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Parity (P)–violating pseudoscalar or pseudovector cosmic fields are invoked in different models for cold
dark matter or in the standard model extension that allows for Lorentz invariance violation. A direct detection
of the timelike component of such fields requires a direct measurement of P-odd potentials or their evolution
over time. Herein, advantageous properties of chiral molecules, in which P-odd potentials lead to resonance
frequency differences between enantiomers, for direct detection of such P-odd cosmic field interactions are
demonstrated. Scaling behavior of electronic structure enhancements of such interactions with respect to nuclear
charge number and the fine-structure constant is derived analytically. This allows a simple estimate of the effect
sizes for arbitrary molecules. The analytical derivation is supported by quasirelativistic numerical calculations in
the molecules H2X2 and H2XO with X = O, S, Se, Te, or Po. Parity-violating effects due to cosmic fields on the
C–F stretching mode in CHBrClF are compared to electroweak parity violation and influences of nonseparable
anharmonic vibrational corrections are discussed. On this basis, Gaul et al. [Phys. Rev. Lett. 125, 123004
(2020)] estimated from a 20-year-old experiment with CHBrClF that bounds on Lorentz invariance violation
as characterized by the parameter |be

0| can be pushed down to the order of 10−17 GeV in modern experiments
with suitably selected molecular system, which will be an improvement of the current best limits by at least two
orders of magnitude. This serves to highlight the particular opportunities that precision spectroscopy of chiral
molecules provides in the search for new physics beyond the standard model.

DOI: 10.1103/PhysRevA.102.032816

I. INTRODUCTION

In our recent work [1], the virtues and prospects of chiral
molecules as direct sensors for pseudovector and pseudoscalar
cosmic fields were demonstrated. In the present paper, we de-
rive scaling laws for interactions of electrons with these fields,
presented in Ref. [1], and provide support from numerical
calculations. Furthermore, the methods applied for deriva-
tion of limits on cosmic field interactions from experiments
with chiral molecules are presented in a more detailed man-
ner and accompanied by comparison to other computational
methods.

One of the biggest puzzles of modern physics is the nature
and composition of dark matter (DM) (see, e.g., Ref. [2]).
Many different models for DM exist, considering objects
that range from macroscopic to microscopic and from being
hot (ultrarelativistic) to cold (nonrelativistic). Among these
DM theories, cold DM (CDM) theory serves to provide a
simple explanation for many cosmological observations [3].
However, the constituents of CDM are unknown and can in
principle fall in the range from macroscopic objects such as
black holes to new fundamental particles like weakly interact-
ing massive particles (WIMPs), axions, sterile neutrinos, or
dark photons (see, e.g., Refs. [4–6]).

Despite its merits, the model of CDM has several draw-
backs [7–12]. Notable challenges are the cusps of halos in
CDM simulations, which are not observed in rotation curves

of galaxies [7], or the prediction of a large number of nonob-
served halos of CDM [8]. A possible solution of some of
these, such as the large number of absent halos or cusps of
halos is provided by fuzzy CDM models [13]. Fuzzy CDM
is supposed to consist of ultralight particles with masses of
mφ ≈ 1 × 10−22 eV/c2 [13,14]. This model makes searches
for ultralight CDM oscillating with frequencies on the order
of 1 μHz particularly interesting.

CDM can consist of various types of bosons (an overview
can be found, e.g., in Ref. [15]). Among those, pseudoscalar
and pseudovector fields are of special interest as they are a
source of parity (P) violation.

Pseudoscalar CDM particles behave like axions, which
were originally proposed [16–18] to solve the strong CP prob-
lem of quantum chromodynamics (QCD) [19]. The search
for CDM particles can be restricted to a comparatively small
parameter space assessable to the QCD axion (see, e.g.,
Ref. [20]) or can involve a wide range for axionic particles that
are not bound to solve the strong CP problem. The latter are
often referred to as axionlike particles (ALPs). Pseudovector
fields are important for models such as dark photons [21,22]
and also appear as sources of local Lorentz invariance vio-
lation in the standard model extension (SME) by Kostelecký
and coworkers [23].

In the past decade, many proposals for experiments and
improved bounds on pseudoscalar CDM appeared, employing
atomic spectroscopy (see, e.g., Refs. [24–29]). Among those,
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strict limits on static P-odd field interactions were set from
direct detection of P violation with modern atomic precision
spectroscopy [27,30]. In these experiments, the dominating
effect for P violation stems from the electroweak Z0-mediated
electron-nuclear interaction.

Such P-odd effects are strongly enhanced in chiral
molecules as well (for recent reviews on molecular P vi-
olation, see Refs. [31–37]). The chiral arrangement of the
nuclei in the molecule leads to helicity of the electron cloud
(see, e.g., Ref. [36]). Additional P-odd effects can then
be measured as energy difference between enantiomers of
chiral molecules or as resonance frequency differences be-
tween the two nonidentical mirror-image molecules [38–40].
As frequency shifts can be measured very accurately (see,
e.g., Ref. [41] or for the special case of P violation, see
Refs. [42,43]), this appears to be a particularly promising tool
to search for P-odd cosmic field interactions.

In the following, we analyze in detail the effects that
emerge from P-odd cosmic field interactions in chiral
molecules. We derive scaling laws with respect to nuclear
charge and the fine structure constant and compare to what
is known from P violation due to electroweak interactions.
From our analysis, we demonstrate advantages of the use of
chiral molecules to search for P-odd cosmic field interactions.
We perform quasirelativistic calculations at different levels of
theory and estimate the effect sizes in the vibrational spectra
of the chiral methane derivate CHBrClF [44,45]. Thereby, the
computational difficulties are highlighted. From a 20-year-old
experiment with this molecule [46], we estimated the sensi-
tivity on cosmic P violation [1] and discuss the scope for
improvement on these limits in modern experiments with chi-
ral molecules and by improvement of the present theoretical
methods.

