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Regularized Born-Oppenheimer molecular dynamics
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While the treatment of conical intersections in molecular dynamics generally requires nonadiabatic ap-
proaches, the Born-Oppenheimer adiabatic approximation is still adopted as a valid alternative in certain
circumstances. In the context of Mead-Truhlar minimal coupling, this paper presents a closure of the nuclear
Born-Oppenheimer equation leading to a regularized molecular dynamics scheme capturing geometric phase
effects. Specifically, a semiclassical closure of the nuclear Ehrenfest dynamics is obtained through a convenient
prescription for the nuclear Bohmian trajectories. The conical intersections are suitably regularized in the
resulting nuclear particle motion and the associated Lorentz force involves a smoothened Berry curvature
identifying a loop-dependent geometric phase. In turn, this geometric phase rapidly reaches the usual topological
index as the loop expands away from the original singularity. This feature reproduces the phenomenology
appearing in recent exact nonadiabatic studies, as shown explicitly in the Jahn-Teller problem for linear vibronic
coupling. Likewise, a newly proposed regularization of the diagonal correction term is also shown to reproduce
quite faithfully the energy surface presented in recent nonadiabatic studies.
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I. INTRODUCTION

Following the longstanding success of Born-Oppenheimer
molecular dynamics over several decades, more recently a
great deal of work has gone into the design of nonadia-
batic molecular dynamics schemes benefiting from increasing
computational power. The development of new simulation
codes for nonadiabatic dynamics is mostly motivated by the
fact that the usual adiabatic Born-Oppenheimer factoriza-
tion of the molecular wave function is generally known to
break down at conical intersections, where nonadiabatic tran-
sitions may indeed occur. Nevertheless, the adiabatic theory
remains in principle a valid option whenever the energy of
the conical intersection is sufficiently higher than the energy
associated to nuclear motion, so that nonadiabatic transitions
become unlikely. However, the presence of conical inter-
sections makes the adiabatic theory extremely challenging
due to the singularities appearing in the nuclear Schrödinger
equation. Indeed, the standard quantum-classical picture from
Born-Oppenheimer molecular dynamics leads to intractable
trajectory equations involving δ-like Lorentz forces. Then,
the study of molecules with a large number of atoms still
represents a major challenge, which stands as the motivation
of this paper.

A. Born-Oppenheimer molecular dynamics

As explained in, for example, Refs. [1,2], the molecular
wave function �({r}, {x}, t ) for a system composed of N
nuclei with coordinates ri and n electrons with coordinates xa

is factorized in terms of a nuclear wave function �({r}, t ) and

*c.tronci@surrey.ac.uk

a time-independent electronic function φ({x}; {r}) depending
parametrically on the nuclear coordinates {r}i=1...N . For the
sake of simplicity, here we will consider the simple case of a
single electron and nucleus, so that �(r, x, t ) = �(r, t )φ(x; r)
and

´ |φ(x; r)|2d3x = 1, where the latter is enforced by the
normalizations of � and �. Equivalently, upon making use of
Dirac’s notation, we denote |φ(r)〉 := φ(x; r) and write

�(t ) = �(r, t ) |φ(r)〉 . (1)

The partial normalization condition becomes ‖φ(r)‖2 :=
〈φ(r)|φ(r)〉 = 1 and the Hamiltonian operator for the sys-
tem reads Ĥ = −h̄2M−1�/2 + Ĥe. Here, M is the nuclear
mass and all derivatives are over the nuclear coordinate r.
In addition, the electronic state is taken as the fundamen-
tal eigenstate of the electronic Hamiltonian Ĥe, so that
Ĥe |φ(r)〉 = E (r) |φ(r)〉 and the eigenvalue identifies the adia-
batic energy surface. The motivation for such an ansatz comes
from the separation of molecular motion into fast and slow
dynamics due to the large mass difference between that of
the electron and nucleus [3,4]. On the other hand, the nuclear
wave function obeys the Born-Oppenheimer equation

ih̄
∂�

∂t
=

[
(−ih̄∇ + A)2

2M
+ ε(φ,∇φ)

]
�,

where we have introduced the Berry connection [5] A(r) :=
〈φ| − ih̄∇φ〉 and the effective electronic potential

ε(φ,∇φ) := E + h̄2

2M
‖∇φ‖2 − |A|2

2M

= E + h̄2

4M
‖∇ρφ‖2. (2)

In the second line, we have introduced the parameterized
density operator ρφ (r) = |φ(r)〉〈φ(r)|. Then, upon defining
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B = ∇ × A, the classical limit obtained via the usual
Hamilton-Jacobi analogy leads to the trajectory equation

Mq̈ +q̇ × B = −∇ε(φ,∇φ),

which is further simplified by neglecting the so-called di-
agonal correction h̄2M−1‖∇φ‖2/2 = −h̄2M−1Re 〈φ|�φ〉 /2,
see Ref. [6]. In addition, since |φ〉 is typically real valued
we have A(r) ≡ 0, thereby recovering the usual quantum-
classical picture of classical nuclei evolving on the electron
energy surface E (r) emerging from the quantum electronic
problem. Then, while the electrons retain their quantum wave
function description, nuclear motion is described in terms of
finite-dimensional classical trajectories evolving on a single
adiabatic potential energy surface.

While the fundamental nature of quantum-classical cou-
pling represents one of the most challenging open problems in
physics and chemistry [7–10], Born-Oppenheimer molecular
dynamics has been extremely successful in a variety of con-
texts [2] and remains the most established theory in quantum
chemistry.

