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Vibrational excitation of N2O by an electron impact and the role of the Renner-Teller
effect in the process
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Cross sections and rate coefficients for vibrational excitation and de-excitation of the N2O molecule by a
low-energy electron for transitions between the lowest vibrational levels are computed using a first-principles
approach. The present theoretical approach employs the normal-mode approximation for the description of target
vibrational states, the vibrational frame transformation to compute amplitudes of vibrational transitions, and the
R-matrix method to compute ab initio electronic bound and continuum states. It was found that the nonadiabatic
Renner-Teller effect, which couples partial waves of the incident electron with degenerate bending vibrations
of N2O, is responsible for the excitation of the bending mode. Theoretical results obtained agree reasonably
well with available experimental data at low energies. Thermally averaged rate coefficients are computed for
temperatures in the 10–10 000 K range.
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I. INTRODUCTION

Vibrational (de-)excitation by electron impact is a process
in which an electron scatters off a molecule and exchanges
energy with it in a way that leaves the molecular target in a dif-
ferent vibrational state. For N2O, vibrational (de-)excitation
can be depicted by

e− + N2O(νi ) → e− + N2O(νi
′), (1)

where νi and and ν ′
i denote the initial and final vibrational

states of N2O, respectively.
Due to the importance of nitrous oxide (N2O) in a plethora

of research fields ranging from astrochemistry [1–3] to low-
temperature plasma technology [4] and medicine [5], different
electron-N2O collisional processes have been experimen-
tally and theoretically explored over the years. Differential
and integrated cross sections for elastic and certain inelas-
tic processes have been measured by several groups [6–26].
Although the experimental investigations generally agree on
the position of an observed resonance near 2.3–2.5 eV, they
disagree on the assignment for the symmetry of the resonant
state. Furthermore, there is also disagreement with respect to
a second resonance observed around or above 8.0 eV. On the
theoretical side, the earlier studies by Morgan [27], Sarpal
et al. [28], and Bettega et al. [29] aimed at clearly specifying
the nature of the two resonances observed in the experiments.
Morgan and Sarpal et al. employed the R-matrix method with
different models to study electron scattering by N2O in its
equilibrium geometry. They obtained a resonance near 2.3 eV
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with 2� symmetry. Later, using a slight modification of the
Schwinger multichannel method of incorporating polarization
effects, Bettega [29] was able to reproduce the experimental
features between the two resonances.

To our knowledge, no theoretical vibrational cross sec-
tions have been reported to date, while several experimental
cross sections have: by Hayashi and Akashi [30], Kitajima
et al. [18], Allan and Skalický [21], and Nakamura [22].
A compilation of their work can be found in a recent re-
view [31]. Hayashi and Akashi presented cross sections for
electron-induced vibrational excitations from electron swarm
parameters in pure N2O. Kitajima et al. as well as Allan
and Skalický measured absolute differential cross sections
for vibrationally inelastic electron scattering with a range of
electron scattering energies from the threshold region up to
20 eV. Allan and Skalický reported measurements for only
one scattering angle, 135◦, and multiplied each of the mea-
sured differential cross sections by the factor 4π to estimate
the integral cross section. Nakamura [22] derived cross sec-
tions for vibrational excitation from swarm parameters.

The present work represents the first theoretical vibrational
excitation (VE) study of N2O by electron impact. We present
cross sections and rate coefficients for transitions between
ground and first vibrational states of N2O using the theoretical
and computational formalism recently employed to study the
VE of NO2 [32]. The rotational structure is neglected in the
present study.

The paper is organized as follows. The next section, Sec. II,
describes the theoretical approach and computational details
employed in our calculations. In Sec. III, the results obtained
numerically are analyzed using the model of Renner-Teller
coupling for linear molecules. In Sec. IV, the obtained VE
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cross sections and corresponding rate coefficients are shown
and discussed. Section V presents uncertainty estimations of
the present approach, and the last section, Sec. VI, is devoted
to our conclusions.

