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Two-channel approach to the average retarding force of metals for slow singly ionized projectiles
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Based on the fundamental momentum-transfer theorem [B. A. Lippmann, Phys. Rev. Lett. 15, 11 (1965)],
a contribution to the retarding force of metallic systems for slow intruders is derived. This contribution is
associated with sudden charge-changing cycles during the path of projectiles. The sum of this and the well-known
conventional contributions, both expressed in terms of scattering phase shifts, is used to discuss experimental
data obtained for different targets. It is found that our two-channel modeling, with two nonlinear channels,
improves the agreement between data and theory and thus, as predictive modeling, can contribute to the desired
convergence between experimental and theoretical attempts at the retarding force.
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I. INTRODUCTION AND MOTIVATION

According to a basic book on quantum mechanics by Lan-
dau and Lifshitz [1], one of the most important quantities in
the interaction of heavy charged projectiles with fixed atoms
is the average energy loss. This time-independent quantity, a
kind of deposited energy, is an observable and due to conser-
vation laws its measurement is feasible in experiments. Thus,
in this subfield of nature (physics and human therapy) the real
challenge resides in the convergence of measurements and
theories. Their interplay, a continuous one over a century, fer-
tilizes the development of both approaches, which can result
in transferable knowledge [2].

The present work is dedicated to the case where singly ion-
ized projectiles interact with constituents of metallic targets.
The main challenge addressed here is to find a reasonable
combination of the quantum-statistical and atomistic aspects
of the energy-loss process in real targets. As motivation, on
which our attempt is partially based, we start with an estab-
lished result. The well-known conventional form [3–5] for
the stopping power (written in Hartree atomic units, where
e2 = me = h̄ = 1) of a homogeneous degenerate electron gas
(characterized by Fermi velocity vF ) for heavy intruders is
given by

dE

dx
= 2

(2π )3

∫ vF

0
v2

e

[
2π

∫ 1

−1
dx(v − vex)vrσtr (vr )

]
dve,

(1)

where v and ve ∈ [0, vF ] are the projectile and system-
electron velocities. One of the integration variables is x ≡
cos β, where β is the angle between v and ve. Thus
v2

r = v2 + v2
e − 2vevx. Clearly, in an interpretation based on

independent-electron scattering off a heavy projectile mov-
ing with constant velocity v, the remaining task resides in a
common two-body interaction V (r), in order to perform the

statistical averaging over a Fermi-Dirac distribution with

σtr (vr ) = 4π

v2
r

∞∑
l=0

(l + 1) sin2[δl (vr ) − δl+1(vr )]. (2)

In this scattering interpretation the analysis is based on the
concept of asymptotic states in the infinite past and future, i.e.,
involving large time differences. Sudden processes in time,
like a local charge change in metals, require a refined ap-
proach on associated transition amplitudes in time-dependent
perturbation theory. In kicklike sudden [1] processes one may
use predetermined states as a complete set to treat the matrix
elements in strong (but transient in time) perturbations. Note
that it is precisely such a transient channel which could create
difficulties in large-scale simulations, like in the orbital-based
implementation of time-dependent density-functional theory
(TDDFT).

Such an implementation rests on averaging of quantum-
mechanical time-dependent energy differences over certain
timescales in order to define a forcelike quantity such as a
stationary observable in stopping [6,7]. In these large-scale
simulations specification of the initial conditions is required
for real-time propagation. For instance, in [7] two options
were considered for helium in aluminum target. In the first
one, the screened atom was included in the determination of
the static initial state. In the second one, the initial condition
was set up by adding an α particle and thus producing a sud-
den change in the external potential. In both cases the authors
control only the initial state and not the subsequent dynamics
which is given by the time-dependent single-particle equa-
tions within TDDFT. Therefore, a smoothed evolving picture,
without fast local charge-changing processes, is employed.