B. Generalized Born-Oppenheimer theory

The presence of singularities (conical intersections) in the
electronic potential energy surface (PES) leads to double-
valued electronic wave functions thereby posing several
challenges. The name “conical intersection” is due to the fact
that separate eigenvalues in the electronic spectral problem
may intersect for specific nuclear coordinates, which emerged
historically as points where the energy surfaces form the
shape of a double cone [11,12]. In 1979, Mead and Truh-
lar [13] exploited gauge transformations in order to make
electronic wave functions again single-valued and restore the
Born-Oppenheimer separation (1) of nuclear and electronic
dynamics.

Upon exploiting the invariance of the Born-Oppenheimer
factorization (1) under the gauge transformation

� �→ e−iζ/h̄�, |φ〉 �→ eiζ/h̄|φ〉, (3)

the Mead-Truhlar minimal coupling method selects the phase
function ζ (r) in such a way that the new electronic state
|φ′〉 = eiζ/h̄|φ〉 is single-valued [14,15] and so avoids the need
to deal with double-valued functions. However, since |φ〉 is
real and the phase ζ has a pole at the conical intersection, this
approach leads to the introduction of a highly singular mag-
netic potential A′ = ∇ζ [14–16]. Then, the nuclear motion
obeys the generalized Born-Oppenheimer equation [14,15]

ih̄
∂�

∂t
=

[
(−ih̄∇ + ∇ζ )2

2M
+ ε(φ′,∇φ′)

]
�. (4)

Here, we have dropped the prime on �′ = e−iζ/h̄� to avoid
proliferation of notation. Notice that neglecting the diagonal
correction leads to replacing the effective potential ε(φ′,∇φ′)
by the energy surface E . Indeed, we have ε(φ′,∇φ′) =
ε(φ,∇φ) = E + h̄2M−1‖∇φ‖2/2 since (2) is gauge invari-
ant and φ is real. Upon neglecting the diagonal correction,
Eq. (4) has been considered as a simplifying alternative to
nonadiabatic approaches retaining quantum electronic tran-
sitions [17]. The latter become more and more likely as the
energy associated to nuclear motion approaches the energy of

the conical intersection. Otherwise, the adiabatic assumption
remains valid and recently Kendrick and collaborators used
Eq. (4) to emphasize the role of the geometric phase in ul-
tracold chemical reactions [18]. In addition, other approaches
have recently been proposed in Ref. [19] to construct the
phase function ζ in general higher-dimensional configurations
and this methodology was applied to situations involving
polyatomic systems [20].

Importantly, since both the vector potential ∇ζ and the
electronic potential are now singular, the nuclear problem
is essentially equivalent to the Aharonov-Bohm problem,
thereby leading to a particularly relevant Berry phase effect,
known as the molecular Aharonov-Bohm effect. In this case,
∇ × ∇ζ is usually represented as a δ function [14,21] and
thus the standard Hamilton-Jacobi analogy leads to intractable
classical trajectory equations, which prevent a molecular dy-
namics approach and lead to the necessity of solving the
Schrödinger Eq. (4) for the entire nuclear wave function
[14,22]. In this context, a standard approach is to approximate
and truncate an expansion of � over the basis set provided
by Gaussian coherent states [23–25]. If G is a normalized
Gaussian and χ (r; q, p) = √

G(r − q) exp[ih̄−1 p · (r − q/2)]
is the corresponding coherent state parameterized by (q, p),
then the nuclear wave function can be expressed as

�(r, t ) =
ˆ

c(q, p, t )χ (r; q, p)d3qd3 p



N∑

k=1

ck (t )χ [r; qk (t ), pk (t )].

The second step involves an approximation and subsequent
truncation of the coherent state basis [26]. Despite its accom-
panying issues [27], this type of representation is the basis of
most current models in molecular dynamics [28]. However,
this representation leads to cumbersome equations of motion,
which are often simplified by specifically devised methods
and uncontrolled approximations [29]. Eventually, this equiv-
alent fully quantum nuclear dynamics still involves major
challenges, which arise from the singular character of ζ and
E and this represents an important problem especially in the
study of molecules with a large number of nuclei. On the other
hand, an exact dynamical study [30] has recently shown that,
at least in the case of the Shin-Metiu model [31], classical tra-
jectories adequately reproduce the quantum nuclear dynamics
within the Born-Oppenheimer approximation. Then, follow-
ing the longstanding success of Born-Oppenheimer molecular
dynamics, this result provides further motivation for the de-
velopment of an adiabatic quantum-classical model retaining
geometric phase effects.

Due to the singular character of ζ , the nuclear Berry phase

� =
˛

γ0

∇ζ (r) · dr

has an intrinsic topological nature and it is actually expressed
as a topological index. While this topological character is
well established in the standard Aharonov-Bohm effect [32],
its manifestation has recently been debated in Refs. [33–35].
Therein, Gross and collaborators have shown that the molec-
ular Berry phase may be considered as a manifestation of a
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geometric (path-dependent) effect. According to these studies,
the value of the geometric phase rapidly tends to the topo-
logical index as the loop encircling the conical intersection
becomes more and more distant from the singularity. These
studies involve the exact factorization of the molecular wave
function, where the electronic factor in (1) is allowed to be
time dependent. Gross and collaborators interpret this geomet-
ric deviation of the Berry phase from the topological index
value as a nonadiabatic effect, since the exact factorization
framework deals with nonadiabatic dynamics.