II. THEORY

A. Parity-nonconserving interactions of electrons
with cosmic fields

P-odd interactions of electrons with pseudoscalar and
pseudovector cosmic fields were discussed in detail in
Ref. [30]. A light pseudoscalar cosmic field obeys the Klein-
Gordon equation. Assuming it to be nonrelativistic, i.e.,
h̄ωφ ≈ mφc2 with mφ being the CDM particle mass and c
being the speed of light in vacuum, we can write

φ(�r, t ) = φ0 cos

(
ωφt − �r · �pφ

h̄
+ ϕ

)
, (1)

where h̄ = h
2π

is the reduced Planck’s constant, φ0 is the CDM
amplitude, �pφ = mφ�vφ is the momentum of the CDM particle,
which is proportional to its velocity �vφ , and ϕ is a phase factor.
CDM is supposed to be incoherent and the relative velocity of
the ALP field is suppressed by 10−3 with respect to the speed
of light (see Refs. [24,25] for details). Thus, for terrestrial
experiments, we can assume �r· �pφ

h̄ to be constant and choose
ϕ such that Eq. (1) can be written as φ(�r, t ) = φ0 cos(ωφt )
(see also Ref. [30]).

The interaction of the electronic field ψe with such pseu-
doscalar fields φ can be described by (see, e.g., Refs. [17,18])

Lφ
ps = gφēe(h̄c ∂μφ)ψ̄eγ

μγ5ψe , (2)

where gφēe is a coupling constant of dimension GeV−1. Herein
the Dirac matrices are defined as

γ0 =
(

12×2 02×2

02×2 −12×2

)
, γk =

(
02×2 σk

−σk 02×2

)
, (3)

where σk are the Pauli spin matrices, k = 1, 2, 3, and μ =
0, 1, 2, 3. γ5 = ıγ0γ1γ2γ3, where ı = √−1 is the imagi-
nary unit, ∂μ = ∂

∂xμ is the first derivative with respect to the
four-vector xμ = (ct, x, y, z) and Einstein’s sum convention is
used. Additionally a direct pseudoscalar coupling between the
electrons and the pseudoscalar cosmic field can be considered
(see, e.g., Ref. [27]):

Lφ

dps = −ıg̃φēemec2φψ̄eγ
5ψe , (4)

where g̃φēe is a dimensionless coupling constant and me is
the mass of the electron. Whereas this interaction can lead
to P-violating couplings when considering transition matrix
elements of atomic or molecular excitations [30], it does
not contribute to P-violating expectation values, which give
dominant contributions to frequency differences in spectra of
chiral molecules. Thus, these interactions are not discussed
any further in the following.

The time derivative of the pseudoscalar field leads to the
P-odd single-electron Hamiltonian

ĥps = gφēe

√
2(hc)3ρCDM sin(ωφt )γ5, (5)

where ρCDM ≈ (h̄ωφφ0 )2

2(hc)3 is the CDM energy density, for
which we assume all ALPs to comprise all of the CDM
with a uniform density: (hc)3ρCDM = (hc)30.4 GeV cm−3 =
7.6 × 10−4 eV4 (see Ref. [47]). We use lowercase letters (ĥ)
for single-electron operators and uppercase letters (Ĥ) for
multielectron operators. These are in the case of Ĥps (as well
as Ĥpv, Ĥew given below) simple sums over all electrons of the
system, e.g., Ĥps = ∑

i ĥps(i).
Electronic interactions with pseudovector cosmic fields can

be described by the Lagrangian

Lb
pv = −bμψ̄eγ

μγ5ψe, (6)

which appears, e.g., in the SME (for details, see
Refs. [23,48]).

The parity-nonconserving interaction Hamiltonian for the
temporal component is

ĥpv = b0(t )γ5, (7)

where the field can be static b0(t ) = be
0 or dynamic be

0(t ) =
be

0 sin(ωbt ). Here be
0 is the interaction strength of the timelike

component of the pseudovector field with the electrons.
In spectra of chiral molecules, the interactions discussed

above lead to shifts (static fields) or oscillations (dynamic
fields) of frequency shifts due to the nuclear spin-independent
electroweak interactions, the main contribution to which is in
closed-shell molecules expected to arise from the electron-
nuclei weak neutral-current interaction Hamiltonian (see, e.g.,
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Refs. [31,32]):

ĥew = GF

2
√

2

Nnuc∑
A=1

QW,AρA(�r)γ5 , (8)

where GF = 2.22249 × 10−14Eha3
0 is Fermi’s weak coupling

constant and QW,A and ρA are the weak charge and nor-
malized charge density of nucleus A, respectively. The total
number of nuclei is Nnuc. Contributions from P-odd nuclear-
spin-dependent terms when combined with P-even hyperfine
coupling [49,50] are estimated to give only minor contribu-
tions in closed-shell molecules. Similar considerations hold
for the contribution from neutral-current interaction terms
between electrons.

It shall be noted that in chiral molecules weakly interacting
dark matter candidates, such as WIMPs, or cosmic neutrinos
can also lead to shifts or oscillations of the P-odd potential
as was discussed by Bargueño et al. [51–53]. These inter-
actions as well as those of electrons with pseudoscalar and
pseudovector fields discussed above are proportional to 〈γ5〉.
In the following, we will discuss in general the chiral operator
γ5, which leads to parity nonconservation and compare it to
known properties of operator Eq. (8).

B. Molecular expectation value of γ5

The time-independent Dirac-Coulomb equation for the
electronic system of the molecule reads

ĤDC	I = EI	I , (9)

with 	I and EI being the Ith eigenfunction and eigenvalue of
the Dirac-Coulomb Hamiltonian being given by

ĤDC =
Nelec∑

i

[
cγ0�γ · �̂pi + (γ0 − 1)mec2

+Vnuc(�ri ) + 1

2

Nelec∑
j �=i

kes
e2

|�ri − �r j |

]
, (10)

where we shifted the energy levels by −mec2 to bring the
upper part of the spectrum into correspondence with the non-
relativistic limit of the energy levels. Here e is the elementary
electric charge, and kes is in SI units 1

4πε0
with ε0 being the

electric constant and Vnuc being the potential the nuclei in the
molecule produce.

In the Dirac-Hartree-Fock-Coulomb (DHFC) approach,
the multielectron states 	I are approximated by a Slater de-
terminant build from an orthonormal set of single-electron
bi-spinors ψi with orbital energy εi. From the lower equation
of the resulting single-electron Dirac equations expressions
for the lower components χi of the Dirac bispinors

ψi(�r) =
(

ϕi(�r)
χi(�r)

)
(11)

can be found via

χi(�r) = c(2mec2 − V̂ + εi )
−1�σ · �̂pϕi(�r), (12)

where we have omitted all multielectron effects for the sake
of simplifying the discussion below.