First, as concretization of our motivation, we integrate
Eq. (1) by using models for the momentum-transfer cross
section in order to get useful information about the phe-
nomenology discussed in Sec. II after Eq. (6). Namely, we
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take the form of σtr (vr ) = 4πAα/vα
r , in which α = 2 and 4.

By straightforward quadrature we obtain [5] from Eq. (1) for
these models
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The above model results are of course in agreement with
the expected limits dE/dx = n0vvF σtr (vF ) and dE/dx =
n0v

2σtr (v) at v → 0 and v → ∞, respectively. Earlier, careful
theoretical analysis [8] performed within an adiabatic frame-
work on velocity dependence stated that the next term beyond
the v-proportional one is at least second order in velocity.
Our closed expressions for v � vF are in harmony with this
important statement. Furthermore, a certain weighted combi-
nation of our two expressions at v � vF would result in an
almost perfect v proportionality. That, at this point, simple
mathematical observation will become a more transparent and
physical one in Sec. II, where we extend the theory on the
average retarding force beyond the common fixed-potential
approximation by considering physically reasonable force
matrix elements as independent channel contributions.

The rest of this paper is organized as follows. Section II
is devoted to theory and a discussion of the results obtained.
Section III contains a short summary and a few general com-
ments. As above, we use atomic units throughout this work.

II. RESULTS AND DISCUSSION

We begin this section by outlining few important elements
of stationary scattering theory. According to the basic rules of
quantum mechanics on expectation values of operators, one
should consider the force matrix element [9] between or-
thonormal components of a scattering state to characterize
the associated momentum transfer. Applying this quantum-
mechanical theorem, where σtr (vr ) ∝ ∑∞

l=0(l + 1)[I1(l, vr )]2,
one has [10–12] for the matrix elements

I1(l, vr ) =
[∫ ∞

0
dr r2Rl (r, vr )

∂V (r)

∂r
Rl+1(r, vr )

]

= sin[δl (vr ) − δl+1(vr )]. (3)

We stress that this remarkable identity rests on those states
characterized by the scattering Schrödinger wave equation
with v2

r /2 energy and V (r) external field. However, with
partial waves based on V (r), but with a net Coulomb field

�Vc(r) = −q/r in space of V (r), we get

I2(l, vr ) =
[∫ ∞

0
dr r2Rl (r, vr )

∂

∂r

(
−q

r

)
Rl+1(r, vr )

]

= q cos[δl (vr ) − δl+1(vr )]

2vr (l + 1)
, (4)

and with unperturbed (u) partial-wave components the corre-
sponding result becomes

I (u)
2 (l, vr ) =

[∫ ∞

0
dr r2 jl (vrr)

∂

∂r

(
−q

r

)
jl+1(vrr)
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= q

2vr (l + 1)
. (5)

Here we used the spherical Bessel functions of the first kind,
i.e., the components of an unperturbed plane-wave (momen-
tum) state, instead of self-consistent radial functions. These
forms in Eqs. (4) and (5) are based on the fact that in cases
with abrupt perturbations the original stationary system has no
time [1] to relax to the stationary state of a new Hamiltonian.

We will consider these amplitudes as the proper ones
when there is a sudden change in the self-consistent V (r),
as in the case of charge-changing (q = 1) processes gener-
ated by the binary interaction with fixed lattice ions. This
charge change results in an excess bare field �Vc(r) = −1/r.
The square of I2(l, vr ) − I (u)

2 (l, vr ) can characterize, in a
quantum-mechanical interpretation, an extra (kicklike) mo-
mentum transfer due to the sudden change in the external field.
That square is in fact a regularized transition probability. Such
a regularization is needed since both I2 and I (u)

2 would give
divergent results after l summation. This regularized channel
gives (at q �= 0) a form for the associated cross section

σ
(2)
tr (vr ) = 4π

v2
r

(
q

vr

)2 ∞∑
l=0

1

l + 1
sin4

[
δl (vr ) − δl+1(vr )

2

]
,

(6)
for which a simple trigonometrical identity (1 − cos α)2 =
4 sin4(α/2) is employed.