C. Goal of the paper

This paper proposes a regularization approach to the
formulation of adiabatic molecular dynamics in the pres-
ence of conical intersections. While the generalized Born-
Oppenheimer theory essentially prevents the possibility of
treating nuclei as classical particles, here we will recover
the usual trajectory ensemble picture from quantum-classical
molecular dynamics by resorting to Bohmian trajectories.
Without attempting to solve the quantum nuclear problem and
instead of adopting the classical limit, we will obtain a molec-
ular dynamics scheme by performing a semiclassical closure
involving the nuclear Bohmian trajectories. Motivated by the
Ehrenfest theorem for quantum nuclear dynamics, this closure
scheme exploits the hydrodynamic analogy between Bohmian
trajectories and Lagrangian fluid paths, which are restricted to
define translations in the nuclear coordinate space.

As we will see, this intermediate quantum-semiclassical
picture shows that the singular character of the electronic
potentials becomes manifest in the nuclear evolution only
when setting h̄ = 0, which then leads to intractable classical
trajectory equations. On the other hand, a nonzero value of
Planck’s constant (no matter how small) leads to regular nu-
clear trajectories evolving under the influence of smoothened
effective potentials given by the convolution of the original
potentials with the nuclear probability density. In turn, the
removal of the singularities makes the Berry phase a geo-
metric (path-dependent) quantity in analogy with the recent
findings in Refs. [34,35]. As we will see in the simple case of
Jahn-Teller systems, the geometric phase resulting from the
Bohmian closure successfully reproduces the phenomenology
appearing in exact nonadiabatic studies [34]: starting from
zero, the Berry phase rapidly tends to the Aharonov-Bohm
topological index as the loop encircling the conical intersec-
tion becomes distant from the singularity.

A further step taken in this paper concerns the diagonal
Born-Oppenheimer correction term. As is well known, unlike
the singularity in the Berry connection, the singularity in the
diagonal correction term is not integrable and leads to a di-
vergent total energy unless the nuclear density vanishes at the
conical intersection. As discussed in Ref. [36], this extremely
singular behavior is absent in exact nonadiabatic treatments
[37] and thus is an artifact of the Born-Oppenheimer ap-
proximation. While exact treatments show that the diagonal
correction is negligible in many situations, this is not always
the case [36] and occasionally one is led to formidable chal-
lenges in dealing with the singular character of this term.
Here, following the methodology introduced in this paper,
we will develop a gauge-invariant regularization approach for

dealing with the diagonal correction. Specifically, we will
perform a regularization of the density matrix form of the
electronic potential (2) and we will see how this operation
allows one to treat the diagonal correction without having to
face divergent integrals.

II. FROM EXPECTATION VALUES TO BOHMIAN
TRAJECTORIES

As we discussed above, the presence of singularities on the
electronic energy surface can ruin the usual quantum-classical
picture of molecular dynamics. This is due to the emergence
of a δ-like Berry curvature rendering the classical trajectory
equations intractable. In the absence of singularities, the clas-
sical picture is obtained by applying the usual WKB argument
leading to the Hamilton-Jacobi analogy. While this is probably
the best-established way of obtaining the classical limit, here
we will consider an alternative approach based on Bohmian
trajectories and inspired by the Ehrenfest dynamics of nuclear
expectation values.

A. Remarks on Ehrenfest nuclear dynamics

As outlined in standard textbooks, the equations of mo-
tion for the expectation values (〈Q̂〉, 〈P̂〉) of the canonical
observables (Q̂, P̂) coincide with the classical trajectory equa-
tions under the assumption that 〈A(Q̂, P̂)〉 
 A(〈Q̂〉, 〈P̂〉) for
any observable A. The Ehrenfest approach to the classical
limit is performed in two stages: (i) compute the Ehrenfest
equations for the canonical observables, (ii) replace averages
of functions by functions of averages (semiclassical assump-
tion). While this approach hinges on interpretative arguments
previously questioned in Ref. [38], it leads to exactly the
same classical equations as the Hamilton-Jacobi analogy. In
turn, upon denoting B = ∇ × ∇ζ , this approach shows that
the Ehrenfest equations associated to the quantum nuclear
motion (4)

M
d

dt
〈Q̂〉 = 〈P̂ + ∇ζ 〉, d

dt
〈P̂ + ∇ζ 〉 + 1

2M

〈
(P̂ + ∇ζ )

×B − B × (P̂ + ∇ζ )
〉 = −〈∇ε〉

do not exhibit δ-like singularities, which instead are
smoothened by the averaging process. Then, instead of taking
the classical limit, these Ehrenfest equations may be sim-
plified by assuming 〈(P̂ + ∇ζ ) × B〉 
 〈P̂ + ∇ζ 〉 × 〈B〉 

−〈B × (P̂ + ∇ζ )〉. This assumption leads naturally to the
following equation for q = 〈Q̂〉:

Mq̈ + q̇ × 〈B〉 = −〈∇ε〉. (5)

However, the equation above still needs to be closed in such
a way to express both 〈B〉 and 〈∇ε〉 as functions of q. Ordi-
narily, we would replace 〈B〉 = B(q) and 〈∇ε〉 = ∇ε(q) to
recover the classical limit. However, this leads to intractable
equations in the presence of singularities. Thus, we are moti-
vated to look for an alternative closure that preferably reduces
to classical dynamics in some limit case.
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B. Bohmian approach to nuclear trajectories

In this section, a suitable closure of Eq. (5) is provided
by operating within the hydrodynamic Bohmian picture. This
method is inspired by previous work in plasma physics
[39] and geophysical fluid dynamics [40] and its applica-
tion to Born-Oppenheimer dynamics was recently outlined in
Ref. [41]. Also, this procedure emerges as the Bohmian coun-
terpart to the coherent state approach used in Refs. [42–44].
Therein, the Dirac-Frenkel variational principle underlying
the Schrödinger equation is modified by restricting the wave
function to evolve as a Gaussian coherent state [23,25]; see
Refs. [45,46] for a geometric characterization of this ap-
proach. Here, instead of prescribing the nuclear wave function
evolution (which would break gauge invariance), we will
adopt an alternative closure strategy by focusing on the hy-
drodynamic variational principle underlying nuclear Bohmian
trajectories. More specifically, we will modify the hydrody-
namic variational principle by restricting Bohmian trajectories
to evolve according to translations in the nuclear coordinate
space. As we will see, this method amounts to prescribing a
closure for the Ehrenfest dynamics of the expectation value of
the nuclear position, thereby providing a closure to Eq. (5).