For the remaining part of this section, we will use atomic
units, in which h̄, |e|, and me have the numerical value of 1.
Then, the term in parentheses in Eq. (12) can be expanded in
orders of the fine structure constant α = c−1 as

c(2c2 − V̂ + εi )
−1 = α

2

∞∑
k=0

[α

2
(V̂ − εi )

]k
. (13)

Truncation after first order yields the Pauli approximation

χi(�r) =
[
α

2
+ α3

4
(V̂ − εi )

]
�σ · �̂pϕi(�r). (14)

In a molecule, the expectation value of γ5 for a single Slater
determinant is determined by a summation over contributions
from all occupied molecular orbitals i:

〈ψi | γ5 | ψi〉 = 〈ϕi | χi〉 + 〈χi | ϕi〉. (15)

Insertion of the first term of the expansion Eq. (14) into
Eq. (15) gives the first-order contribution to γ5:

〈ψi | γ5 | ψi〉 ≈ α〈ϕi | �σ · �̂p | ϕi〉. (16)

This obviously vanishes if the overall electron density of the
molecule is nonhelical, but can, in the static case and when
remaining in first order with respect to P-odd operators, only
be nonzero for a chiral molecule, in which the electron density
can have nonvanishing helicity.

In order to determine scaling laws with respect to the
nuclear charge number Z and the fine-structure constant α,
Eq. (15) itself is not immediately useful. This is why we
follow Ref. [27] and write the operator γ5 for electron i as
a commutator:

γ5
i = ı

c
[ĤDC, ��i · �ri]− + 2

(
0 k̂i

k̂i 0

)
, (17)

k̂i = −(1i + �σ i · �̂li ) , ��i =
(�σ i 0

0 �σ i

)
. (18)

Eigenvalues of the operator K̂ = ∑
i k̂i in atomic systems

correspond to the relativistic quantum numbers κ = (� −
j)(2 j + 1), where � and j are the orbital and total angular
momentum quantum numbers, respectively.

As long as we are interested in expectation values of the
operator γ5 on the molecular DHFC orbitals ψi, the commu-
tator part in Eq. (17) turns to zero. DHFC molecular orbital
matrix elements of the second term in Eq. (17) have the form

〈ψi | γ5 | ψi〉 = 2〈ϕi | k̂ | χi〉 + 2〈χi | k̂ | ϕi〉. (19)

The nonrelativistic limit of 〈γ5〉 vanishes as can be shown
by insertion of the first term of the expansion Eq. (14) into
Eq. (19):

〈ψi | γ5 | ψi〉 ≈ α〈ϕi | {k̂, �σ · �̂p}+ | ϕi〉 = 0, (20)

where we use the fact that operator k̂ anticommutes with �σ · �̂p:

{k̂, �σ · �̂p}+ = 0. (21)

The terms of order α3 give

〈ψi | γ5 | ψi〉 ≈ α3

2
〈ϕi | (�σ · �̂p)V̂ k̂ + k̂V̂ (�σ · �̂p) | ϕi〉, (22)
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where the terms containing orbital energies εi reduce to the
anticommutator Eq. (21). Equation (22) can be rewritten as

〈ψi | γ5 | ψi〉 ≈ α3

2
〈ϕi | [�σ · �̂p, V̂ (�r)]−k̂ + V̂ (�r){k̂, �σ · �̂p}+

+ [k̂, V̂ (�r)]−�σ · �̂p | ϕi〉

= α3

2
〈ϕi | [�σ · �̂p, V̂ (�r)]−k̂

+ [k̂, V̂ (�r)]−�σ · �̂p | ϕi〉, (23)

where we once again used Eq. (21). In general, the molecu-
lar potential energy operator V̂ does not commute with both
operators k̂ and (�σ · �̂p). However, its spherically symmetric
part V̂s(|�r|) commutes with the operator k̂. Therefore, for the
spherically symmetric potential the last term in Eq. (23) turns
to zero. Let us separate the contribution of V̂s(|�r|):

〈ψi | γ5 | ψi〉 = 〈ψi | γ5 | ψi〉s + 〈ψi | γ5 | ψi〉a, (24)

〈ψi | γ5 | ψi〉s = α3

2
〈ϕi | −ı(�σ · �r)

V̂ ′
s (|�r|)
|�r| k̂ | ϕi〉 (25)

and consider the term Eq. (25) in more detail. Note that
V̂ ′

s (|�r|)/|�r| commutes with both operators �σ · �r and k̂. By
analogy with Eq. (21), we can assume that {�σ · �r, k̂}+ = 0.
Thus, we can write

ı(�σ · �r)k̂ = ı

2
[�σ · �r, k̂]−, (26)

which proves that the operator in Eq. (25) is Hermitian, and
allows us to rewrite this expression as

〈ψi | γ5 | ψi〉s = α3

4
〈ϕi | �σ · �vT ,s | ϕi〉, (27)

�vT ,s = V̂ ′
s (|�r|)
|�r| (|�r|2 �̂p − �r( �̂p · �r)). (28)

We see that expectation value Eq. (27) has the form of a
scalar product of the spin with an electronic orbital T -odd
vector �vT ,s. Molecular matrix elements of �σ · �vT turn to zero
in the nonrelativistic approximation for two reasons: (i) For
a singlet state, an expectation value of the spin is zero, and
(ii) matrix elements of orbital T -odd vectors are imaginary,
so their expectation values are zero. In order to get a nonzero
expectation value of such operators, one needs to include spin-
orbit interactions Ĥso, which mix singlet and triplet molecular
states and have imaginary matrix elements. Therefore, the
energy shift δEγ5,s of the molecular (ground) singlet state
due to the interaction �σ · �vT ,s appears in double perturbation
theory as

δEγ5,s ∼ α3

2

2Re{〈	s | �σ · �vT ,s | 	t〉〈	t | Ĥso | 	s〉}
Es − Et

, (29)

where Es, Et and 	s, 	t are the nonrelativistic singlet and
triplet energies and wave functions, respectively.