II. THEORETICAL APPROACH

Our approach can be summarized as follows. We start by
characterizing the molecular target according to its equilib-
rium geometry, vibrational frequencies, and dipole moment
value at equilibrium: features that can be obtained by perform-
ing ab initio electronic bound molecular states calculations.
We proceed by performing ab initio electronic continuum
molecular states calculations to obtain a scattering matrix at
different molecular geometries along the vibrational normal-
mode coordinates. We then transform the scattering matrix
into the basis of vibrational states of the target molecule.
Finally, we compute the vibrational (de-)excitation cross sec-
tions from the transformed scattering matrix.

The approach used in our study has been previously de-
scribed and applied to the NO2 molecule [32], and a more
detailed narrative of the simplified model on which our ap-
proach is based can be found in Refs. [33,34]. Therefore,
we limit the description presented in this section to the main
ingredients of the theoretical formalism—the normal-mode
approximation and the vibrational frame transformation—and
to the computational details of our calculations.

At low energies around the equilibrium position, the po-
tential energy curve of the most rigid molecules is fairly well
described by the quadratic potential of a harmonic oscillator.
In our approach, we describe vibrational wave functions of the
molecular target using the normal-mode approximation. The
approximation allows us to perform a significant part of the
calculations analytically. For molecules of astrophysical and
low-temperature plasma interest, like N2O, only the lowest
vibrational levels are significantly populated at low temper-
atures and the range of scattering energies needed to study
vibrational excitation is within the validity of the normal-
mode model.

After computing the scattering matrix, we perform a vi-
brational frame transformation [35] to change the scattering
matrix obtained for clumped nuclei for a number of molecular
geometries to the vibrating-molecule picture that the electron
sees when it is at large electronic distances.

The clumped nuclei basis of asymptotic channels is de-
noted by the channel quantum numbers {l, λ} that label the
angular momentum of the incoming and outgoing electrons
and their respective projections on the z axis in the molecular
frame coordinate system. The three axes of the molecular
coordinate system are chosen along the principal axes on the
inertia of the molecule, such that the quantization axis (the z
axis) is directed along the molecular axis in calculations for
linear geometries. For bent geometries of the molecule, the z
axis is perpendicular to the plane of the molecule, with the x
axis aligned along the axis of the smallest moment of inertia.
In Sec. III we introduce another set of quantum numbers
{l, λ̃} and corresponding channel functions, which replace the
spherical harmonic Y λ

l with their real-valued combinations of
Y ±λ

l . The target vibrational wave functions are labeled by the
{νi, ν

′
i} set of quantum numbers.

The vibrational frame transformation of the scattering ma-
trix elements is given by

Sνi
′νi

l ′λ′,lλ = 〈χνi
′ (q)|Sl ′λ′,lλ(q)|χνi (q)〉, (2)

where q collectively represents the normal-mode coordinates
and the index i denotes the vibrational mode. N2O has three
normal modes of vibration, namely, NO stretching, the doubly
degenerate bending mode, and NN stretching, represented
by ν1, ν2, and ν3, respectively. The physical meaning of an
element of the transformed scattering matrix is the scattering
amplitude from one vibrational state, χνi (q), of the target
molecule to another, χν ′

i
(q). The vibrational frame transfor-

mation of Eq. (2) can only be performed if the fixed-nuclei
S-matrix element, Sl ′λ′,lλ, is a smooth function of the incident
electronic energy [36]. This means, in particular, that for this
approach to be applicable, the fixed-nuclei S matrix should not
have low-energy electronic resonances. As discussed above,
the lowest electronic resonance in e−-NO2 collisions occurs
at collision energies of about 2.5 eV.

