
PHYSICAL REVIEW A 102, 032815 (2020)

Combining density-based dynamical correlation with a reduced-density-matrix
strong-correlation description

Robert van Meer ,1,* Oleg Gritsenko,2,3 and Jeng-Da Chai 1,4,†

1Department of Physics, National Taiwan University, Taipei 10617, Taiwan
2Section Theoretical Chemistry, VU University, NL-1081 HV Amsterdam, The Netherlands

3Institute of Physics, Lodz University of Technology, PL-90-924 Lodz, Poland
4Center for Theoretical Physics and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

(Received 8 July 2020; accepted 26 August 2020; published 15 September 2020)

A combined density and density-matrix functional method is proposed for the calculation of potential energy
curves of molecular multibond dissociation. Its density-matrix part, a pair-density functional, efficiently approx-
imates the ab initio pair density of the complete active space (CAS) method. The corresponding approximate
on-top pair density � is employed to correct for double counting in the correlation energy functional. The
proposed ELS+ method, which augments the extended Löwdin-Shull (ELS) density-matrix functional with the
�-based scaled density functional, closely reproduces potential curves of the paradigmatic multibond dissocia-
tion in N2, H2O, and H2CO molecules calculated with the recently proposed CAS�DFT [CAS augmented with
the �-based scaled correlation correction of density functional theory (DFT)] method. Furthermore, with the
additional correction for the intrafragment correlation between the broken-bond electrons, ELS + + reproduces
well the benchmark potential curve of the N2 molecule by Lie and Clementi.

DOI: 10.1103/PhysRevA.102.032815

I. INTRODUCTION

The adequate description of bond-breaking processes often
requires the correct handling of both dynamical and strong
nondynamical correlation at all bond distances. Conventional
Kohn-Sham density functional theory (DFT) [1,2] employing
approximate density functionals is fully capable of handling
the (mainly) dynamical correlation for equilibrium geome-
try structures but fails to deliver an adequate description of
the strong correlation that is required when one dissociates
bonds [3,4]. Recently, thermally assisted occupation DFT
(TAO-DFT) [5–7], an efficient method to describe both dy-
namical and strong nondynamical correlation [8,9], has been
developed. However, the choice of the fictitious temperature
which among other things determines the orbital occupation
numbers through Fermi-Dirac statistics in TAO-DFT remains
difficult, especially for molecular multibond dissociation [10].

Alternatively, an effective way of describing the strong
correlation using a functional-like description is to use density
matrix functional theory (DMFT) [11–23], not to be confused
with dynamical mean field theory. In DMFT, the electronic
energy is expressed as a functional of the one-body reduced
density matrix components, allowing for more flexibility than
just using the density. The most successful earlier JK-only
functionals [17,24] using in their energy expressions only
two-electron integrals with the Coulomb and exchange-type
orbital products (see Sec. II) were capable of generating most
of the dynamical correlation for single bonds. However, this
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type of functional does not provide a reliable description of
dissociation of multiple bonds. Recent geminal-based approx-
imate DMFT functionals are capable of describing multiple
bond breaking but fail to describe 50–80% of the dynamical
correlation and there does not seem to be a way to tackle dy-
namical correlation problem in a fully self-consistent fashion
[22,25]. In this paper, we look at the previously developed
CAS�DFT method (vide infra) for guidance [26–28], and try
to combine both functional approaches in order to obtain a
functional based method that combines the best of both worlds
and can generate rather accurate potential energy surfaces.