We begin by considering the generalized Born-
Oppenheimer Eq. (4) obtained by applying the Mead-Truhlar
method. In the Bohmian approach, we write �(r, t ) =√

D(r, t )eiS(r,t )/h̄ and define Mu = ∇S + ∇ζ , thereby leading
to the following hydrodynamic Lagrangian for nuclear
motion:

L(u, D)

=
ˆ

D

(
M

2
|u|2−u · ∇ζ + h̄2

8M

|∇D|2
D2

− ε(φ′,∇φ′)
)

d3r.

(6)

At this point, the fundamental variables become the probabil-
ity density D and the hydrodynamic velocity u. In turn, the
latter produces the Bohmian trajectories η(r, t ) in terms of
Lagrangian fluid paths as

η̇(r, t ) = u(s, t )
∣∣
s=η(r,t ).

In Bohmian mechanics, the evolution of these Lagrangian
paths replaces the Schrödinger equation for the quantum wave
function. In addition, Bohmian trajectories govern the dynam-
ics of the probability density via the Lagrange-to-Euler map
D(r, t ) = ´

D0(s)δ(r − η(s, t ))d3r. Notice that this construc-
tion produces the Euler-Poincaré variations [47]

δu = ξ̇ + (ξ · ∇)u − (u · ∇)ξ, δD = − div(Dξ),

where ξ is an arbitrary displacement vector field such that
δη(r, t ) = ξ(s, t )|s=η(r,t ). Instead of going ahead writing down
the hydrodynamic equations, here we proceed by formulating
a finite-dimensional nuclear motion that can serve as a closure
for Eq. (5). To this end, we prescribe a specific form of
Bohmian trajectory, that is

η(r, t ) = r + q(t ). (7)

This step amounts to restricting the infinite-dimensional
Bohmian trajectory η(r, t ) to evolve as a finite-dimensional
translation in the nuclear coordinate space. Notice that here

other options are also available; for example, one could write
η(r, t ) = M(t )r + q(t ) to allow squeezing. However, in this
paper we restrict to translations only. Then, Eq. (7) leads to

u(r, t ) = q̇, D(r, t ) = D0[r − q(t )],

so that q = 〈Q̂〉. Here, D0 is the initial nuclear density and
would normally be chosen as a Gaussian, although here one
may allow for alternative choices such as generalized normal
distributions of the type D0(x) ∝ e |x|α/λ. In general, the clo-
sure (7) takes the Lagrangian (6) into the form

L(q, q̇) = M

2
|q̇|2 − ε̄(φ′,∇φ′) − q̇ ·∇ζ (q),

where we have introduced the bar notation so that

∇ζ (q) =
ˆ

D0(r − q)∇ζ (r)d3r,

ε̄(φ′,∇φ′) =
ˆ

D0(r − q)ε(φ′,∇φ′)d3r.

Then, the nuclear equation of motion is as follows:

Mq̈ + q̇ × ∇ × ∇ζ (q) = −∇ε̄(φ′,∇φ′). (8)

We notice that dropping the bars everywhere in (8) would
correspond to the classical limit, so that the closure proposed
here can be understood as a type of semiclassical closure
of Eq. (5). As already commented above, the classical limit
yields intractable equations in the presence of singularities
since ∇ × ∇ζ is a δ-like magnetic field. Here, we notice
that neglecting the diagonal correction leads to replacing
ε̄(φ′,∇φ′) by the regularized energy surface E in (8), since
ε̄(φ′,∇φ′) is gauge invariant and φ is real. In this case, we
observe that the semiclassical trajectory Eq. (8) avoids the
singularities, which are instead smoothened out by the proba-
bility density D0 acting as a convolution kernel.

It is perhaps useful to compare the trajectory Eq. (8)
with the equation of motion for the Bohmian trajectory (7).
Upon using the density transport equation ∂t D + div(Du) =
0, these Bohmian trajectories obey the Euler-Lagrange
equations

D0(r)η̇(r, t ) + D0(r)η̇(r, t ) × ∇η × ∇ζ (s, t )
∣∣
s=η

= −D0(r)∇ηε(s, t )
∣∣
s=η

− h̄2

8M

δ

δη

ˆ |∇D(s, t )|2
D(s, t )2

d3s. (9)

Notice that the Lorentz force experienced by the Bohmian
trajectory is produced by the magnetic field ∇η × ∇ζ |s=η,
which is singular in the presence of conical intersections. If we
now replace (7), the quantum potential reduces to an irrelevant
constant and integrating over the nuclear position leads to (8).
Thus, we observe that, while the Bohmian trajectory is sub-
ject to a δ-like Lorentz force, the latter appears smoothened
in the Ehrenfest equation for the expectation value q = 〈Q̂〉.
The implications for the geometric phase are discussed in the
following section.