The cross section σνi
′νi for vibrational (de-)excitation can

be obtained from the corresponding matrix element Sνi
′νi

l ′λ′,lλ by
the expression

σνi
′νi (Eel ) = π h̄2

2meEel

∑
l ′λ′,lλ

∣∣Sνi
′νi

l ′λ′,lλ − δ
νi

′νi
l ′λ′,lλ

∣∣2
, (3)

where me and Eel are, respectively, the reduced mass of the
electron-N2O system and the energy of the incident elec-
tron. Although the fixed-nuclei scattering matrix Sl ′λ′,lλ(q) is
weakly dependent on the energy, the remaining energy depen-
dence introduces an ambiguity in the choice of the matrix
in the integrand of Eq. (2). In the present calculation, we
choose the following procedure: Integrating over the normal
mode q in Eq. (2) for a given energy Eel of the electron in
the incident channel (see the above equation) and at each
integration point q, the scattering matrix Sl ′λ′,lλ(q) is taken
from the R-matrix calculations performed at this particular
fixed-nuclei geometry q and the electron scattering energy Eel.
Because the energy dependence of the fixed-nuclei scattering
matrix is weak below 2.5 eV, the corresponding uncertainty
of the final cross section is much smaller than the uncertainty
related to the choice of the ab initio model (discussed below).

The cross section of Eq. (3) for vibrational excitation does
not account for the rotational structure and can be compared
with experiments or used in applications where the rotational
structure of the initial and final vibrational levels is not im-
portant or not resolved. This is, generally, the case for most
current experiments (including swarm measurements) and
plasma applications at room or higher temperatures: With the
rotational N2O constant of 0.419 01 cm−1 = 5.195×10−5 eV
[37] at 300 K, at least 25 rotational states are significantly
populated.

Computational details

At its equilibrium geometry, N2O has a linear asymmetric
“N-N-O” molecular structure, described by the C∞v symme-
try point group with the group electronic state of the 1	+
symmetry. The equilibrium geometry and the normal-mode
coordinates with corresponding frequencies were computed
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TABLE I. Energies h̄ωi (in eV) of N2O normal modes obtained in the present study and compared with experimental data from Ref. [38].

h̄ωi

Mode (νi) Degeneracies Symmetry Experimental Calculated

NO stretching (ν1) 1 	+ 0.1610 0.1622
Bending (ν2) 2 � 0.0739 0.0761
NN stretching (ν3) 1 	+ 0.2830 0.2849

with the MOLPRO suite [39] using the complete active space
self-consistent field (CASSCF) method and the cc-pVTZ ba-
sis set [40] centered on each atom. N2O has 22 electrons in a
closed-shell electronic ground-state configuration given by

1
	+: 1σ 22σ 23σ 24σ 25σ 26σ 21π47σ 22π4.

In the calculations preserving the C∞v symmetry group,
the 10 electrons which occupy the lowest five σ molecular
orbitals were kept frozen and the remaining 12 electrons
were allowed to distribute themselves according to symme-
try and spin restrictions in the complete active space (CAS)
formed by the remaining 6σ1π7σ2π ground-configuration
orbitals and the next three molecular orbitals, 8σ , 9σ , and
3π , which are empty in the ground configuration. Because
available quantum chemistry codes cannot handle continuous
groups like C∞v , the calculations were performed in the C2v

group for the geometries describing NO and NN stretching
displacements. For geometries breaking the C∞v symmetry
group—the bending-mode displacements—the same 10 elec-
trons were kept frozen in the lowest 5 a′ orbitals and the
remaining 12 electrons were distributed in the 6–12 a′ and
1–3 a′′ orbitals of the corresponding Cs symmetry group.

Upon optimization of the equilibrium geometry, the N-N
and N-O bond lengths were found to be 1.131 and 1.186 Å,
respectively, in good agreement with the experimental val-
ues, 1.128 and 1.184 Å [38]. Table I reports a comparison
between the obtained normal-mode frequencies and the avail-
able experimental data [38]. Our frequencies agree with the
experimental references with a difference of less than 3%.