In the CAS�DFT method, the electronic energy of a
state is expressed in terms of the CAS self-consistent-field
(CASSCF) energy ECASSCF

e and the �DFT component E�DFT.
The latter accounts for the dynamical correlation part which is
not described by the CASSCF wave function

ECAS�DFT
e = ECASSCF

e + E�DFT[X CASSCF, ρCASSCF]. (1)

The �DFT component itself is generated by using the scaled
correlation energy density functional by Lee, Yang, and Parr
(LYP) [29]

E�DFT[X, ρ] =
∫

P[x]εLYP
c [ρ(r)]dr, (2)

whose scaling factor P[X ] depends on the on-top density
(pair-density �(r1, r2) evaluated at r1 = r2 [26,30–33]) and
density ρ

X (r) = 2�(r, r)

ρ(r)2
. (3)
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The currently used parametrization differentiates between two
regions based on physical characteristics

P[X ] =
{

PSDC(X ) � 1, X � 1

PEDC(X ) > 1, X > 1
. (4)

In case (X � 1), one is dealing with suppressed dynamical
correlation (SDC), which is a situation that commonly occurs
when bonds are being broken. The other scenario (X > 1)
mainly occurs in energetically important spatial regions when
one is describing distributed ionic type states, such as the
first 1�+

u state of the H2 molecule. In this case, an enhanced
dynamical correlation (EDC) description is warranted.

The CAS�DFT method with its suppression and enhance-
ment of dynamical correlation has been applied successfully
to various ground and excited state systems. The latest
variants, CAS�DFT + M and CAS(M)�DFT, which also
include an additional medium distance correlation correction,
have been able to fairly accurately reproduce complete ba-
sis set (CBS) limit potential energy curves for multibonded
molecules [34,35].

Up until this point, the �DFT scheme has always been
used in conjunction with a wave-function-based CAS-type
(SCF or non-SCF) nondynamical correlation carrier. These
carriers are relatively complicated, in the sense that they do
not scale well with respect to an increase of the active space
size, and they tend to generate a large number of pair den-
sity components that are more or less equivalent and thus
should be lumped together [22]. In the case of ground states,
one can also consider using a less complicated functional-
based approach whose approximate energy, pair-density and
concomitant on-top density and density quantities closely re-
semble the CASSCF quantities. The most suitable candidate
is DMFT.

In this paper, we combine the DMFT approach with the
�DFT dynamical correlation correction. Section II describes
the methodical details of the density matrix functional that is
used for all calculations, extended Löwdin-Shull (ELS) with
dispersion and multibond corrections (DM), and its utilization
of the �DFT correction scheme. In Sec. III, the full computa-
tional details of this endeavor are given. Section IV describes
the application of the combined ELS+ scheme to several
prototypical H2O, N2, and H2CO molecules and compares the
results with the CASSCF + �DFT and CBS benchmark data.
Conclusions are drawn in the final section.

II. DENSITY MATRIX FUNCTIONAL THEORY AND THE
�DFT CORRECTION

In DMFT, the electronic ground-state energy can be writ-
ten as a functional of the one-body reduced density matrix
γ (x, x′) [36],

EDMFT
e [γ (x, x′)] = −1

2

∫
∇2

r′γ (x, x′)|x′=xdx

+
∫

vextγ (x, x′)|x′=xdx

+ W DMFT[γ (x, x′)]. (5)

Here x stands for the combination of the spatial r and spin s
electron coordinates, and WDMFT[γ (x, x′)] is the two-electron

interaction functional, whose exact form is only known for
systems consisting of two electrons, requiring one to use ap-
proximate functionals for other systems. Several approximate
functionals have been developed over the course of many
years [12–23]. All of these functionals can essentially be
written as an integral over the approximate pair density in the
natural orbital (NO) basis whose elements are determined by
one-body density matrix quantities:

W DMFT[γ (x, x′)] =
∫

dr1dr2
�DMFT[γ (x, x′)](r1, r2)

|r1 − r2| . (6)

The best candidate functional for our case is the ELS-DM
functional, since it has been shown that this functional is
fully capable of reproducing small CASSCF wave-function
results for small molecules [22]. This functional is essentially
an antisymmetrized product of strongly orthogonal geminals
(APSG) functional with additional dispersive dynamical cor-
relation (D) and multibond dissociation (M) corrections:

�ELS-DM(r1, r2) = �APSG(r1, r2)+�D(r1, r2) +�M(r1, r2).