Before our quantitative analysis, we continue with
phenomenology. There are important differences between
Eqs. (6) and (2), i.e., between σ

(2)
tr (vr ) and the conventional

one given by Eq. (2) and denoted from here by σ
(1)
tr (vr ). The

kinematical prefactors show that the new term (proportional to
v−4

r ) vanishes faster at large scattering wave number vr . Thus,
at vr � 1 values, which represent, at a small intruder velocity,
the range of the Fermi velocity of metals, and at δ � π for a
dominating phase shift, the new term can become the dom-
inating one. A combination of the v−2

r and v−4
r dependences

in σ
(1)
tr (vr ) + σ

(2)
tr (vr ) with the integrated characteristics found

with separated model cross sections in the Introduction signals
that a velocity proportionality in the stopping power holds,
practically up to v � vF from below.

Now we turn to the quantitative part of this section. We will
determine numerically the two quantities, denoted by Q(1)(vF )
and Q(2)(vF ), by which the low-velocity stopping power of
metals (a system of an electron gas and lattice ions) takes a
frictionlike form

1

v

dE

dx
= Q(1)(vF ) + Q(2)(vF ), (7)
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where the two coefficients (when q �= 0) are given by the
expressions

Q(1)(vF ) = 4

3π
v2

F

∞∑
l=0

(l + 1) sin2[δl (vF ) − δl+1(vF )], (8)

Q(2)(vF ) = 4

3π
q2

∞∑
l=0

1

l + 1
sin4

[
δl (vF ) − δl+1(vF )

2

]
. (9)

Our summation of two-channel cross sections in Eq. (7)
resembles, mathematically, the well-known [13] rule in po-
tential scattering with a spin-orbit interaction term where we
sum the direct (non-spin-flip) and spin-flip partial differential
cross sections for electron scattering for any spin orientation
before scattering. There the integrated cross sections, needed
for observables, are obtained by integrating over all scattering
angles. Remarkably, the spin-flip part depends on an ampli-
tude difference, similar to our regularized difference.

We stress at this point that we employ in the summation
in Eq. (7) an a priori unit-weight assumption. In reality, i.e.,
for channelinglike conditions in metals, the impact parameter-
dependent closest approach of intruders and lattice ions [7,14–
16] may influence that assumption. In more simple terms, our
present weighting would refer to random-collision situations.
Nonequal weighting might be based on certain probabilistic
inputs [17] to sum two nonlinear channel; however, such in-
puts need, in our modeling, an additional justification, since
one cannot apply stationary linear-response ideas to a sudden
effect.

Table I contains our numerical results for Q(1)(vF ) and
Q(2)(vF ) at selected values of the rs Wigner-Seitz radius and at
q = 1. The partial phase shifts, calculated by DFT at the Fermi
momentum, are taken from earlier works [18–20]. Both Q(1)

and Q(2) are oscillating functions, but Q(1)(rs) has a strong

TABLE I. Partial contributions Q(1)(vF ) and Q(2)(vF ) at q = 1 to
Eq. (7). Phase shifts, based on the orbital version of DFT [18–20],
are employed. See the text for further details.

rs = 1.5 rs = 2 rs = 3

Z1 Q(1) Q(2) Q(1) Q(2) Q(1) Q(2)

1 0.305 0 0.255 0 0.162 0
2 0.755 0.069 0.427 0.134 0.135 0.250
3 0.912 0.161 0.439 0.247 0.117 0.368
4 1.112 0.235 0.557 0.323 0.191 0.421
5 1.417 0.298 0.749 0.374 0.307 0.443
6 1.692 0.366 0.874 0.413 0.346 0.481
7 1.777 0.369 0.825 0.449 0.275 0.522
8 1.631 0.402 0.637 0.483 0.167 0.545
9 1.346 0.438 0.428 0.512 0.085 0.563
10 1.047 0.471 0.267 0.539 0.035 0.593
11 0.815 0.498 0.183 0.564 0.032 0.612
12 0.690 0.520 0.199 0.572 0.108 0.595
13 0.697 0.531 0.338 0.559 0.242 0.546
14 0.850 0.533 0.580 0.527 0.348 0.484
15 1.146 0.521 0.846 0.482 0.360 0.427
16 1.539 0.502 1.062 0.437 0.297 0.405
17 1.975 0.480 1.219 0.404 0.234 0.374
18 2.386 0.458 1.364 0.386 0.191 0.372