After characterizing the equilibrium geometry and normal-
mode frequencies with MOLPRO [39], we carried out

calculations of the potential energy of the ground electronic
state of N2O and calculations of continuum states using the
U.K. R-matrix code [41] with the Quantemol-N suite [42].
For consistency with the MOLPRO calculations, we have used
the same basis set and CAS. However, Quantemol-N does
not have CASSCF built into it, and a series of convergence
tests showed that the available complete active space con-
figuration interaction (CAS-CI) model with the Hartree-Fock
orbitals built with MOLPRO gave the best results. Figure 1
displays the ground-state electronic potential energy curves
of N2O for each normal mode obtained with Quantemol-N.
For comparison, we also show the potential energy curves of
harmonic oscillators generated with the frequencies obtained
from MOLPRO. The Quantemol-N potential energy curves
agree reasonably well with the potential energies calculated
in the harmonic approximation. Small discrepancies are at-
tributed to the anharmonicity of the actual N2O potential.
The permanent electric dipole moment of the target molecule
obtained from the R-matrix calculation is 0.1 D, which is con-
sidered to be in satisfactory agreement with the experimental
value, 0.16 D [38].

Using the molecular orbitals obtained from the structure
calculations and the continuum Gaussian-type orbitals with
partial waves up to l � 4, we performed the electronic con-
tinuum molecular states calculations with Quantemol-N. The
radius of the R-matrix sphere was set to be 11 bohr. All the
electronic states of the target below the cutoff energy, 16 eV,
have been included in the close-coupling expansion. From the
scattering calculations we can obtain the eigenphase sums and
the reactance matrix (K matrix) at clumped nuclei.

Figure 2 displays the eigenphase sum of different irre-
ducible representations at equilibrium and at displacements
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FIG. 1. Potential energy curves for the ground electronic state of N2O as a function of the (a) NO stretching, (b) bending, and (c) NN
stretching normal-mode coordinates. The abscissa axes represent dimensionless normal-mode coordinates. In each panel, only one mode is
varied, while the other modes are kept fixed at their equilibrium positions. Solid red curves show the actual potential energies obtained from the
R-matrix code, while dashed black curves represent energies calculated in the harmonic approximation, i.e., simply ∼ h̄ωi

2 q2
i . Dashed horizontal

lines denote the energies of vibrational states.
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FIG. 2. Sum of eigenphases as a function of the electron scat-
tering energy for equilibrium geometry and displacements qi =
±0.8668 (dimensionless) along each normal mode. Due to the sym-
metry of the bending mode, the eigenphase sums of q2 = +0.8668
and q2 = −0.8668 are the same. The curves are color-coded accord-
ing to the different symmetries of the e− + N2O system.

away from the equilibrium along each normal-mode coor-
dinate. We obtained the position and width of calculated
resonances by fitting the eigenphase sum to a Breit-Wigner
form. At equilibrium, the lowest resonance is found at 3.0 eV
and has 2� symmetry. To compare with the available ex-
perimental data (the resonance around 2.3–2.5 eV [21,43]),
the zero-point energy h̄(ω1 + 2ω2 + ω3)/2 = 0.3 eV of the
ground vibrational level should be accounted for. There-
fore, in the present calculation, the energy of the resonance
is 2.7 eV above the ground vibrational level. The dif-
ference from the experimental position of the resonance
is attributed to the large uncertainty associated with the
Born-Oppenheimer approximation used to identify the en-
ergy of the resonance in the theoretical calculation: The
position of the resonance depends strongly on the choice
of the fixed geometry near the N2O equilibrium at which
the scattering calculations were performed. In addition, the
width (about 1 eV) of this shape resonance is larger than
the difference between the experimental and the theoretical
results.

The K matrix obtained from the scattering calculations
was used to compute the clumped-nuclei scattering matrix (S
matrix). Figure 3 displays selected dominant elements (the
absolute value squared) of the S matrix at equilibrium geom-
etry. In the figure (as well as in Fig. 4), the indices λ̃ refer
to real-valued combinations of spherical harmonics Y ±λ

l with
positive and negative projections λ. The real-valued harmon-
ics Ylλ̃ with positive λ̃ transform as cosine-type functions with
respect to the rotational angle φ about the axis z perpendic-
ular to the plane of the molecule, while the harmonics with
negative λ transform as sine-type functions. Except for the
S10,00 element, all other elements behave smoothly with the
electronic energy below the first resonance. The minimum is
observed near 0.4 eV for the 10 ← 00 transition.