C. Geometric character of the Berry phase

In the mixed quantum-semiclassical picture associated to
Eq. (8), the Berry phase effects occurring in the Bohmian tra-
jectory evolution (9) appear in Ehrenfest’s nuclear trajectories
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as a Lorentz force producing a gyration around the static mag-
netic field ∇q × ∇ζ (q). We notice how the presence of poles
in ζ is absolutely necessary for this effect to appear; indeed,
if � is a smooth function, a simple integration by parts yields
∇� = ∇�, so that ∇ × ∇� = 0. On the contrary, in the pres-
ence of singularities, nonvanishing boundary terms emerge
from the integration thereby contributing to the magnetic field.
A very similar situation also occurs in the Ehrenfest equations
associated to the Aharonov-Bohm problem; see Appendix D
in Ref. [48]. Similarly to that case, we observe that the topo-
logical character of the Berry phase occurring in the nuclear
wave function produces a purely geometric gyration motion
in the semiclassical expectation dynamics. In more generality,
this feature is well known to apply to the Ehrenfest equations
associated to the Aharonov-Bohm problem [48,49], although
it has generated some confusion in the early stages [50,51].
Given the regularized connection ∇ζ , a generic element
of its associated holonomy group [52] is generated by the
geometric phase

� =
˛

γ0

∇ζ (r) · dr. (10)

As anticipated above, this quantity is essentially geometric
in nature as its value depends on the path γ0. Indeed, no-
tice that even if ζ has a pole at the location of the conical
intersection, the geometric phase � vanishes as the loop γ0

encircling the singular point of ζ shrinks to the point itself.
The emergence of this geometric type of Berry phase has
recently been considered in the context of quantum chemistry
by Gross and collaborators [34,35]. In some specific cases,
the authors of Refs. [34,35] adopt an exact approach [37] to
the full nonadiabatic quantum molecular problem to show that
the exact Berry connection quickly tends to the topological
value

¸
γ0

∇ζ (r) · dr from Born-Oppenheimer theory as the
loop γ0 encircling the singular point of ζ becomes larger
and larger. According to the authors of Ref. [35], this feature
would explain why Born-Oppenheimer theory is so successful
in reproducing the values of the Berry phase observed in
molecular spectroscopy experiments [53–55]. Whether this
specific relation between � and the loop γ0 can be recovered
in the present setting is an interesting question, which will be
approached in Sec. III.

D. Regularization of the diagonal correction

While the treatment in Sec. II B was shown to avoid
singularities since the nuclear density behaves as a regu-
larizing convolution filter, this approach crucially requires
neglecting the diagonal Born-Oppenheimer correction term.
As discussed in Ref. [36], the nuclear density needs to vanish
at the conical intersection in order for this term to converge
thereby avoiding nonintegrable singularities. In turn, the ap-
pearance of this node in the wave function was recognized to
be an artifact of the Born-Oppenheimer as this null point is
eliminated in exact nonadiabatic treatments [37].

Instead of giving up including the diagonal correction in
the present treatment, here we propose to model this term by
applying a regularization technique that is based on the treat-
ment in Sec. II B. To this end, we insist that the regularized
diagonal correction term must arise from a gauge-invariant

regularization of the effective electronic potential (2). In par-
ticular, we will consider the density matrix formulation in the
second line of (2) in order to retain gauge invariance at all
stages. The approach from Sec. II B leads to the regularized
electronic potential

ε̄(φ′,∇φ′) =E + h̄2

4M
‖∇ρφ‖2,

where the bar denotes convolution with the nuclear density
and we have used gauge invariance to write ε̄(φ′,∇φ′) =
ε̄(φ,∇φ). It is clear that the nonintegrable singularity carried
by the second term cannot be simply regularized by a standard
convolution. Thus, in order to overcome this obstacle, here
we propose the replacement ‖∇ρφ‖2 → ‖∇ρφ‖2. This step
is motivated by the fact that, if the gradient was regular,
then one could invoke a sharply peaked nuclear density so
that ‖∇ρφ‖2 
 ‖∇ρφ‖2 = ‖∇ρ̄φ‖2. A similar regularization
of the electronic density matrix was recently proposed also
within a nonadiabatic context [56]. In the present case, the
nuclear trajectory equation reads

Mq̈ + q̇ × ∇ × ∇ζ (q) = −∇
(

E (q) + h̄2

4M
‖∇ρφ (q)‖2

)
.

(11)
As we will see in the context of linear vibronic coupling, this
method provides a well-behaved regularized version of the
electronic potential, which may be modified depending on the
specific profile chosen for the nuclear density.

III. AN EXAMPLE: THE JAHN-TELLER PROBLEM

It will be instructive to see how the ideas presented in the
previous sections work out in a concrete model: the Jahn-
Teller Hamiltonian for linear vibronic coupling [11]. Here
we begin by outlining its features under the usual Born-
Oppenheimer framework before exploring the semiclassical
trajectories approach of Sec. II B.

A. Linear vibronic coupling

Consider the linear E ⊗ e Jahn-Teller model, a simple ef-
fective Hamiltonian, which describes an electronic doublet
linearly coupled to a twofold degenerate vibrational mode;
see, e.g., Refs. [12,57]. Explicitly, the nuclear coordinates
r = r1e1 + r2e2 + r3e3 are coupled to the electronic degrees
of freedom through the Hamiltonian Ĥ = −h̄2M−1�/2 +
Ĥe(r), where the electronic Hamiltonian takes the form

Ĥe(r) = k

2

(
r2

2 + r2
3

) + g

(
r2 −r3

−r3 −r2

)
,

where the last term represents the linear electronic-vibrational
coupling. As there is cylindrical symmetry about the r1 axis,
it will be convenient at times to work in cylindrical coor-
dinates defined by R =