direct density dependence via v2
F ∝ r−2

s in Eq. (8). Thus, at
metallic densities, Q(2)(rs) in the sum Q(1) + Q(2) can make an
important modulation in the Z1 oscillation of Q(1), especially
around its minima. For Z1 = 1, we take our values for Q(1)

obtained within the explicit version [5] of DFT. There a single
Euler equation is solved in an iterative self-consistent way.
That calculation does not consider a doubly populated weakly
bound (extended) state around an embedded proton in an
electron gas, in harmony with experimental facts, obtained by
positive muons, on the nonexistence of muonium in metals.

Despite this, there is perfect agreement [5] with Q(1) results
obtained from the implicit orbital-based DFT. This agreement
signals that it is the short-range part of proton screening
which needs a nonlinear treatment. In simple terms, that range
is the most important one to determine the first few phase
shifts. Our Q(2) = 0 values for Z1 = 1 are in accord with a
screened-proton picture without a bound state, where there
is no charge-changing cycle; thus q = 0 during the motion
of the projectile. Since the experimental data, obtained with
low-velocity proton projectiles for Al and Ni targets, are in
reasonable harmony [15,16,21] with nonlinear theory [18–20]
based solely on Q(1)(vF ), we have transferable knowledge in
this case. A desired convergence between the two sides of
understanding is achieved.

For all other Z1 � 2 we consider, for velocities v � vF ,
the q = 1 value as the most plausible one. This conservative
value seems to be a realistic one with singly ionized intrud-
ers. Higher-q values might have relevance when there is a
large electronic overlap between clouds of colliding atoms.
We believe that such a partial channel with q > 1 would
need more-energetic head-on-like collisions. Theoretically, it
would be interesting to model the transition from our discrete-
q modeling of charge-changing cycles to the pioneering [22]
quasiclassical work where the retarding force (the observable)
is related to an electron density flux constructed from the
statistical Thomas-Fermi theory of atoms. With a transition
study one might arrive at a deeper understanding of an in-
tegrated (classical trajectory Monte Carlo) approach [23] for
energy-loss and -capture processes.

There is certain contradiction (cf. Fig. 2 below) for the Al
target between the low-velocity experiment [15] and TDDFT
[6,7,24] results in the case of He+ projectiles. In this case our
result, based on Q(1) + Q(2), is in harmony with [7] for the
off-channeling situation. For the channeling simulation our
Q(1) also gives reasonable agreement with [6,7]. We stress
that [24] uses an α particle (He2+) as the projectile and
an atom-centered optimized Gaussian basis set to model the
energy transfer. The observed agreement (see the discussion
around Fig. 2) is remarkable in light of the careful experiment
[25] performed on electron emission from aluminum. There
perfect linearity in the velocity of helium ions, with v � 0.6,
was obtained, and thus quantitative agreement with [6] was
concluded.

Note, in the spirit of the discussion made already in [7] for
proton and helium intruders, that we can image an experimen-
tal situation where, at very low ion velocities, only the neutral
screened atom contributes via its Q(1), and the Q(2) channel
becomes active only from an intermediate velocity below the
Fermi velocity. Such a modeling would fit the experimental
[15] suggestion on two (both linear in ion velocity) parts on
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the whole kinematical range v � vF . Of course, the accep-
tance of such a suggestion presupposes that the underlying
experiment-evaluation method behind the data is well justified
for the whole range of ion velocity. For these simple intruders,
partial support of such a view could be based on the surface-
scattering experiment [26] performed with singly ionized ions
(Z1 ∈ [1, 20] and at projectile velocity v = 0.5) scattered from
an aluminum surface at variable scattering angles. There the
challenging problem of inhomogeneity in the electron density
profile of the electron salvage in front of a metal surface
was studied, along with the phenomenological refinement of
factors in dE/dx = (n0v)[vF σ

(1)
tr (vF )]. We will return to this

experiment in the discussion of Fig. 3, which is devoted to an
important comparison for Z1 > 2.