(7)

The APSG functional [37,38] divides the system into mul-
tiple two-electron subsystems with their own set of natural
orbitals (NOs), the density-matrix eigenfunctions. It uses the
exact two-electron Löwdin-Shull (LS) functional for the in-
teraction of the orbitals (and electrons) within the set [39],
and a Hartree-Fock (HF) type of interaction (no correlation)
between orbitals belonging to different sets

�APSG(r1, r2) =
∑
P<Q

∑
i∈P

∑
j∈Q �=P

nin j (4 ji j (r1, r2)−2ki j (r1, r2))

+
∑

P

∑
i∈P

∑
j∈P

fi f j
√

nin j li j (r1, r2). (8)

Here P and Q denote geminal NO sets, fi are the phase
factors that have a value of 1 for the first member of a set
and generally −1 for all other members of the set, φi(r) are
the NOs, and ni are the natural occupation numbers (NONs)
whose value ranges from 0 to 1. The Coulomb ji j , exchange
ki j , and star swapped exchange li j orbital products lead to their
respective integrals when integrated, and are given by

ji j (r1, r2) = φ∗
i (r1)φ∗

j (r2)φi(r1)φ j (r2), (9)

ki j (r1, r2) = φ∗
i (r1)φ∗

j (r2)φ j (r1)φi(r2), (10)

li j (r1, r2) = φ∗
i (r1)φ j (r2)φ j (r1)φ∗

i (r2). (11)

Note that the difference between the ki j and li j orbital products
only plays a role for the time-dependent treatment [40–43]
and is not important for the rest of this paper. The occupation
numbers of the APSG functional follow a strict sum rule,∑

i∈P

ni = 1, (12)

ensuring that each geminal-set contains exactly two electrons
(total occupation of 1 in our notation). While one can in
principle assign any number of orbitals to a given geminal, one
often resorts to only assigning two orbitals to every geminal
(perfect pairing) due to the ambiguity of the assignment of
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more orbitals and the often relatively little energetic gain when
doing so.

The �M correction to the APSG functional represents the
contribution to � which is required to restore the (often) phys-
ically correct local high spin exchange interaction between
bond broken electrons on the same dissociated fragment [22]

�M(r1, r2) = −
∑
P<Q

∑
i∈P

∑
j∈Q �=P

ki j, Pm(ni(1 − ni ))Pm

× (n j (1 − n j ))
√

ni(1 − ni )n j (1 − n j ). (13)

Here

Pm(z) =
(

1 + 16

γ

)
γ z2

1 + γ z2
(14)

and γ is a parameter. The �D correction describes the dy-
namical dispersion type of correlation between electrons on
different geminals and is responsible for up to 50% of the
CASSCF equilibrium geometry correlation in case one uses
an active space of 1 orbital for each valence electron

�D(r1, r2) = 1

2

∑
P<Q

∑
i �=a∈P

∑
j �=b∈Q �=P

FD(ni, na, n jk, nb)dia, jb.

(15)

Here the dispersive type orbital product is given by

dia, jb(r1, r2) = φi(r1)φ j (r2)φ∗
a (r1)φ∗

b (r2) (16)

and the FD prefactor is given by

FD(ni, na, n j, nb) = 8 fia jbPd (nina)Pd (n jnb)
√

ninan jnb, (17)

where fia jb are phase factors that ensure that the energetic con-
tribution of each index combination is negative (attractive). In
(17), Pd (z) are the following functions of the NON products,

Pd (z) = α

(
1 − βz2

1 + βz2

)
, (18)

with α and β being the parameters (see below).
When both corrections are applied, one can reproduce the

energies of small CASSCF expansions. One should keep in
mind that these CASSCF expansions still only cover 50% of
the dynamical correlation; the other half of this correlation
can only be captured by somehow incorporating the correla-
tion space of the remainder of the complete set of “virtual”
orbitals. As already mentioned before, in the case of the
APSG functional, this additional space can be quite hard (and
pointless) to incorporate. One can often get only relatively
little energetic gain, while the efficiency of the SCF process is
slowed down significantly by the constant moving of orbitals
between sets. The situation improves slightly when additional
intergeminal correlation is introduced. However, the higher
lying virtuals can still not be assigned to a specific set.