Equation (29) allows us to estimate the scaling law for
δEγ5,s with the nuclear charge Z and the fine structure con-
stant α. The matrix element of the spin-orbit interaction
〈ψt | Ĥso | ψs〉 scales as α2Z2. The Z scaling of the matrix
element of the operator �vT ,s depends on the distances where

the integral is accumulated. Taking into account that this op-
erator appears in third order in α, we can assume that the
integral is accumulated at short distances near the nucleus,
where relativistic corrections are larger. At such distances, the
potential of the nucleus is practically unscreened, V̂s ∼ Z/r.
Furthermore, at these distances the electron moves Z times
faster, so �̂p ∼ Z . Therefore, we can assume that

∫
vT ,sd3r ∼

Z2. Then the overall scaling is

δEγ5,s ∼ α5Z4 . (30)

The last expression does not take into account “the single
center theorem” [54,55], which implies that electron helicity
in molecules is suppressed in the vicinity of a single heavy
main group nucleus and one has to take two matrix elements
of expression Eq. (29) at two different heavy main group
centers. Therefore, the final scaling should be in this case

δEγ5,s ∼ α5Z2
AZ2

B , (31)

where A and B are typically taken as the two heaviest atoms
in the molecule.

Now let us analyze the second term in Eq. (24). In this case,
both terms from Eq. (23) can contribute. For the first term, we
can use the same arguments as above, but the asymmetric part
of the molecular potential at short distances is much weaker,
so this term will add small corrections to Eq. (31). Thus,
we will focus on the second term, which was zero for the
symmetric potential.

We assume again that the matrix element is accumulated
at short distances, where the molecular potential can be ex-
panded in spherical harmonics [56]. The second term of this
expansion can be written as (�a · �r)V̂a(|�r|), where �a is some
constant polar vector. In this approximation, we get

[k̂, V̂ (|�r|)]− = −ı[�σ · (�r × �a)]V̂a(|�r|). (32)

Substituting this into the second term in Eq. (23), we find that

〈ψi | γ5 | ψi〉a ≈ α3

2
〈ϕi | −ı(�σ · �r × �a)V̂a(|�r|)(�σ · �̂p) | ϕi〉.

(33)

Simplifying this further and neglecting the term which is
similar to Eq. (28), we get

〈ψi | γ5 | ψi〉a ≈ α3

2
〈ϕi | �a · �va | ϕi〉, (34)

�va = 2V̂a(|�r|) �r × �∇ . (35)

The orbital pseudovector �va is T even. The expected scaling
with α is given by Eq. (34). Scaling with Z for operators
Eqs. (28) and (35) should be similar, so we assume

δEγ5,a ∼ α3Z2 . (36)

Combining the two terms in Eq. (24) together suggests an
estimate for a molecule with two heavy main group atoms A
and B:

δEγ5 ≈ c1α
5Z2

AZ2
B + c2α

3Z2
A + c3α

3Z2
B . (37)

The first term is formed on both heavy centers, while the other
two terms are formed independently in the vicinity of each
heavy nucleus. The chiral structure of the molecule is weakly
felt locally [54,56], so we can expect that |c2,3| � |c1|.
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TABLE I. Molecular structure parameters for compounds of type
H2X2 and H2XO with X = O, S, Se, Te, or Po employed in all
calculations. Parameters for H2X2 were taken from Refs. [58,65]. O–
X bond length determined by full structure optimization of eH2XO
compounds at the level of ZORA-cGHF.

X r(X − X ) (Å) r(X − O) (Å) r(X − H) (Å) �(X − X − H) (deg)

O 1.490 1.490 0.970 100
S 2.055 1.627 1.352 92
Se 2.480 1.768 1.450 92
Te 2.840 1.933 1.640 92
Po 2.910 2.057 1.740 92

In the following, we discuss the implications in molecular
systems of the equation derived above for 〈γ5〉 and compare
to results from numerical computations. Hereby, we focus on
scaling with respect to the nuclear charge number and the fine
structure constant. Furthermore, we compare to energy shifts
due to nuclear spin-independent electroweak neutral-current
interactions.

III. COMPUTATIONAL DETAILS

Quasirelativistic two-component calculations of H2X2 and
H2XO with X = O, S, Se, Te, Po, and CHBrClF are performed
within the zeroth-order regular approximation (ZORA) at the
level of complex generalized Hartree-Fock (cGHF) or Kohn-
Sham (cGKS) with a modified version [57–63] of the quantum
chemistry program package TURBOMOLE [64].

For calculations of H2X2 and H2XO compounds, a basis
set of 25 s, 25 p, 14 d, and 11 f uncontracted Gaussian
functions with the exponential coefficients αi composed as an
even-tempered series by αi = a · bN−i; i = 1, . . . , N with a =
0.02a−2

0 , b = (5/2 × 1010)1/25 ≈ 2.606 and N = 26 was used
for X = O, S, Se, Te, and Po. The largest exponent coefficients
of the s, p, d, and f subsets are 5 × 108 a−2

0 , 1.91890027 ×
108 a−2

0 , 13300.758 a−2
0 , and 751.8368350 a−2

0 , respectively.
A similar but slightly smaller basis set (three f functions less)
has proven successful in calculations of P-violating energy
shifts in H2Po2 [58,65]. The H atom was represented with
the s,p-subset of a decontracted correlation-consistent basis
of quadruple-ζ quality [66].

Structure parameters of H2X2 were chosen as in
Refs. [58,65]. For H2XO compounds, the equilibrium bond
length of the O–X bond, for X = S, Se, Te, or Po, was obtained
by full structure optimization at the level of ZORA-cGHF. As
convergence criteria, an energy change of less than 10−5 Eh

was used. Bond angles H–O–X and bond distances H–O of
H2XO were assumed to be equal to H2O2 and bond angles
H–X–O and distances H–X were assumed to be equal to H2X2.
Employed structure parameters are summarized in Table I.

