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Comparative metathermodynamic description of thermal and correlation electron effects
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Unified metathermodynamic description of thermal and correlation electron effects is proposed. It is based on
the temperature-dependent populations of the common for all temperatures basis states of the (formally accurate)
configuration interaction (CI) expansion of the components of the canonical ensemble. These populations are
incorporated into the effective ensemble of the metathermodynamic approach through the partial effective tem-
peratures. The extended temperature Te is introduced as the statistical average of those temperatures. The absolute
zero of the Te scale represents a “no-correlation” Hartree-Fock state, while elevated Te describes the increase of
the “correlation motion” and the conventional thermal motion. The diagonal double configuration interaction
(DDCI) approximation is considered, in which the proposed metathermodynamic description of thermal and
correlation electron effects is based on the temperature-dependent orbital populations.
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I. INTRODUCTION

Despite their distinctive differences, thermal and elec-
tron correlation microscopic phenomena exhibit also common
features, which suggest their comparison. From a formal qual-
itative point of view, both phenomena are caused by certain
type of “motion”. Behind thermal effects is a physical mo-
tion of particle constituents (molecules, atoms, and subatomic
particles) of a system represented with the thermodynamic
temperature T . In its turn, the Coulomb electron correlation
can be depicted with the effective concerted “motion” of
electrons in the configurational space to avoid each other
and to reduce their mutual repulsion. The latter “motion” is
represented with the correlation energy Ec.

The important unifying feature of thermal and electron
correlation phenomena is that both are described in statistical
quantum mechanics and in many-electron theory, respec-
tively, with population of excited states in addition to the
ground state. In the former theory these are the temperature-
independent excited eigenstates �P>0(0) of the N th order
density matrix (NDM) �N (T ) [1,2]

�N (T ) =
∑

P

wP(T )|�P(0)〉〈�P(0)|, (1)

populated with the temperature-dependent weights wP(T ).
We consider a canonical ensemble, which is characterized
with the free energy F (T )

F (T ) =
∑

P

wP(T )EP(0) +
∑

P

T wp(T )ln(wp(T )), (2)

where the first sum is the energy term, while the second term
is the entropy term.

In Eqs. (1) and (2) the ensemble weights wP(T ) are deter-
mined with the Boltzmann formula

wP(T ) = exp(−EP(0)/T )

Z (T )
, (3)

where Z (T ) is the partition function

Z (T ) =
∑

P

exp(−EP(0)

T
). (4)

In Eqs. (3) and (4) EP(0) is the state energy

EP(0) = 〈�P(0)|ĤN |�P(0)〉, (5)

with ĤN being the N-electron Hamiltonian.
On the other hand, at T = 0 the correlation effect in the

ground and excited states �P(0) is described with population
within the configuration interaction (CI) of the single �a

i ,
double �ab

i j , and higher excitations of the reference deter-
minant �0 [3]

�P(0) = c0,P�0 +
N∑

i=1

∑
a>N

ca
i,P�a

i +
N∑

i, j=1

∑
a,b>N

cab
i j,P�ab

i j + · · ·

(6)

Here, the indices i, j run over the occupied orbitals, while a, b
run over the virtual orbitals of �0.

In this paper, a comparative metathermodynamic descrip-
tion of thermal and correlation electron effects is proposed
based on the total temperature-dependent populations w

{a}
{i} (T )

w
{a}
{i} (T ) =

∑
P

wP(T )|c{a}
{i},P|2 (7)

of the excitations �
{a}
{i} in the CI expansions (6) of the states

�P(0) in the canonical ensemble (1). Based on this descrip-
tion, the extended temperature scale is introduced, in which
both thermal and correlation electron effects are uniformly
represented with the extended temperature Te (see Secs. II
and III).

The introduced comparative description is illustrated with
a simple approximation to Eq. (1), in which the en-
semble states �DD

P are obtained with the diagonal-double
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CI (DDCI). Within the DDCI, only the DD excitations �aa
ii

of the reference �0 are included in the CI expansion (6).
In this approximation, a comparative description of thermal
and correlation electron effects is based on the temperature-
dependent occupations ni

a(T ) of the virtual orbitals φa

ni
a(T ) =

∑
P

wP(T )ni,P
a (8)

stemming from the DD excitations from the occupied orbital
φi (See Sec. IV).