Related to our prediction with Q(1) + Q(2) > Q(1) values
for the average retarding force in metals, we turn to a brief
discussion of data [14] obtained for another free-electron-like
material, Mg. For this metal vF � 0.7 and the experiment with
He+ and proton projectiles was performed for v � vF . It was
found that the ratio R of stopping powers with these intruders
becomes about 2, in contrast to a ratio of about unity which
is based on Q(1) values of self-consistent DFT. Our approach
would result in a ratio (R > 2) which is not in contradic-
tion with experimental suggestion. As support, we note that
in [26], i.e., in a surface experiment, the helium per proton
stopping ratio was found to be always higher than unity, even
for rs(z) > 3. Clearly, the desired convergence of theories
and experiments requires further studies for Mg (rs � 2.7)
and, say, for Ca (rs � 3) as well, within large-scale TDDFT
simulations with proton and helium intruders at v � vF .

At this point, i.e., before the presentation and discussion of
our illustrative figures, we would like to mention a very recent
attempt [27] where a two-channel modeling was presented for
the spectral linewidth in plasma environments. The authors
of that insightful work demonstrated that the commonly used
expression for the linewidth neglects a potentially important
contribution from electron-capture processes. Their numeri-
cal value signals that a proper sum of two contributions can
be about twice the conventional estimation. In the field of
high-energy-density plasmas, our q-mediated enhancement in
stopping power may contribute to the proper determination of
the ignition threshold [28] in a deuterium-tritium-α energy-
deposition process. There, via a plausible postulation, the
theoretical underprediction of stopping data was associated
[28] with ion-ion nuclear scattering.

Now we illustrate our results with three figures. In
Fig. 1, for rs = 1.5 of the Wigner-Seitz parameter, we plot
the dimensionless ratios of R1 = [Q(1)(vF , Z1)/Q(1)(vF , Z1 =
1)]1/2 and R2 = {[Q(1)(vF , Z1) + Q(2)(vF , Z1)]/Q(1)(vF , Z1 =
1)}1/2, i.e., ratios of nonlinear quantities. One might con-
sider [21,29] these ratios as a kind of effective charge. This
figure reflects, in a highly phenomenological manner, that
the so-called Z1 oscillations may get important modulations
especially around the minima of the conventional R1 ratio.
Notice that the ratios so defined are square roots of physical
magnitudes. This mathematical operation has a smoothing
character (cf. Fig. 3) with renormalized oscillating functions.

Figure 2 is devoted to dE/dx quantities, in atomic units,
obtained for Al (rs � 2.13) with helium projectiles. The ve-
locity range, in atomic units, is v ∈ [0, 0.6]. The green dotted

0 5 10 15
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2.5
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1 
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FIG. 1. Illustrative dimensionless ratios R1 (dashed curve) and R2

(solid curve), defined in the text, as a function of Z1. The density pa-
rameter is rs = 1.5, which corresponds to a high-density degenerate
electron gas, which would refer to the plasma frequency of Au.

curve represents a simple (with Z1 = 2) linear-response (first-
order Born) approximation, where the electron gas dielectric
function at the random-phase approximation (RPA) level, i.e.,
without static or dynamic local-field corrections [30], is used.
In such an approximate theory, the stopping is proportional to
Z2

1 . The corresponding form, employed in a foundational work

0 0.1 0.2 0.3 0.4 0.5 0.6

v (a.u.)

