24] characterizing nonhydrogenic atoms. In
addition, one could envision other interesting spectral domain
extensions of the present work, such as the introduction of
an experimentally controllable phase to the glory signal, by
applying phase sensitive coherent control techniques to pho-
toionization microscopy [51]. This is expected to allow for
higher sensitivity and partial access to the glory signal’s phase.

The present study underlines the power of the energy
domain analysis of the continuum Stark effect in terms of
a classical mechanics approach. Yet, a time domain experi-
ment would evidently constitute a more direct approach for
extracting this kind of information without the necessity of
any intermediate Fourier transform step. This could perhaps

be achieved by devising variants of the beautiful earlier time
domain experiments offering resolution at the picosecond
scale [52], where the interest will now be centered at the
glory signal instead of the total one. On the other hand, such
experiments are characterized by an increased difficulty and
are, of course, intrinsically limited by Heisenberg’s principle.

Let us finally note that our observations on the close con-
nection between spectral features and time delays mentioned
above constitute an enlightening illustration of the correspon-
dence principle relating the period of classical motion with
the energy differences between successive bound quantum
levels. In the present case this correspondence is generalized
to the nonperiodic classical motion, while the energy (quasi-)
quantization occurs in the continuum. The aforementioned
electron time of flight differences are inversely proportional
to the energy differences between successive maxima of the
glory oscillations.

The above remarks may lead one to envision an exist-
ing analogy with Eisenbud-Wigner-Smith (EWS) time delays
[53]. This semiclassical concept connects the scattering phase
acquired by a wave packet when scattered by a potential
with the additional time it takes the particle to reach a given
position in space due to the presence of this potential. It
may be shown that this additional time corresponds to the
derivative of the scattering phase with respect to the particle’s
energy. The concept can be applied to the half-collision pro-
cess of photoionization, but the time variation being extremely
small, it could be measured only recently thanks to emerging
attosecond technology [54,55]. In attosecond photoemission
experiments EWS delays are extracted from a measurement of
the scattering phase, which requires a phase reference. This is
done by simultaneously measuring the phase for two different
electronic states of either the same system or of two different
systems. Nevertheless, there is a nontrivial correspondence
between the measured phase and the scattering phase, while,
overall, the time domain interpretation of photoionization ex-
periments combines several notions. For instance, the lifetime
of a resonance embedded in the continuum is linked to its
spectral width and it may well lie within the fs-ps domain.
On the other hand, the EWS delay deduced by attosecond
experiments for the same resonance lies in the range of few-fs
or sub-fs [56], revealing a different notion. In the case of
PM and for a flat continuum the launched electronic wave
packet acquires a phase when it scatters in the Coulomb-Stark
potential. Semiclassically speaking this corresponds to the
phase acquired along an ensemble of classical trajectories.
The variation of this phase with energy corresponds to the
EWS delay. In a structured continuum, however, the corre-
spondence with the classical trajectories would be certainly
more delicate. Overall the analysis of PM experiments in
terms of scattering phases and EWS delays is clearly an issue
of primary interest that is worth addressing in the near feature.
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APPENDIX: PARAMETER Q FOR |zdet|, υdet → ∞
The classical Coulomb-Stark problem was mostly treated

in the (ξ = χ2, η = υ2, ϕ) parabolic coordinate system
[3,27,57] while the employment of (χ , υ, ϕ) parabolic co-
ordinates used in the present work is rather limited [19,31]
(apart from their extensive and relatively recent use in celestial
mechanics [18]). The final expressions are different but the
computed trajectories and parameter Q are, or course, the
same. Let us restrict ourselves to the planar electron motion
and recall that separation in parabolic coordinates requires
the introduction of the reduced time variable τ , defined by
dτ = dt/(2r) [2,3,18,27,57]. It turns out that the χ (τ ) motion
is bound and periodic with half period τ = Tχ (note that this
corresponds to a full period along the coordinate ξ ). Along
the υ coordinate the reduced time required for the electron
to reach the detector (at υ = υdet) is τ = Tυ . Therefore, the

number Q of half-χ oscillations performed until the electron
reaches the detector can be defined as

Q ≡ Tυ

Tχ

. (A1)

If υdet (and consequently |zdet|) is finite Q needs to be com-
puted numerically. For |zdet|, υdet → ∞ Q can be expressed
analytically [27]. For the convenience of the reader we provide
this analytic expression here in a rather simpler form, solely
in terms of the reduced energy ε � –1 and the ejection angle
0 � β � π . It is given by

Q(ε, β ) = [ε2 + cos2(β/2)]1/4

[2 sin(β/2)]1/2

K(mυ )

K(mχ )
, (A2)

where K( …) is the complete elliptic integral of the first kind
[48], and where

mχ = 1

2

(
1 + ε

[ε2 + cos2(β/2)]1/2

)
(A3)

and

mυ = 1

2

(
1 − ε

sin (β/2)

)
. (A4)
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