Structure parameters, harmonic vibrational wave numbers,
and normal coordinates, of CHBrClF, as well as electronic
densities and vibrational wave functions along the C–F
stretching mode, were employed as described in Ref. [67].
Electronic densities along other normal coordinates were cal-
culated on the level of ZORA-cGHF and ZORA-cGKS with
the same basis set employed in Ref. [67]. Properties were cal-
culated on the levels of ZORA-cGHF and ZORA-cGKS. Used

TABLE II. Electronic expectation value of γ5 for (P) enan-
tiomers of compounds of type H2XO and H2X2 at a dihedral angle
of 45◦ calculated at the level of ZORA-cGHF.

〈γ5〉
ZX H2XO H2X2

8 7.02 × 10−9 7.02 × 10−9

16 1.81 × 10−8 7.23 × 10−8

34 9.66 × 10−8 2.87 × 10−6

52 2.67 × 10−7 1.95 × 10−5

84 8.69 × 10−7 2.11 × 10−4

density functionals are the local density approximation (LDA)
[68–70] and the Lee, Yang, and Parr correlation functional
(LYP) [71] with a generalized gradient exchange functional
by Becke (BLYP) [72] or the hybrid Becke three-parameter
exchange functional (B3LYP) [69,73–75].

The ZORA-model potential Ṽ (�r) as proposed by van
Wüllen [76] was employed with additional damping [77].

For calculations of two-component wave functions and
properties, a finite nucleus was used, described by a
normalized spherical Gaussian nuclear density distribution

ρnuc,A(�r) = ζ
3/2
A

π3/2 e−ζA|�r−�rA|2 , where ζA = 3
2r2

nuc,A
and the root

mean square radius rnuc,A of nucleus A was used as suggested
by Visscher and Dyall [78]. The mass numbers A were chosen
to correspond to the isotopes 1H, 12C, 16O, 19F, 32S, 35Cl, 79Br,
80Se, 130Te, and 209Po. The weak nuclear charges QW,A of the
various isotopes with charge number ZA and neutron number
NA were included as QW,A ≈ (1 − 4 sin2 θW)ZA − NA, where
we have used sin2 θW = 0.2319 as the numerical value of the
Weinberg parameter.

All relativistic expectation values of γ5 and Ĥew were cal-
culated with our ZORA property toolbox approach described
in Ref. [63].

IV. RESULTS

A. Scaling laws for 〈γ5〉 in molecules

In order to confirm results of Sec. II B we performed
quasirelativistic numerical calculations at the level of ZORA
of (P) enantiomers of H2X2 compounds with a dihedral angle
of 45◦, varying X = O, S, Se, Te, and Po. These compounds
are established as a common test system for electroweak P
violation and its scaling behavior with respect to nuclear
charge [58–60,65,79–81]. In the above scaling law, a factor of
α2Z2

B emerges from spin-orbit coupling. This factor is in good
approximation equal to α2 in main group element containing
molecules with only one heavy center (see, e.g., Refs. [54]).
Therefore, for a variation of one heavy X atom while holding
the other one fixed as oxygen atom (H2XO), we would expect
roughly a scaling of ∼α3Z2

A [corresponding to the second term
in Eq. (37)] as the spin-orbit coupling contribution [corre-
sponding to the first term in Eq. (37)] is suppressed by a factor
of α2.

The numerical results are summarized in Tables II and III.
Figure 1 shows a double logarithmic plot and a linear fit for
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TABLE III. Electronic expectation value of γ5 for (P) enan-
tiomers of H2PoO and H2Po2 at a dihedral angle of 45◦ calculated
at the level of ZORA-cGHF for different values of the fine structure
constant α including α0 which is 1

c in atomic units.

〈γ5〉
α H2PoO H2Po2

1
90 3.20 × 10−7 1.38 × 10−3

α0 8.69 × 10−7 2.11 × 10−4

1
300 3.42 × 10−8 2.10 × 10−6

1
400 1.23 × 10−9 4.60 × 10−7

1
1000 6.65 × 10−10 4.33 × 10−9

the determination of the Z-scaling law in ZORA-cGHF cal-
culations. From numerical calculations of H2X2 compounds,
we find a Z scaling with Z4.4, which agrees well with the
analytical prediction. Furthermore, for H2XO compounds, we
find a scaling of Z2.1, which is in perfect agreement with the
expectations above and shows the missing spin-orbit coupling
contribution as the nuclear charge of oxygen is close to 1.

In order to test the predicted α dependence, the speed of
light was varied in the quasirelativistic calculations of wave
functions and properties for H2PoO and H2Po2. The results
(see Figure 2) display the expected scaling of α5.4 ≈ α5 for
H2Po2 and a scaling of α3.6 for H2PoO, showing the weak
influence of spin-orbit coupling in compounds with only one
heavy nucleus. The results are in perfect agreement with the
analytical analysis.

B. Comparison to electroweak electron-nucleon interactions

Similar considerations, as detailed in the previous sec-
tion, are known to hold also for parity-nonconserving
nuclear spin-independent electroweak interactions described
by Hamiltonian Eq. (8) in chiral molecules. The main differ-
ence of this Hamiltonian to the ones discussed in the theory
section is that Ĥew evaluates the expectation value of γ5 at
positions inside the nuclei only. To further compare Ĥew with

0.001

0.01

0.1

1

10

100

1000

10 100

10
6
〈γ

5
〉

Z

H2XO

H2X2

10−10.13Z2.08

10−12.31Z4.44

FIG. 1. Dependence of the expectation value of γ5 on the nuclear
charge Z for the (P) enantiomers of H2X2 and H2XO with X = O,
S, Se, Te, or Po at an dihedral angle of 45◦ calculated at the ZORA-
cGHF level.
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FIG. 2. Dependence of the expectation value of γ5 on the fine
structure constant α for the (P) enantiomers of H2Po2 and H2PoO at
an dihedral angle of 45◦ calculated at the ZORA-cGHF level.

γ5, we evaluated the dependence of the expectation value of
both operators on the dihedral angle in H2X2 for X = O and
Po, and found similar behavior (see Fig. 3, and for the explicit
data see the Supplemental Material [82]). It shall be noted that

FIG. 3. Dependence of the expectation value of γ5 in comparison
to the expectation value of Ĥew on the dihedral angle φ in H2Po2 (top)
and H2O2 (bottom) calculated at the ZORA-cGHF level. The results
on Ĥew slightly differ from those of Ref. [58] due to the use of a
different basis set. Straight lines connecting the computed points are
drawn to guide the eye.
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the sign of Ĥew is inverted in comparison to γ5 as Ĥew contains
in addition the weak charge for which QW ≈ −N < 0.