0

0.1

0.2

0.3

0.4

dE
/d

x 
 (

a.
u.

)

FIG. 2. Stopping power dE/dx for helium projectiles as a func-
tion of the velocity v ∈ [0, 0.6]. The present results are represented
by the green solid and green dashed curves. Symbols are taken from
Fig. 5(b) of [7] (black solid and red dash-dotted curves with closed
circles) and from Fig. 5(b) of [24] (black squares). Data for Al are
plotted by a dashed magenta curve with closed triangles. Their sys-
tematic and statistical errors are analyzed in the experimental work
[15]. Finally, the green dotted curve shows Eq. (10) with Z1 = 2. See
the text for further details.
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[19] as well, is given by

(
dE

dx

)
RPA

=v
4

3π

{
Z2

1

2

[
ln

(
a + 2

3

)
−3a − 1

3a + 2

](
3a

3a − 1

)2}
,

(10)
where the abbreviation a = πvF is used. Its value is about
a � 2.83 for Al. This expression is a particular realization of
the model discussed in the Introduction with σtr (vr ) ∝ 1/v4

r .
Our present results (at Z1 = 2) correspond to the green

solid curve (Q(1) + Q(2)) and the green dashed curve (Q(1)).
The black solid and red dash-dotted curves with closed circles
are taken from Fig. 5(b) of [7]. They refer to off-channeling
and channeling conditions, respectively. Notice that an ear-
lier TDDFT result of [6] (not shown here) agrees precisely
with the black curve. There is a fortuitous similarity between
the RPA result for the homogeneous electron gas and re-
sults plotted via green solid and red dash-dotted curves with
closed circles. Neither the screening treatment nor the scat-
tering description of RPA is correct for a nonlinear situation.
For protons, where reasonable agreement [15,16,21] between
nonlinear Q(1)(vF ) and data was found, Eq. (10) with Z1 = 1
would give a serious underestimation [19].

Experimental [15] data, used already in TDDFT for com-
parison [7], are plotted here with a magenta dashed curve
with closed triangles. This curve signals a two-slope behavior
with linearities in the projectile velocity. Remarkably, a quite
similar, i.e., two-slope, behavior was found in [16] for Ni
(rs � 1.8) with a singly ionized He+ intruder. There a com-
parison with TDDFT results [31] was made by using 1.15 as
a multiplying factor for the simulation-based results. As we
already discussed above, we can image such a two-slope be-
havior within the present theoretical framework with certain,
presumably closest-approach-dependent [32], finer-tuning of
our two nonlinear channels. A complete convergence is still
not achieved. The two black squares, for the α projectile, are
taken from Fig. 5(b) of [24], for our velocity range. They
are based on TDDFT with an optimized, localized atomistic,
Gaussian basis set. We speculate that, for extended systems
with slow ions, the screening action of the metallic electron
gas needs further consideration. Moreover, a singly ionized
He+ intruder, instead of He2+, might be closer to the experi-
mental situation.

In Fig. 3 we plot the observable quantities (1/v)(dE/dx)
as a function of Z1. The experimental data (black circles and
triangles) were used earlier [19] for a comparison with Q(1),
which is denoted here by a dashed curve. It was stated in
that pioneering work that there is substantial disagreement
with data in magnitude, particularly around the minimum. Our
result Q(1) + Q(2) is denoted by a solid curve. Notice that data
symbols, without error bars, refer to v = 0.411 (circles) and
v = 0.826 (triangles). The target is the frequently used pro-
totype of free-electron metal, aluminum. By inspection, one
can observe an essential improvement in agreement between
the data and our approach. Here we return to the experi-
ment in [26], i.e., to the above-mentioned surface experiment.
There, although with somewhat smaller deviations from the
conventional Q(1)[vF (z)]-type scaling, also a systematic up-
ward enhancement in stopping power was established. In the
present two-channel modeling, such an enhancement can be
associated with a Q(2)-proportional contribution.
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FIG. 3. Results for the frictionlike coefficients (1/v)(dE/dx) are
plotted in atomic units. The dashed and dotted curves show Eqs. (8)
and (9), respectively. The sum of Eqs. (8) and (9), the solid curve,
refers to our approach. The experimental data points (for Al) are the
same, which were used in a pioneering work by Echenique et al. [19].
They are denoted by closed circles and triangles.