The most practical way to solve this issue is to use a
method that does not require the set assignment of this “sea
of virtuals.” There are essentially two main classes of these
general dynamical correlation schemes that can be used:
perturbative approaches and scaled DFT correlation energy
functionals. Several perturbative approaches have been suc-
cessfully applied to geminal-based functionals [21,44,45], the
main downside being the relatively large dependence on the

size of the basis required for the proper account of dynamical
correlation. Note that DFT-based approaches have a much
smaller dependence on the basis set size, since they do not use
unoccupied virtual orbitals. In our case, we use such a DFT-
based approach and obtain the missing dynamical correlation
by inserting the approximate ELS-DM on-top pair density of
Eq. (7) and density into the �DFT expression (2)

EELS+
e = EELS-DM

e + E�DFT[X ELS-DM, ρELS-DM] (19)

with

X ELS-DM(r) =2�ELS-DM(r, r)

ρELS-DM(r)2
, (20)

resulting in a method that is completely based on functional
approaches and does not require large basis sets.

III. COMPUTATIONAL DETAILS

All CASSCF calculations have been performed using the
GAMESS-US program [46]. The DMFT and �DFT calcu-
lations have been performed by using a homemade program
that accepts integrals and other quantities from GAMESS-US.
The cc-pVTZ (no f function) basis has been used for all
calculations, since this allows us to easily compare the results
with a recently published �DFT study [34]. This choice also
allows us to use the parametrization that was used in this
study. So PSDC(X ), which governs the suppression of dynam-
ical correlation, is given by

PSDC(X ) = ax

1 + (a − 1)x
(21)

with a = 0.2, and PEDC(X ), which governs the enhancement
of dynamical correlation, is given by

PEDC(X ) = c a4
√

x − (c − 1)(x − g)2

(1 − g)2
(22)

with c = 2.6 and g = 1.5.
The original parameters of the ELS-DM functional are

given by [22]

αo = 1.25,

βo = 750,

γo = 1500.

These parameters were optimized for reproducing CASSCF
energies for CAS spaces of one orbital per valence electron.
The �DFT correction scheme has, in principle, only been ap-
plied to smaller active spaces of two orbitals per broken bond.
In order to facilitate the comparison to earlier CAS�DFT
application, we restrict ourselves to the smaller active space.
Simultaneously such a choice allows one to reparametrize the
original parameters. The following modified parameters have
been used to obtain better results in the intermediate bond
distance regions for molecules with multiple broken bonds in
the same region:

αm = 1.1,

βm = 250,

γm = 1500.
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FIG. 1. H2O double bond dissociation curves for an active space
of four electrons in four orbitals. All curves depict total energies that
include the �DFT correction.

In all cases, we show the results of both the original (o) and
the modified (m) ELS-DM parametrization.

Geminal-based functionals do not use the same concept of
active space as the CASSCF method, since one has to obey set
restrictions. However, in the case of relatively isolated bonds
or lone pairs, one can easily translate minimal CASSCF active
spaces to the geminal set groupings. A single set is used for
every two electrons in the system. If only a single orbital is
assigned to a set, the geminal has no correlation at all and is
essentially a frozen core orbital whose orbital shape can still
be optimized. Throughout this paper, we have assigned a sin-
gle orbital to a set for all orbitals that are not directly involved
in the bond-breaking process. For orbitals that are involved in
the bond-breaking process, we have assigned every bonding
and corresponding antibonding orbital to a single set.

IV. RESULTS

In this section, we shall show the results of combining
the ELS-DM DMFT functional with the �DFT scheme for
the H2O (double bond break), N2, and H2CO (C=O bond
break) molecules. All of these molecules contain multiple
broken bonds. The reasons for choosing such a test set are
that the exact DMFT functional for two electron systems is
exactly equal to the CASSCF treatment and that the ELS-DM
functional reduces to the exact functional if one only uses two
active electrons, making the comparison between ELS-DM
and CASSCF trivial if only single bond breaks with minimal
active spaces were to be discussed.