In a recent work [83], similar calculations on γ5 in H2X2

compounds were performed and similar results were obtained.
However, unfortunately, in Ref. [83] insufficient basis sets
for oxygen were employed, resulting in qualitatively wrong
results for the dihedral angle dependence in H2O2.

The similar dependence on the molecular structure together
with the steep scaling with nuclear charge indicates that con-
tributions at the nuclear centers dominate also the expectation
value of γ5 and thus implies that molecular experiments that
aim to test P violation due to weak interactions can also be
used for searches of P-odd cosmic field interactions with a
comparable sensitivity. This aspect will be discussed in the
following in detail.

C. Limits on cosmic fields from experiments
with chiral molecules

1. Test system and choice of methods

The expected sensitivity of experiments with chiral
molecules to P-odd cosmic field interactions characterized by
be

0 is estimated from an experiment with CHBrClF performed
by Daussy et al. [46], in which a hyperfine component of
the 407,34 ← 408,33 transition (J ′

K ′
a,K

′
c
← J ′′

K ′′
a ,K ′′

c
) of the C–F

stretching fundamental in enantiomerically enriched sam-
ples of the mirror images R-CHBrClF and S-CHBrClF was
studied.

Our interest is in a possible splitting of the vibrational
resonance frequency between enantiomers that is caused by
cosmic fields interacting through 〈γ5〉. For this purpose, fre-
quency shifts in the vibrational spectrum due to electronic
interactions via γ5 have to be evaluated. This test system,
CHBrClF, was excessively studied by theory [67,84–91] and
experiment [44–46,92,93] and is supposed to be reasonably
well understood with respect to electroweak P violation.

However, the influence from nonseparable anharmonic
effects (multimode effects) on electroweak P violation in
CHBrClF is largely unexplored. Quack and Stohner studied
the deuterated isotopomer CDBrClF [94] with respect to mul-
timode contributions in a four-dimensional, anharmonically
treated subspace involving the C–F stretch, C–D stretch, and
the two C–D bending modes to find an increase of the P-
odd frequency splitting in the C–F stretch fundamental ν4

by almost a factor of 2—depending on the specific model,
they obtained up to 75% relative deviation with respect to the
separable anharmonic adiabatic approximation. Although not
directly comparable due to the different isotope, this at least
suggests that pronounced multimode effects can also exist
for 〈γ5〉.

We have reported major findings and implications for fu-
ture experiments in a separate paper [1], but provide herein
more details on the computational challenges and subsequent
analysis.

We estimate the influence of multimode effects within a
perturbative treatment by calculation of derivatives of the
property of interest with respect to all normal coordinates.
One-dimensional and two-dimensional vibrational corrections

to a property O for a single dimensionless reduced normal
coordinate qr are in leading order given by [95]

O1D
qr

≈ 1

2

(
vr + 1

2

)(
∂2O0

∂q2
r

− φrrr

ν̃r

∂O0

∂qr

)
, (38)

O2D
qr

≈ −1

2

(
vr + 1

2

) ∑
s �=r

φrrs

ν̃s

∂O0

∂qs
, (39)

where φrst are the cubic force constants and ν̃r are the har-
monic vibrational wave numbers.

Properties are evaluated along the dimensionless reduced
normal coordinate qr and fitted to a polynomial of degree 4:

〈ψe | Ĥew | ψe〉r ≈
4∑

k=0

cew,r,kqk
r , (40)

〈ψe | γ5 | ψe〉r ≈
4∑

k=0

cγ5,r,kqk
i . (41)

In Fig. 4, the dependence of 〈γ5〉 and 〈Ĥew〉 on the nor-
mal coordinates for the different methods in the region qr =
−3, . . . , 3 (for the explicit data, see the Supplemental Mate-
rial [82]). Within this region, the probability density of the first
two vibrational states in the mode q4 is sufficiently decayed
(see Fig. 1 of Ref. [67]), as can also be expected by consid-
ering classical turning points of a harmonic approximation to
the parity-conserving potential, which are located at |q4| = 1
for the ground vibrational state of a harmonic oscillator and
at |q4| = √

3 in the first vibrationally excited state. The result-
ing fit parameters cγ5,r,k alongside the explicit values for the
one-dimensional cuts through the hypersurface for all normal
coordinates qr are reported in the Supplemental Material [82].

The derivatives of the properties with respect to the normal
coordinate qr are given by

∂〈ψe | γ5 | ψe〉r

∂qr
= cγ5,r,1, (42)

∂2〈ψe | γ5 | ψe〉r

∂q2
r

= 2cγ5,r,2, (43)

and analogously for Ĥew. Resulting first and second deriva-
tives from the fit in Fig. 4 are listed in Tables V and VI. From
these, we see that the C–F stretching mode has a weak influ-
ence on 〈γ5〉 in comparison to the other modes and, thus, is not
an optimal choice for an experiment. In particular, along the
deformation normal coordinates q9 (Br–Cl), q8 (Br–F), q3 (H),
and q2 (H), the first derivatives of 〈γ5〉 are considerably larger
in magnitude than for q4. The second derivatives with respect
to the C-F stretching coordinate are smaller in absolute value
than those first derivatives mentioned, by about an order of
magnitude (see Tables V and VI). We may assume that anhar-
monic constants can be roughly of the order φrrr ∼ O(0.1ν̃r )
and φrrs ∼ O(0.01ν̃s) or even larger (see, e.g., Refs. [96,97]
for some cubic force constants in CDBrClF). In total, two-
dimensional effects on the C–F stretching mode for 〈γ5〉 can
be on the same order as one-dimensional vibrational effects.
Thus, not only is the effect of P-odd interactions on the C-F
stretching mode very weak, but also the theoretical description
is limited by the need for an excellent description of all modes,
which is exceedingly difficult.
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TABLE IV. Molecular expectation value of γ5 in (S)-CHBrClF for the vibrational ground state and vibrational first excited state along the
q4 normal coordinate (C-F-stretching mode) at the level of ZORA-cGHF (HF) and ZORA-cGKS with LDA, BLYP, and B3LYP functionals
within the separable anharmonic adiabatic approximation.