FIG. 3. Largest S-matrix elements (absolute values squared,
|Sl ′ λ̃′,lλ̃|2) computed at the N2O equilibrium geometry as a function of
the scattering energy. Top: Couplings between channels with �l = 0
in dashed curves. Bottom: Couplings between channels with �l = 1
in solid curves.

Although the S10,00 element has a strong energy depen-
dence, which breaks the condition of the applicability of
the vibrational frame transformation (the energy dependence
should be smooth), its contribution to the VE cross section in
Eq. (3) is negligible compared to that of the dominant terms
(diagonal over lλ̃), and therefore, it does not compromise the
present theoretical approach. The vibrationally transformed S
matrix is calculated according to Eq. (2), where the integration
over vibrational coordinates is performed numerically using a
Gaussian-Legendre quadrature with 10 points.

FIG. 4. Largest fixed-nuclei S-matrix elements as a function of
the bending coordinate q2, computed for scattering energy 0.26 eV.
The upper (lower) panel shows the real (imaginary) part of the
S-matrix elements. Couplings l ′λ̃′ ← lλ̃ between different partial
waves, represented by real-valued harmonics Yl,λ̃, are labeled by
curves of different colors.
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III. RENNER-TELLER COUPLING IN N2O VIBRATIONAL
EXCITATION BY ELECTRONS

It is instructive to analyze the dependence of major cou-
pling elements of the scattering matrix as a function of the nor-
mal coordinates, especially for the bending mode. For the NO
and NN stretching modes, the main contribution to the VE
cross section is due to variation of the diagonal elements of
the scattering matrix with low l .

In constrast, for the bending mode, the major contribution
is due to the q2 dependence of nondiagonal elements between
the 2	+ and the 2� states of the e− + N2O system near the
linear geometry. This is the Renner-Teller coupling, whose
effect on electron-molecule collisions has been discussed in
several previous studies [33,44–48]. For a linear triatomic
(and larger) molecule with a ground electronic state of 1	
symmetry, the Renner-Teller effect couples σ and π partial
waves of the incident electron with vibrational bending mo-
tion of the target molecule.

Due to the symmetry of the bending mode, all matrix
elements Sl ′λ̃′,lλ̃ are symmetric or antisymmetric with respect
to the change in the sign q2 → −q2 of the displacement along
the bending mode. The elements which are symmetric, such as
diagonal and some nondiagonal elements, do not contribute
to the vibrational excitation by one quantum of the bending
mode. For an element Sl ′λ̃′,lλ̃ to be antisymmetric with re-
spect to the q2 → −q2 operation, one of λ̃′ and λ̃ should be
negative, with the other positive or 0. In addition, there is a
selection rule regarding the elements that do not vanish: For
displacements along q2, both spherical harmonics in Sl ′λ̃′,lλ̃
should be of a′ or a′′ irreducible representations of the Cs

symmetry group (of the bent molecule). Figure 4 shows the
largest (in magnitude) antisymmetric S-matrix elements as a
function of the bending coordinate.

In Fig. 4, we see that most of the elements are linear with
the q2 coordinate, with the notable exception of S1−1,00, which
has a strong cubic dependence q3

2. We attribute the significant
cubic contribution to the coupling to the fact that the sσ partial
wave penetrates closer to the N2O core electrons such that the
linear approximation for the coupling between the Y0,0 and the
Y1,−1 harmonics is no longer valid and higher terms are needed
if a Taylor expansion is used to represent the coupling.

The linear dependence of the coupling between partial
wave components in a linear molecule for small displacements
along the bending coordinate is one of the main characteris-
tics of the Renner-Teller effect. The effect cannot be easily
observed in e−-N2O scattering experiments, but it manifests
itself in the bound states of the e−-N2O system: Due to the
degeneracy of the 2� electronic state of the e−-N2O complex
and the degenerate bending mode of N2O, the relatively strong
Renner-Teller coupling results in a bending configuration of
the equilibrium geometry of the N2O− anion [49,50].