It should be mentioned that the �DFT scheme still has
some caveats and it does not always recover all dynamical
correlations. The focus of the DMFT-CASSCF comparison is
quite reasonable since any corrections to the �DFT scheme
are more likely to be applicable to both the DMFT and
CASSCF methods if all of the initial DMFT and CASSCF
quantities are comparable. Below we will look at one of these
corrections.

FIG. 2. H2CO C=O double bond dissociation curves for an ac-
tive space of four electrons in four orbitals. All curves depict total
energies that include the �DFT correction.

The total energy curves (CASSCF/DMFT + �DFT)
for a minimal active space of two orbitals per broken
bond are shown in Figs. 1–3. The energy decomposition
(CASSCF/DMFT, �DFT, CASSCF/DMFT + �DFT) of the
N2, H2O, and H2CO molecules for three bond distances [equi-
librium, roughly 1.5 times equilibrium (halfway dissociated)
and roughly three times equilibrium (dissociated)] is shown in
Table I.

We will begin our analysis with the H2O molecule, for
which two linked but isolated bonds are dissociated simulta-
neously. Both the original parameter (ELSo+) and modified
parameter (ELSm+) ELS+ curves shown in Fig. 1 nearly
coincide with the CAS�DFT curve and Table I shows that

FIG. 3. N2 triple bond dissociation curves for an active space
of six electrons in six orbitals. All curves depict total energies that
include the �DFT correction.
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TABLE I. Energies in hartree for minimal active space calculations. The CAS section shows the CASSCF energies and the DMFT energies
that try to approximate it. The �DFT section gives the dynamical correlation correction. The CAS + �DFT section shows the sum.

N2 H2CO H2O

R (bohr) 2.075 2.75 6.0 2.292 3.468 6.876 1.81 2.72 5.43

CASSCF −109.1166 −108.9732 −108.7949 −113.9816 −113.8219 −113.7331 −76.1084 −75.9549 −75.8057
CAS space ELS-DMo −109.1088 −108.9455 −108.7966 −113.9749 −113.8188 −113.7336 −76.1100 −75.9564 −75.8064

ELS-DMm −109.1222 −108.9909 −108.8019 −113.9781 −113.8255 −113.7354 −76.1090 −75.9664 −75.8079
CASSCF −0.4148 −0.3671 −0.2620 −0.4966 −0.4460 −0.4000 −0.3058 −0.2687 −0.2127

�DFT ELS-DMo −0.4078 −0.3480 −0.2621 −0.4944 −0.4340 −0.4000 −0.3014 −0.2667 −0.2125
ELS-DMm −0.3958 −0.3587 −0.2620 −0.4901 −0.4359 −0.3999 −0.3005 −0.2661 −0.2124
CASSCF −109.5314 −109.3402 −109.0568 −114.4782 −114.2679 −114.1331 −76.4142 −76.2236 −76.0184

CAS + �DFT ELS-DMo −109.5166 −109.2935 −109.0587 −114.4693 −114.2528 −114.1336 −76.4115 −76.2230 −76.0189
ELS-DMm −109.5181 −109.3496 −109.0638 −114.4682 −114.2614 −114.1353 −76.4095 −76.2325 −76.0203

the individual components (CAS space and �DFT cor-
rection) also nearly coincide, indicating that the combined
ELS+ method can act as a substitute for CAS�DFT for
this molecule. One should note that the modified ELS-DM
parametrization yields slightly inferior results compared to the
original parametrization. This is not very alarming since the
modified parametrization is mainly applicable to situations in
which multiple bonds in the same region are broken.

The results for the C=O bond break of the H2CO molecule
paint a similar picture. The ELS+ energies and their decom-
position are close to the CAS�DFT ones. However, in this
case the variation is slightly higher than for the H2O case,
especially at the equilibrium and intermediate bond distances.

The triple bond dissociation of the N2 molecule proves to
be a bit more difficult to describe for the ELS-DM functional.
The original parametrization of the ELS-DM functional fails
in the intermediate bond distance region. We analyzed the
CASSCF 2RDM of this region and compared it to the original
ELS-DM results and noted that the dispersive type interac-
tions were present in CASSCF, while they were nearly absent
for ELS-DM. The modified parameter set fixes this issue and
yields good overall results.