III. CONCLUSION

In this theoretical paper we have investigated the problem
of an average retarding force of metallic targets for slow pro-
jectiles. Beyond the well-known contribution, established for
electron-slow-intruder scattering in a degenerate electron gas,
a contribution was derived which is associated with charge-
change cycles due to lattice ions. Our main closed result was
given by Eq. (6), which is, in the terminology of this subfield
of physics, a nonlinear form, similar to the more conven-
tional one in Eq. (2). These forms were implemented here by
standard phase shifts obtained by applying the orbital-based
DFT to screening in an electron gas. For helium projectiles,
we made comparisons with selected results of experiments
[15] and large-scale simulations [6,7] in TDDFT for a free-
electron-like metal, Al. With our contribution to the retarding
force, the agreement with these results is improved.

As we discussed in Sec. I, our channel describes a sudden
perturbation which is not explicit in recent TDDFT simu-
lations. There a smoothed evolving picture was employed,
without fast local charge-changing processes. As Fig. 2 indi-
cated, our green curves bracket the TDDFT outputs obtained
for channeling and off-channeling conditions within an evolv-
ing picture. We believe that further efforts in TDDFT are
needed to tackle explicitly charge-changing processes. How-
ever, by construction, TDDFT simulations are able to model
the lattice-related details of realistic targets. In order to get
further information on the capabilities of different theoretical
methods, the problem of projectiles in alloys could be an
important one. There different lattice ions could influence
(presumably due to different closest approaches) the charge-
changing fast processes, giving an opportunity to see the
advantage of our modeling over those based on a smoothed
picture in the time domain.

A challenging problem in ratio-data interpretation [14] for
Mg was discussed as well. Our two-channel-based result was
in reasonable agreement with data at around v = vF � 0.7.
The conventional theoretical estimation was not in agreement
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with experiment. A detailed comparison with data for Z1 ∈
[1, 18] in Al was made and improved agreement was found.
Based on these agreements, we suggest further efforts within
TDDFT along these lines. The percentage differences (about
400% and 40%) of the conventional Q(1) (dashed curve) and
the Q(1) + Q(2) (solid curve) results in Fig. 3 for Z1 = 12 in
comparison with experimental data on pure Al target heralds
that alloy targets could be relevant candidates to understand
differences between the theoretical attempts discussed in this
work.

Note that a recent adiabatic modeling [29], motivated by
experiment in [21], also results in remarkable deviations from
a simple modeling with Q(1)(vF ). There the density inhomo-
geneity was considered, via lattice-atom-volume averaging of
Q(1)[vF (r)], as a modulating effect. Such an averaging was
applied successfully [33] for stopping of swift Z1 = ±1 in
order to discuss the charge-sign effect in Si. In the theoretical
modeling [29] a remarkable similarity to experimental effec-
tive charges (defined in Fig. 1) was obtained in such a way.
Furthermore, it was suggested that calculations within large-
scale TDDFT simulations would be useful to demonstrate
the strength of the underlying [29] approach. We share this
suggestion for realistic TDDFT. The suggestion made above
on another important challenge with Mg (rs � 2.7) or with Ca
(rs � 3) is in accord with this.

Thus, at this moment, we have two, i.e., q-dependent
and inhomogeneity-dependent, effects which result in en-
hancement in the electronic stopping power beyond the
conventional, i.e., Q(1)-dependent, theoretical estimation.
Both seem to be, a priori, relevant in reality. Their proper
weights and interplay need further investigation. Cases with
self-irradiated condition [34,35] could be especially important
in this (q �= 0) respect, for instance, Ni ions in a Ni target [35].
In such a symmetric case we can image (for a metal) even
q = 2 for our Q(2) channel. For rs � 2, the Ni ion with its
Z1 = 28 represents the second minimum in the Z1 oscillation
[18,20]. In our modeling we get Q(1) + Q(2) � 0.28 + 0.72q2.