√
r2

2 + r2
3 and θ = tan−1(r3/r2). We

are interested in the electronic ground state. If the nuclear
coordinates are frozen then we obtain the Hamiltonian for
just the electronic degrees of freedom, given in standard Pauli
matrix notation as Ĥe = kR2/2 + gR(cos θσ̂3 − sin θσ̂1). The
energy eigenvalues for this Hamiltonian are E±(r) = kR2/2 ±
gR with a conical intersection occurring at R = 0. Then, the
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ground-state wave function |φ(r)〉 arises from the electronic
eigenvalue problem as follows:

Ĥe|φ(r)〉 = E (r)|φ(r)〉, with |φ(r)〉 =
(

sin(θ/2)
cos(θ/2)

)
,

where we have denoted E (r) := E−(r). Note that this ground
state is double-valued since it picks up a factor of −1 as θ in-
creases from 0 to 2π . Following the Mead-Truhlar procedure,
we can construct a single-valued electronic wave func-
tion through the gauge transformation |φ〉 → |φ〉′ = eiζ/h̄|φ〉
where ζ (r) = h̄θ/2. The associated magnetic potential is eas-
ily calculated, giving

∇ζ (r) = h̄

2R
eθ , (12)

where eθ = (0,− sin θ, cos θ )T . In particular, by computing
the line integral

¸
γR

∇ζ · dr, we see that the Berry phase asso-
ciated with any circle γR of radius R > 0 in the r2r3 plane (no
matter how small) is simply π , the usual topological result
expected when encircling a conical intersection. This result
can also be computed from the usual δ-like representation of
the associated Berry curvature ∇ × ∇ζ = h̄πδ(r2)δ(r3)e1 or,
in polar coordinates,

∇ × ∇ζ (r) = h̄

R
δ(R) e1. (13)

Indeed, we have 1
h̄

‚
�R

∇ × ∇ζ · dS = π for any closed sur-
face such that ∂�R = γR.

Putting these things together, we see that within the (gener-
alized) Born-Oppenheimer approximation we obtain a nuclear
wave function equation of the form (4), with ∇ζ as given in
(12) and where the effective electronic potential is

ε(φ′,∇φ′) = E + h̄2

4M
‖∇ρφ‖2 = k

2
R2 − gR + h̄2

8MR2
.

Thus the nuclear wave function equation features both a
singular vector potential and a singular effective electronic
potential.

B. Gaussian regularization

Now we apply the method from Sec. II B with the regular-
ized diagonal correction as in Eq. (11) and by restricting to
nuclear densities that are rotation-invariant, so that D0(x) =
D0(|x|). Then, we go on to evaluate the regularized electronic
potentials involved in the method presented in Sec. II B. We
observe that the regularized vector potential ∇ζ can be ex-
pressed in the form

∇ζ (q) = g(Q)∇ζ (q). (14)

where Q = |e1 × q|. To see this, note that, for any rotation
matrix R and vector a,

∇ζ (Rq + a) =
ˆ

D0(|r − a − Rq|)∇ζ (r)d3r

=
ˆ

D0(|r − q|)∇ζ (Rr + a)d3r.

Consequently, the regularized vector potential ∇ζ (q) inherits
the cylindrical symmetry of ∇ζ in (12), i.e., symmetry under
translations in the e1 direction and under rotations about e1.
Indeed, for any rotation R(θ, e1) by θ around e1, we have
∇ζ (R(θ, e1)r + κe1) = R(θ, e1)∇ζ (r) and analogously for
∇ζ . So, to determine ∇ζ for all q, we only need to determine
∇ζ (q) on a reference direction orthogonal to e1. Upon con-
sidering the positive q3 axis, a direct computation in Cartesian
coordinates shows that

∇ζ (Qe3) = − h̄

2

[ˆ
D0(r1, r2, r3 − Q)

r3

r2
2 + r2

3

d3r

]
e2.

On the other hand, we also have ∇ζ (Qe3) = −(h̄/2)e2/Q and
so we see that ∇ζ (Qe3) = g(Q)∇ζ (Qe3), where

g(Q) = Q

[ˆ
D0(r1, r2, r3 − Q)

r3

r2
2 + r2

3

d3r

]
.

Then, by cylindrical symmetry, we have more generally that
(14) holds also for q not on the q3 axis.

Therefore, Eq. (14) identifies the regularized vector poten-
tial as a Q-dependent rescaling of the original with the scaling
factor given by g(Q). We observe that, for a circle of radius
Q in the q2q3 plane, the Berry phase (10) obtained from the
regularized Berry connection (14) is given by

� = πg(Q) (15)

rather than the original π . In turn, Eq. (14) implies that the
regularized Berry curvature has the form

∇ × ∇ζ (q) = h̄

2

g′(Q)

Q
e1, (16)

so that the Eq. (11) for nuclear motion becomes

Mq̈ = h̄

2

g′(Q)

Q
e1 × q̇ − ∇

(
E (q) + h̄2

4M
‖∇ρφ (q)‖2

)
. (17)

In order to understand the physical content of this equa-
tion, we proceed by specializing the nuclear density to a
Gaussian profile

D0(x) = 1

(
√

π h̄λ)3
exp

(
−1

h̄

|x|2
λ2

)
, (18)

where
√

h̄λ is a length scale to be fixed depending on model-
ing purposes. In this case, we have

g(Q) = 1 − exp

(
−1

h̄

Q2

λ2

)
⇒ h̄

2

g′(Q)

Q
= 1

λ2
exp

(
−1

h̄

Q2

λ2

)
(19)

and thus (15) gives

� = π

[
1 − exp

(
−1

h̄

Q2

λ2

)]
, (20)

so that the geometric phase rapidly reaches the topological
index π as Q increases and the loop expands away from the
original singularity. In turn, the regularized Berry curvature
(16) recovers the δ-like singular case in the limit λ → 0.