We have seen that the ELS+ method is, after some
reparametrization, capable of reproducing the CAS�DFT re-
sults. However, as was mentioned before, the CAS�DFT
method is not without its errors. It is has been shown that
the dissociation limit of CAS�DFT for multibonded systems
is too high compared to the accurate CBS limit [34,35]. The
main culprit is the lack of the interbond dynamical correlation
between the electrons localized on the same fragment of a
dissociating molecule. Two different correction schemes were
proposed. The newest variant injects the density of the frontier
orbitals into a LYP functional scaled by an occupation-
number-dependent prefactor. The older variant, which we will
be using here, essentially entails using the correlation cor-
rection for multibond systems, Eq. (13), again. The resulting
CAS�DFT + M method

ECAS�DFT+M
e = ECAS�DFT

e +
∫

dr1dr2

× �M[γ CASSCF(r, r′)](r1, r2)

|r1 − r2| (23)

has shown to be capable of relatively accurately reproducing
the CBS curve for the N2 molecule. Similarly, one can add the
correction (again) to the ELS+ method

EELS++
e = EELS+

e +
∫

dr1dr2
�M[γ ELS-DM(r, r′)](r1, r2)

|r1 − r2| ,

(24)

resulting in a method that ought to be able to reproduce the N2

curve. As is shown in Fig. 4, this is indeed the case, proving
that the ELS-DM functional is a satisfactory replacement for
the CASSCF wave function for ground-state calculations.

V. CONCLUSIONS

A combined approximate density and density-matrix
ELS + + functional method is proposed for calculation of
potential energy curves of molecular multibond dissociation.
It accounts for all relevant effects of electron correlation along

FIG. 4. N2 triple bond dissociation curves for an active space
of six electrons in six orbitals. All curves depict total energies that
include the �DFT correction. The dashed curves represent the calcu-
lations without the medium range correlation dissociation correction.
The CBS data has been taken from Ref. [47].
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the bond dissociation coordinate. These effects include the
short-range dynamical correlation, the long-range intrabond
nondynamical correlation, as well as the important in the dis-
sociation region medium-range interbond electron correlation.

The key point of the present DMFT + DFT development
is that the ELS-DM pair density, a relatively simple 1RDM
functional, closely reproduces a more complicated ab initio
pair density of CASSCF. This allows the corresponding ELS-
DM energy functional to efficiently account for nondynamical
correlation.

Furthermore, the ELS-DM on-top pair density closely re-
produces locally the CASSCF on-top pair density. This allows
to physically meaningfully correct the correlation DFT LYP
functional for SDC using the generated within DMFT on-top
pair-density within �DFT.

The proposed ELS+(+) functionals are applied to the
calculation of the potential energy curves of the multibond
dissociation in the prototype molecules N2, H2O, and H2CO.
The resultant potential energy curves go very close to the
corresponding potential energy curves of the CAS�DFT
method, which has been recently successfully applied to the
calculation of various molecular potential energy curves in
Refs. [26,27,34,35].

The proposed ELS+(+) methods effectively resolve the
major DMFT bottleneck, stemming from the troublesome fea-
ture of the 1RDM spectrum, namely, the accumulation of the

NO eigenfunctions near the zero NON eigenvalue. Because
of this feature, the two-step orbital and occupation number
optimization scheme rarely converges fully. So reaching a
fully self-consistent solution with a DM functional, which
includes all NOs in a given basis, often becomes, in a general
case, a veritable numerical nightmare.

The present ELS+(+) functionals efficiently circumvent
this DMFT bottleneck by not using at all the higher NOs
outside the minimal geminal subsets. In conventional DMFT,
the inclusion of these NOs is required to properly account
for dynamical correlation. At variance with this, in ELS+(+)
dynamical correlation is evaluated with the �DFT functional,
which does not use higher NOs. With the results obtained, this
can be considered as a further development in the functional
theory focused on the reliable calculation of the molecular
potential energy curves.
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