IV. CROSS SECTIONS AND RATE COEFFICIENTS

We calculated the vibrational (de-)excitation cross sections
for transitions between the ground and the first excited vibra-
tional states for each of the normal modes. Figure 5 displays
a comparison of the theoretical 1 ← 0 VE cross sections
with the available experimental data [21,22,30], mentioned in
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FIG. 5. Comparison of the present theoretical results with the
available experimental cross sections for the vibrational v = 0 →
v′ = 1 excitation of the (a) NO stretching, (b) bending, and (c) NN
stretching modes. The experimental results are taken from Hayashi
[30,31] (solid line with circles), Allan and Skalický [21] (solid line
with triangles), and Nakamura [22] (dashed-dotted line).

Sec. I. None of the three experimental data resolve the ν1 =
1/ν2 = 2 and ν3 = 1/ν1 = 2 thresholds, i.e., the experimental
cross section for the excitation of the NO mode (ν1 = 0 → 1)
includes also a contribution for the transition ν2 = 0 → 2, and
the cross section for the excitation of the NN mode includes
a contribution for the ν1 = 0 → 2 transition. But these addi-
tional contributions are expected to be significantly smaller
due to the vibrational propensity rule: The transitions with a
change of only one vibrational quantum are the largest. There
is a significant disagreement between the experimental data,
up to a factor of 20–50 for certain energies. On the other hand,
the theoretical results also do not agree better with one or
another experiment: For the NO stretching mode [Fig. 5(a)],
the theory agrees better with the experiment by Hayashi [30].
For the bending mode [Fig. 5(b)], the theory agrees better
with the other two experiments, although the agreement is
quite poor. Note that the integral cross sections presented by
Allan and Skalický [21] were obtained from the measured
differential cross sections. Finally, for the NN stretching mode
[Fig. 5(c)], the theory again agrees better with the data of
Hayashi [30].
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de-excitation transitions between the ground and the first excited
vibrational states of the NO stretching mode (black curves), bending
mode (blue curves), and NN stretching mode (red curves). Vibra-
tional (de-)excitations are labeled νi

′ ← νi. To provide an idea of
the uncertainty of the present results, we also plotted the results of
calculations with model 2 (dotted lines) and model 3 (thin lines). The
three calculations produce curves that are almost indistinguishable.

In a recent review article [31], the swarm data of Naka-
mura [22], shown by the dashed-dotted lines in Fig. 5, were
recommended as the most accurate among the available exper-
imental cross sections. However, it should be stressed that the
recommended swarm data may not be very accurate because
of an ambiguity in their interpretation [22] (see the discussion
in Secs. 3.3 and 3.5 in Ref. [31]). Therefore, the recommended
experimental data should have a relatively large uncertainty
and could be improved in a more accurate future experiment.

The present theoretical cross sections are expected to be
valid only for energies below the energy of the 2� resonance
mentioned above, i.e., below 2.3 eV. They are included in the
Supplemental Material to this paper [51].

Thermally averaged rate coefficients ανi
′νi (T ) for vibra-

tional excitation are obtained from the cross sections of Eq. (3)
using the standard formula

ανi
′νi (T ) = 8π

(2πkBT )
3
2

∫ ∞

0
σνi

′νi (Eel )e
− Eel

kBT EeldEel, (4)

where kB is the Boltzmann constant and T is the temperature.
The computed rate coefficients are shown in Fig. 6 in different
colors.

For convenient use in plasma models, the computed coeffi-
cients were also fitted using the analytical formula employed
in our previous studies [36,52,53],

αfit
νi

′νi
(T ) = 1√

T
e−

�
νi

′νi
T Pfit

νi
′νi

(x) , (5)

where Pfit
νi

′νi
(x) is a quadratic polynomial,

Pfit
νi

′νi
(x) = a0 + a1x + a2x2 and x = ln(T ), (6)

TABLE II. Parameters a0, a1, and a2 of the polynomial Pfit
νi

′νi
(x)

in Eqs. (5) and (6) for transitions between the ground and the first
vibrational states in each normal mode. We specify the excitation
threshold energies �νi

′νi of Eq. (7) in the second column. The thresh-
old �νi

′νi = 0 for the de-excitation process.