In addition, after some calculations using modified Bessel
functions, we obtain
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E (q) = h̄λ2 k

2

(
1 + Q2

h̄λ2

)
−

√
π h̄λ

g

2

[(
1 + Q2

h̄λ2

)
I0

(
Q2

2h̄λ2

)
+ Q2

h̄λ2
I1

(
Q2

2h̄λ2

)]
e− Q2

2h̄λ2 . (21)

By proceeding analogously, we also have

h̄2

4M
‖∇ρφ (q)‖2 = π h̄

16Mλ2

[
I2
0

(
Q2

2h̄λ2

)
+ I2

1

(
Q2

2h̄λ2

)]
e− Q2

h̄λ2 ,

(22)
which completes the evaluation of the potential force term in
(17) upon recalling Q = |e1 × q|.

C. Comparison with exact nonadiabatic studies

The expressions in (19), (21), and (22) represent the
regularized potential energy surface (including the diago-
nal Born-Oppenheimer correction term) and vector potential
computed in the special case of a Gaussian nuclear density
profile. We have managed to derive explicit expressions for
these quantities from which it is clear that they are indeed well
behaved at the conical intersection Q = 0. For example, the
double-cone structure of the electronic energy surface E±(q)
is smoothened and the diagonal Born-Oppenheimer correction
is rendered finite.

A particularly interesting aspect of the regularized vec-
tor potential is the behavior of the associated Berry phase
(15) upon encircling the conical intersection along a circular
loop. As the loop gets bigger, the phase rapidly tends to the
topological result of π , since the proportionality factor g(Q)
between the regularized and usual Berry connection rapidly
tends to 1 as Q → ∞ as is clear from (19). This situation is
illustrated in Fig. 1, which shows the behavior of the scaling
factor g(Q) = 1 − exp(−ε−2Q2/Q2

0). In analogy to the study
in Ref. [34], here we have introduced ε2 = h̄2M−1k3/g4 and
Q0 = g/k. While ε quantifies the degree of nuclear density
localization, Q0 is the radius at which the original energy
surface E reaches its minimum. The dependence of the phase
on the radius of the circle reflects the fact that this quantity
is essentially geometric in nature. As discussed in Sec. II C,
the emergence of a similar path-dependent geometric phase in

0.2 0.4 0.6 0.8 1.0

Q

Q0

0.2

0.4

0.6

0.8

1.0

g(Q)

FIG. 1. Plot of g(Q) for ε = 1/5, 1/10, 1/20 (black, solid), com-
pared with the BO limit (red, dotted).

quantum chemistry has already been established by Gross and
collaborators [34,35] in the context of the exact wave func-
tion factorization for nonadiabatic dynamics [37]. In fact, in
Ref. [34] the exact Berry phase was computed for the case of
the linear E ⊗ e Jahn-Teller model and found to increase from
0 to π as Q → ∞. In this setting, the length scale (23) identi-
fies the characteristic width of the peak in the Berry curvature.
The authors concluded that this behavior, having been derived
within the nonadiabatic framework of the exact factorization,
is a nonadiabatic effect. Intriguingly, our regularized Berry
phase displays exactly the same characteristic behavior, but
we have recovered the result within an adiabatic treatment.
In fact, for us the Berry phase tends to the asymptotic topo-
logical value of π extremely rapidly owing to the Gaussian
nuclear density profile, representing a faster approach to the
limit than in the exact factorization approach and maintaining
consistency with experimental measurements, which are, so
far, not sensitive to the deviations from π .

Of course, the precise rate at which the Berry phase ap-
proaches π depends on our choice of nuclear density profile.
For example, besides adopting a Gaussian regularization,
we could consider the (infinite) family of generalized nor-
mal distributions which have the functional form D(β )

0 (x) =
β[4π�(3/β )(

√
h̄λ)3]−1exp[ − (λ−1|x|/√h̄)β] depending on

a shape parameter β and written in terms of Euler’s � func-
tion. The Gaussian regularization (18) simply corresponds to
the choice β = 2, while the case β = 1 identifies the cusplike
Laplace distribution. For the general case, the regularized
Berry connection is a rescaled version of the original with
the scaling factor g(Q) introduced in (14). We note that the
Laplace distribution falls off less rapidly (though still expo-
nentially) compared to the Gaussian, and this leads to a Berry
phase, which tends more slowly to the asymptotic topological
phase of π .

Another point of discussion is given by the diagonal cor-
rection regularization introduced in Sec. II D. Following the
analysis in Ref. [34], we now pick the width of the nuclear
wave packet to be given by

h̄λ2 = h̄2k

g2M
, (23)

whose meaning will be clarified later. Then, the relations (19),
(21), and (22) are expressed in terms of dimensionless vari-
able s = Q/

√
h̄λ2, the Jahn-Teller stabilization energy � =

k−1g2/2, and the previously introduced ratio ε. For example,
(21) gives

E/� = ε2(1 + s2)

−√
πε[(1 + s2)I0(s2/2) + s2I1(s2/2)]e−s2/2,

while (22) gives an analogous expression of the diagonal
correction h̄2M−1�−1‖∇ρφ‖2/4, which appears to be in-
dependent of ε. Then, the regularized effective electronic
potential can be compared directly to its Born-Oppenheimer
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10 20 30 40
s

−1.0

−0.5

0.5

1.0

FIG. 2. Plot of effective potential �−1(E + h̄2M−1‖∇ρφ‖2/4)
for ε = 1/20 (black, solid), compared with the BO potential with
(red, dotted, top) and without (blue, dotted, bottom) the diagonal
correction.

correspondent; see Fig. 2. We observe that the effective po-
tential obtained from the regularization in Sec. II D is again
strikingly similar to the exact energy surface recently pre-
sented in Ref. [34] and the two profiles exactly coincide away
from the original singularity. In Fig. 7 of Ref. [34], the exact
energy surface appears to reach the vertical axis at slightly
higher energy values, within the interval (0.5,0.75). This result
indicates that the proposed adiabatic model reproduces all the
essential exact nonadiabatic results quite faithfully.