At q = 2 and v = 1, one arrives at (Q(1) + Q(2) )/Q(1) �
11; thus the corresponding stopping power would change
steeply to about dE/dx � 160eV/A. For transition met-
als, which show a high electronic stopping power [35],
the spin-flip process needs a thorough investigation. The
electron spin direction is no longer conserved during
electron-atom collision. One has to consider the total an-
gular momentum j = l + s operator in order to construct
a complete set of spin-angle functions which are needed
for expansions. We left this exciting subproblem in stop-
ping theory with a new (spin) degree of freedom to future
studies.

Note that at high ion velocity, our term would scale
as (q/v)2 with respect to the conventional, i.e., Bethe-like
[1], leading one [7,24]. There a term with [q(v)/v]2 can
give a slowly vanishing enhancement. Thus the high-velocity
limit, under self-irradiated condition [35], also requires fur-
ther investigation. The precise relevance of permutation-based
similarity-aided level crossing [22,36] behind higher-q(v) val-
ues seems to be another interesting subproblem in stopping
theory. The Bethe limit, especially for metals with their dense

electron gas, is not a simple cumulative sum of isolated atomic
contributions [37].

Based on the established capability of our modeling for
metals, we believe that the two-channel approach developed
here can find application in other important fields as well, for
instance, in the friction problem of diatomic molecules dur-
ing their dissociative adsorption on metallic surfaces. There,
based on an empirically motivated local-density-friction ap-
proximation, a local Q(1)[vF (r)] is employed [38]. We argue
here that transient electronic processes, due to dissociation
in an electron gas, could be related to Q(2) in Eq. (6). For
instance, the case of N, with its Z1 = 11, might be a good
candidate, as Table I suggests. We stress, however, that at high
target temperatures, the coupling to phonon modes, i.e., to
quanta of lattice vibrations, can open a new [39] channel to
inelastic processes, beyond the frictionlike channel discussed
in our present study for cold metals. Still, as Fig. 1 of [39]
signals, the proper magnitude of this latter channel could be
important. Indeed, the so-far neglected [39] charge-transfer-
type [related to Q(2)(vF )] processes, especially with highly
reactive molecules, may have impact on conclusions.

We close with a few general comments. The wave func-
tions of the conventional orbital-based DFT for embedded
Z1 were used [18–20] here to calculate the induced electron
density. That is the basic variable of the underlying variational
theory. The phase shifts are therefore auxiliary quantities [18].
Their sums over angular momentum quantum numbers always
satisfy the associated neutrality condition of a self-consistent
orbital-based approximation, i.e., the Friedel sum rule and the
Levinson theorem [13] for local interactions. Since these are
satisfied by construction for any form of a local many-body
term in the Schrödinger-like equations, the physical quality of
DFT results needs further, i.e., energetic, justification.

However, in accord with closely related statements [18,20],
the highly improved quantitative agreement with experimental
facts justifies, a posteriori, our phase-shift-based two-channel
modeling with a different term for the retarding force. Gen-
erally, and in accord with the basic attempt of Landau and
Lifshitz [36] for Fermi liquids, a modeling is good if it
contains few adjustable elements, agrees with several obser-
vations, and makes controllable predictions. We stress, finally,
that the truly exciting theoretical problem of interparticle in-
teraction, i.e., correlated motion of electrons, is considered
in stopping calculations only at the mean-field level. How-
ever, at least for a prototypal two-particle correlated model
system, a recent exact result [40] for the energy shift in
time-dependent (passing) perturbations indicates that proper
independent modes, rather than effective single-particle states,
could pave the way for future developments.
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