1 ↔ 0 �νi
′νi (K) a0 a1 a2

NO stretch 1888 1.22×10−7 6.60×10−11 −3.14×10−11

Bending 885 1.37×10−8 −2.50×10−11 4.40×10−12

NN stretch 3316 4.34×10−7 7.42×10−10 −5.20×10−10

where Pfit
νi

′νi
(x) ≈ Pfit

νi
′νi

(x) can be viewed as the excitation and
de-excitation probabilities, with �v′i′,vi being the threshold
energy, defined as

�νi
′νi =

{
Eνi

′ − Eνi > 0 for excitation,
0 for de-excitation. (7)

The numerically fitted parameters for vibrational excitation
are listed in Table II. When the parameters listed in the table
are used in the fitting formulas of Eqs. (5) and (6) with the
temperature in kelvins, the obtained numerical values of the
rate coefficients will be in units of cm3/s.

V. UNCERTAINTY ESTIMATIONS

We have performed a number of calculations to assess
the uncertainty of the obtained theoretical results. There are
two main sources of uncertainty in the present theoretical
approach. The first is the accuracy of the fixed-nuclei S-matrix
elements computed for the polar molecule (with a small dipole
moment) in the limited basis of spherical harmonics. It has
been discussed by Liu [32]. The uncertainty associated with
this approximation was estimated to be of the order of 6%
for NO2 [32]. It should not be larger for N2O because it
has a smaller dipole moment so that the couplings between
partial waves induced by the permanent dipole moment of
this molecule have a weaker effect on the final cross sections.
Therefore, it is reasonable to assume that the corresponding
uncertainty in the present case is below 6%.

The second source of uncertainty derives from the partic-
ular scattering model used in the calculation. The uncertainty
can be assessed by performing a complete calculation with
different parameters of the model. With the parameters dis-
cussed in Sec. II, referred to as model 1, we obtained the
results shown above. In the second calculation, with model 2,
the CAS in the configuration calculation was the same as in
model 1 but a larger basis set, cc-pVQZ, was used. Finally, in
the model 3 calculation the electronic basis set remained cc-
pVTZ, but the CAS was reduced compared to that in model 1:
12 electrons were placed in frozen orbitals and the remaining
10 electrons in the lowest orbitals were allowed to be freely
distributed in the active space. The rate coefficients obtained
in the three models are shown in Fig. 6. The difference in the
rate coefficients produced in the three models is about 6%.
Consequently, the overall uncertainty of the present theoreti-
cal result is estimated to be below 12%.
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VI. CONCLUSIONS

In this study, we computed cross sections for vibrational
(de-)excitations of N2O by a low-energy electron using (a) the
normal-mode approximation to describe the vibrational states
of the target molecule, (b) the R-matrix method to evaluate
the fixed-nuclei electron-N2O scattering matrices, and (c) the
vibrational frame transformation to evaluate the amplitudes
for vibrational transitions. In this approach, we neglected the
rotational structure of each vibrational level, which corre-
sponds to the situation where the rotational structure is not
resolved in the initial and final states of the target molecule.

The computed results show a reasonable agreement with
experimental data for the NO and NN stretching modes. For
the bending mode the agreement is rather poor at energies
above 0.4 eV. It was found that Renner-Teller coupling is
responsible for the excitation of the bending mode, as was
expected from general theoretical considerations. We are quite
confident about the present theoretical cross sections for the
bending mode because the numerical calculations of the fixed-

nuclei scattering matrix fit well to the theory of Renner-Teller
coupling. It should be stressed here that the most reliable ex-
perimental cross section for the bending mode by Nakamura
[22,31] was obtained from swarm data and a direct measure-
ment of the differential cross section at a single scattering
angle by Allan and Skalický [21] and, therefore, may have
a large uncertainty. This suggests that a better direct mea-
surement of vibrational excitation in N2O, at least for a few
energies, is needed.
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