〈γ5〉
Method v = 0, (S) v4 = 1, (S) v4 = 1 ← v = 0, �(R,S)

HF −1.89 × 10−9 −1.71 × 10−9 3.61 × 10−10

B3LYP −8.28 × 10−9 −7.91 × 10−9 7.40 × 10−10

BLYP −8.27 × 10−9 −7.82 × 10−9 9.02 × 10−10

LDA −1.21 × 10−8 −1.15 × 10−8 1.18 × 10−9
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FIG. 4. Dependence of the expectation value of γ5 (left) and Ĥew (right) on the nine normal coordinates in (S)-CHBrClF computed at the
ZORA-cGKS and ZORA-cGHF level of theory. Data points are fitted to polynomials of fourth order (lines). (a) 〈γ5〉, ZORA-cGKS, LDA;
(b) 〈Ĥew〉, ZORA-cGKS, LDA; (c) figure as of Ref. [1] with values corresponding to 〈γ5〉, ZORA-cGKS, B3LYP; (d) 〈Ĥew〉, ZORA-cGKS,
B3LYP; (e) 〈γ5〉, ZORA-cGHF; and (f) 〈Ĥew〉, ZORA-cGHF. Results for Ĥew in the C–F stretching mode (v4) are a recalculation of those
presented in Ref. [67] and are thus identical to those.
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TABLE V. One dimensional first and second derivatives of the molecular expectation value of γ5 with respect to the reduced normal
coordinate qr in (S)-CHBrClF at the level of ZORA-cGHF (HF) and ZORA-cGKS with LDA, BLYP, and B3LYP functionals.

109 ∂〈γ5〉
∂qr

109 ∂2〈γ5〉
∂q2

r

r LDA B3LYP HF LDA B3LYP HF

9 14.67 11.21 5.63 0.24 0.14 −0.20
8 −34.05 −23.96 −3.61 −1.39 −0.62 0.29
7 −8.71 −6.35 −1.07 1.03 0.74 0.48
6 −9.13 −7.32 −0.39 2.41 0.95 −1.05
5 8.75 6.96 2.26 −4.05 −2.79 −0.73
4 2.21 1.10 −0.31 0.28 0.30 0.46
3 15.65 11.01 4.90 −1.90 −2.39 −4.94
2 7.89 10.47 13.57 −1.37 −0.67 1.22
1 1.42 1.21 0.65 0.46 0.38 0.17

It is important to note that the use of a different vibrational
mode [such as Br-F (v8) or H (v3) deformation] in CHBrClF
can result in vibrational frequency splittings that are larger
by about an order of magnitude and may reduce error bars
considerably. This has to be analyzed in more detail, however,
using anharmonic vibrational force fields.

Due to the resulting large error bars for vibrational cor-
rections for the C–F stretching mode, we do not provide a
final value for the enhancement of be

0 in the C–F stretching
but rather give an order of magnitude estimate.

For this purpose, within the separable anharmonic adi-
abatic approximation as described in Ref. [85], where we
follow for this specific application Ref. [67] closely, the vi-
brationally averaged expectation value for the C–F stretching
mode is evaluated from a series expansion in the vibrational
moments 〈v | qk | v〉, where v represents the vibrational quan-
tum number of the vth vibrational state. The vibrational
wave functions and corresponding moments were received
in Ref. [67] from a discrete variable representation on an
equidistant grid. The moments were reported in the supple-
mentary material to Ref. [67] and are reused for calculating
interactions of CHBrClF with cosmic fields.

In order to estimate electron correlation effects, for the C–F
stretching mode the vibrationally averaged expectation values
where evaluated at the DFT and HF level, the former with

different flavors of density functionals. The results of these
methods are compared in Table IV.

In previous studies on electroweak P-violating vibrational
frequency splittings in CHBrClF with density functional
approaches [67,90], much reduced variations between the
methods were found for the C–F stretching fundamental as
can be expected by the nearly parallel curves shown in Fig. 5.
In Ref. [67], we have observed a spread of about 20% from
the mean value for the four methods used also in the present
work. The variation among the various density functionals
(B3LYP, BLYP, and LDA) was less than 5%. In Ref. [90],
it was found that B3LYP, BLYP, and LDA estimates deviate
by 6% or less from the values predicted on the second-
order many-body perturbation theory level (MP2), with the
latter method giving also absolute values at the equilibrium
structure that agree well with the corresponding CCSD(T)
estimates. Hartree-Fock-based predictions, in contrast, dis-
played larger deviations from those of the mentioned density
functional calculations. Similar trends are observed in the
present work (see Table IV), but with more pronounced vari-
ations for the structure dependence of 〈γ5〉 as compared to
〈Ĥew〉: Vibrational splittings vary by about 50% from the mean
value of all four methods, with variations among the density
functionals being on the order of 25% or less from their mean.
Assuming again that the density functionals outperform the

TABLE VI. One-dimensional first and second derivatives of the molecular expectation value of Ĥew with respect to the reduced normal
coordinate qr in (S)-CHBrClF at the level of ZORA-cGHF (HF) and ZORA-cGKS with LDA, BLYP, and B3LYP functionals.

1018 ∂〈Ĥew〉
∂qr

(Eh ) 1018 ∂2〈Ĥew〉
∂q2

r
(Eh )

r LDA B3LYP HF LDA B3LYP HF

9 −2.10 −1.90 −1.42 0.01 −0.01 −0.03
8 11.47 9.43 6.27 0.52 0.38 0.13
7 6.97 6.29 5.11 −0.37 −0.29 −0.20
6 3.37 2.45 1.24 −0.90 −0.62 −0.19
5 −2.24 −1.72 −1.39 1.87 1.61 1.05
4 1.97 2.06 1.92 −0.27 −0.30 −0.39
3 −6.68 −5.95 −5.04 0.56 0.47 0.38
2 −6.01 −6.58 −6.88 −0.41 −0.51 −0.57
1 0.50 0.37 0.07 −0.09 −0.01 0.09
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FIG. 5. Dependence of the expectation values of (a) γ5 and (b) Ĥew on the C-F stretching normal coordinate q4 in (S)-CHBrClF computed
at the level of ZORA-cGHF and ZORA-cGKS with different exchange-correlation functionals (points) and polynomial fits to the 〈Ĥew〉 and
〈γ5〉 to fourth order (lines). The results for Ĥew are a recalculation of those presented in Ref. [67] and are thus identical to those.