Notice that our study has focused on linear vibronic cou-
pling, while higher-order vibronic interactions may become
important in more realistic situations thereby warping the
adiabatic energy surfaces whose rotational symmetry is then
broken. In this case, the conical intersection at the origin is
accompanied by additional singular points whose contribu-
tions have been studied in, e.g., Ref. [58] for the occurrence
of both linear and quadratic coupling. The application of the
present model to these more involved scenarios is left for
future work. Here, we will simply point out that retaining
quadratic coupling terms in the E ⊗ e Jahn-Teller problem
leads to no essential difficulties, since the Berry connection
has locally the same profile nearby any of the four conical
intersections.

IV. CONCLUSIONS

This paper has presented a regularized Born-Oppenheimer
molecular dynamics approach in the presence of conical in-
tersections. While in this context the usual quantum-classical
picture leads to intractable nuclear trajectory equations, here
we have replaced the classical limit with a closure of the
nuclear Ehrenfest equations that is based on the variational
formulation of Bohmian mechanics. Instead of following
well-established approaches based on coherent states [42–44],
here we have focused on nuclear Bohmian trajectories, which
were conveniently restricted to simple translations of the nu-
clear configuration coordinates. This Bohmian closure leads
to a nontrivial regularized Berry connection given by the
convolution of its original singular expression with the refer-
ence nuclear density. The corresponding regularized curvature
appears as a Lorentz-force term in the nuclear trajectory

equations, which then accounts for holonomy effects. In
this context, the regularization process leads to a path-
dependent geometric phase replacing the usual topological
index, thereby recovering the same phenomenology as in re-
cent nonadiabatic studies [34,35].

We showed that the Bohmian closure alone is not suf-
ficient to deal with the well-known problems arising from
the diagonal Born-Oppenheimer correction, which leads to
divergent integrals. In order to tackle situations where the
diagonal correction is not neglected, we proposed a further
regularization operating on the gauge-invariant form of the
effective electronic potential (2). This further regularization
step consists in the replacement ‖∇ρφ‖2 → ‖∇ρφ‖2 and is
motivated by the regular case in which ρφ is differentiable and
the reference nuclear density is sufficiently peaked.

In order to illustrate the essential features of the proposed
scheme, we have applied our model to the Jahn-Teller problem
for linear vibronic coupling. In this case, we showed that a
rotation-invariant nuclear density leads to a regularized Berry
connection that is a rescaled variant of the original singular
expression by a smooth function of the radial coordinate in
cylindrical symmetry. Then, we showed that for a generalized
class of normal density distributions the Berry phase rapidly
reaches the topological index value as the loop encircling the
singularity gets bigger. In general, the slope with which the
topological index is reached is slower as the nuclear reference
distribution gets wider. This qualitative behavior is precisely
the same as that recently found in exact nonadiabatic studies
[34], thereby indicating how the proposed model is successful
in reproducing the same phenomenology as in the nonadia-
batic fully quantum case.

Within the context of the E ⊗ e Jahn-Teller problem, we
also illustrated the behavior of the regularized effective energy
surface. In particular, by a convenient nondimensionalization,
we presented again a substantial similarity between the regu-
larized energy and the exact energy surface obtained from a
fully quantum nonadiabatic treatment [34]. Once more, this
result supports the validity of our model even in the situations
when the diagonal correction term is retained, thereby elim-
inating the highly pathological behavior otherwise appearing
in the original treatment.

While the application of our molecular dynamics scheme
is left for future studies, here we point out that the inclusion
of quadratic vibronic coupling in the Jahn-Teller problem is
not expected to lead to essential difficulties. This is due to
the fact that the additional conical intersections emerging in
that case [58] produce a Berry connection that is locally the
same in the neighborhood of the singular points. We also note
that the Berry connection is easily computed in the Jahn-Teller
model by exploiting the high degree of symmetry, while the
treatment of realistic polyatomic systems will require a more
systematic approach. For example, following the technique
proposed in Refs. [19,20], one could approximate the Berry
connection through performing a fitting to a two-state diabatic
representation. Once the Berry connection is calculated, it
should be possible to apply our regularization to complicated
polyatomic systems just as in the Jahn-Teller model.

Before closing, we emphasize that, despite the striking
similarities with the results in Ref. [34], the exact nonadiabatic
factorization therein is conceptually very different from the
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model proposed here. Indeed, while in Ref. [34] the elec-
tronic energy surface appears to be smooth as a result of
the exact nonadiabatic approach, in our case the treatment
is essentially adiabatic so that the smoothing process arises
as a modeling strategy motivated by the nuclear Ehrenfest
dynamics. Thus, we expect the model proposed here to retain
limitations from the standard adiabatic treatment underlying
the present study. For example, it has been shown [33] that
there are cases in which the nonadiabatic factorization leads
to an exactly vanishing Berry phase due to the appearance of
an electronic wave function that is both real and single valued.
These and other features escape from the present treatment,

which however was shown to retain some of the nonadiabatic
effects eliminating topological singularities from the nuclear
problem.
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