Hartree-Fock approach for this property and give again similar
results as MP2, we are lead to a rough error estimate of about
30% for the density functionals. Of the different functionals,
we give herein tentative preference to the B3LYP results as
(i) the absolute values at the equilibrium structures for elec-
troweak P-violation were for B3LYP closer to the MP2 and
CCSD(T) values [90,91], (ii) the atomic contributions studied
in Refs. [90,91], which are differently weighted by 〈γ5〉 as
compared to 〈Ĥew〉, were found to be more consistent with
MP2 and CCSD(T) values, and (iii) the vibrational splitting
on the B3LYP level is smaller than for the other functionals,
which results in more conservative sensitivity estimates.

2. Sensitivity to static cosmic fields

The expectation values of γ5 and splittings between enan-
tiomers are given in Table IV. As discussed above, we expect
multimode effects of the same size as single-mode effects and
at the present stage are not able to set upper bounds on be

0 from
the CHBrClF experiment. In Ref. [1], we rather estimated the
sensitivity of this experiment. Assuming B3LYP to give the
best performance (see discussion above), �(R,S)〈γ5〉 is on the
order of 10−10 [O(10−10)].

The sensitivity of the CHBrClF experiment, performed by
Daussy et al. in 1999 [46], to be

0 was in Ref. [1] estimated
from the experimental upper bound of the P-odd frequency
splitting in the C-F stretching fundamental |�ν| = 12.7 Hz
[46] as

∣∣be
0

∣∣ � ∣∣∣∣ 12.7 Hz

O(10−10)
h

∣∣∣∣ ∼ O(10−12 GeV) . (44)

In comparison to the actual best direct limits on be
0 from

modern atomic experiments, that are 2 × 10−14 GeV from Cs
and 7 × 10−15 GeV from Dy [30], the 1999 CHBrClF exper-
iment is less sensitive by about two orders of magnitude [1].
However, it is as sensitive as atomic experiments with Tl and
Yb (|be

0| < 2 × 10−12 GeV; see Ref. [30]).
As emphasized in the discussion of multimode effects,

the sensitivity of future experiments can be increased by
an order of magnitude when choosing favorable vibrational

transitions. As we pointed out in Ref. [1], it was empha-
sized in Refs. [93,98,99] that the sensitivity of the experiment
discussed above is improvable by at least two orders of magni-
tude by experimental refinement. A choice of a more favorable
molecule is expected to lead to further enhancement by two
orders of magnitude. Thus, it was estimated in Ref. [1] that
in future P-violation experiments with chiral molecules the
limits from the 1999 experiment can be improved down to
10−17 GeV, i.e., an improvement of the actual best limit by at
least two orders of magnitude. This makes experiments with
chiral molecules highly powerful tools to search for Lorentz
invariance violation beyond the standard model of particle
physics.

The accuracy of the estimate for cosmic field effects in
CHBrClF, which was in this work indirectly inferred by com-
parison to previous studies on electroweak P violation, can
in principle be benchmarked by future explicit calculations
with systematically improvable electron correlation methods
and the presently neglected multimode contributions can be
accounted for by explicit calculation of anharmonicity con-
stants. As the main purpose of the present studies was to
explore the general potential of chiral molecules to act as
sensitive probes for new physics, more accurate theoretical
estimates specifically for CHBrClF do not seem to be pressing
until new experiments with higher accuracy are performed.
Given the pronounced scaling with nuclear charge that was
shown analytically and confirmed numerically in this paper,
the main focus will likely be shifted to accurate estimates
for chiral compounds with heavier elements. Furthermore, our
study showed that care has to be taken by choice of the vibra-
tional mode, which on the one hand can directly influence the
sensitivity by an order of magnitude and on the other hand
can be crucial for accurate theoretical predictions, which are
essential to provide limits on cosmic fields from experiments.

V. CONCLUSION AND OUTLOOK

In this paper, we have shown that interactions of electrons
with the timelike component of pseudovector cosmic fields
are strongly pronounced in chiral molecules. Because of the
P-odd contributions of the nuclear potential that electrons
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experience in a chiral molecule, these interactions lead to
P-odd resonance frequency splittings between enantiomers,
similar to those from electroweak P-violating interactions.
We could show analytically and numerically that these in-
teractions are strongly enhanced in heavy-element-containing
molecules and are dominated from contributions that stem
from the region near the nucleus. It was demonstrated that
P-odd interactions of electrons with cosmic fields behave
similarly to interactions due to an electroweak coupling of
electrons and nucleons in chiral molecules. Thus, knowledge
from electroweak quantum chemistry can be employed to
find promising candidate molecules to limit P-odd electronic
coupling to cosmic fields. However, care has to be taken as
our calculations revealed a stronger dependence of γ5 on
molecular structure.

We calculated matrix elements of P-odd cosmic field inter-
actions in CHBrClF with quasirelativistic ab initio methods,
including vibrational corrections, and compared the results of
different DFT functionals. Our calculations of P-odd effects
along the different normal coordinates of CHBrClF revealed
an important role of nonseparable anharmonic effects and
showed that the C–F stretching mode in particular is from
this perspective not ideally suited for a measurement of P
violation due to cosmic fields. Effects on some other modes
are expected to be larger by an order of magnitude. These
findings underline the importance to select not only a favor-
able molecule but also to carefully choose the vibrational

transition. However, from our calculations, the sensitivity of a
20-year-old experiment with CHBrClF to |be

0| was estimated
to be O(10−12 GeV). This sensitivity is inferior by two orders
to the actual best direct measurements drawn from modern
atomic P-violation experiments, but was considered to be
improvable to the order of O(10−17 GeV) or better for static
pseudovector fields, which would be an improvement of the
actually best limit on be

0 by at least two orders of magnitude.
This demonstrates the specific virtue that studies on chiral
molecules provides in the search for new physics beyond the
standard model.
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