II. METATHERMODYNAMIC DESCRIPTION OF
THERMAL AND CORRELATION ELECTRON EFFECTS AT

ELEVATED TEMPERATURES T > 0

As was already mentioned in the Introduction, the devel-
opment in this paper is based on the CI expansion of the states
�P(0) in the canonical ensemble NDM (1)

�P(0) = c0,P�0 +
∑
{i},{a}

c{a}
{i},P�

{a}
{i} , (9)

where �0 is the Hartree-Fock (HF) reference determinant and
�

{a}
{i} are its excitations. The string {i} contains the indices of

the occupied HF orbitals φi, from which the excited electrons
are taken, while the string {a} collects the indices of the
virtual HF orbitals φa, to which the electrons are transferred.
Note that, in principle, the expansion (9) gives an accurate
representation of the states �P(0) in the full CI (FCI) limit, in
which all possible excitations �

{a}
{i} in a sufficiently large basis

are included.
To provide a unified metathermodynamic description of

thermal and correlation electron effects at the elevated
temperature T > 0, we introduce the following effective
NDM �̃N (Te(T )):

�̃N (Te(T )) = w0(Te(T ))|�0〉〈�0|
+

∑
{i},{a}

w
{a}
{i} (Te(T ))

∣∣�{a}
{i}

〉〈
�

{a}
{i}

∣∣. (10)

In order to connect it to the true ensemble (1), the weights
w0(Te(T )) and w

{a}
{i} (Te(T )) of the HF reference �0 and its

excitations �
{a}
{i} are set with Eq. (7) as their total populations

in the CI expansion (9) of the states �P(0) in the real canonical
ensemble (1). To this end, we introduce the effective partial
temperatures T0(T ) and T {a}

{i} (T ) which are fitted, in order that
the corresponding Boltzmann formulas would reproduce the
total CI populations

w0(Te(T )) =
∑

P

wP(T )|c0,P|2 = exp(−E0/T0(T ))

Z̃ (Te(T ))
(11)

and

w
{a}
{i} (Te(T )) =

∑
P

wP(T )|c{a}
{i},P|2 = exp

(−E {a}
{i}

/
T {a}

{i} (T )
)

Z̃ (Te(T ))
.

(12)

In Eqs. (11) and (12), E0 and E {a}
{i} are the energies of the

determinants �0 and �
{a}
{i}

E0 = 〈�0|ĤN |�0〉 (13)

and

E {a}
{i} = 〈

�
{a}
{i}

∣∣ĤN
∣∣�{a}

{i}
〉
, (14)

while Z̃ (Te(T )) is the effective partition function

Z̃ (Te(T )) = exp

(
− E0

T0(T )

)
+

∑
{i},{a}

exp

(
− E {a}

{i}
T {a}

{i} (T )

)
. (15)

With Eqs. (10)–(15), the free energy F̃ (Te(T )) of the intro-
duced effective ensemble reads

F̃ (Te(T )) = w0(Te(T ))E0 +
∑
{i},{a}

w
{a}
{i} (Te(T ))E {a}

{i}

+ T0(T )w0(Te(T ))ln(w0(Te(T )))

+
∑
{i},{a}

T {a}
{i} (T )w{a}

{i} (Te(T ))ln(w{a}
{i} (Te(T ))). (16)

As follows from Eqs. (7), (10), and (12), at elevated tem-
peratures T > 0 both thermal and correlation electron effects
contribute to the population of the determinants �

{a}
{i} . Specifi-

cally, the former effect determines the temperature-dependent
factors wP(T ) in the right-hand side of Eq. (7), while the
latter effect determines the temperature-independent factors
|c{a}

{i},P|2. To describe this combined effect in a metathermody-
namic fashion, we introduce an extended temperature Te(T )
as the statistical average over the effective temperatures T0(T )
and T {a}

{i} in Eqs. (11) and (12)

Te(T ) = w0(Te(T ))T0(T ) + ∑w
{a}
{i} >wt

{i},{a} w
{a}
{i} (Te(T ))T {a}

{i} (T )

w0(Te(T )) + ∑w
{a}
{i} >wt

{i},{a} w
{a}
{i} (Te(T ))

,

(17)

where wt is a chosen threshold. Apparently, the extended tem-
perature corresponding to the zero conventional temperature
T = 0 is not zero Te(0) > 0, since at this temperature the
excited determinant populations are provided with electron
correlation. The case T = 0 will be considered in the next
section.

III. METATHERMODYNAMIC DESCRIPTION OF
ELECTRON CORRELATION AT T = 0

At T = 0 the metathermodynamic approach of the pre-
vious section describes the “residual motion” of electrons.
Furthermore, the fictitious thermodynamic “freezing” of this
motion is considered with further reducing of the extended
temperature Te below Te(0). To this end, we introduce the
“correlation freezing” parameter τ and we consider the fol-
lowing extension of the effective NDM (10):

�̃(Te(τ )) = w0(Te(τ ))|�0〉〈�0|
+

∑
{i},{a}

w
{a}
{i} (Te(τ ))

∣∣�{a}
{i}

〉〈
�

{a}
{i}

∣∣. (18)

Its weights represent a gradual “freezing” of electron correla-
tion with the parameter τ decreasing from 1 to 0 as follows:

w0(Te(τ )) = exp

(
− E0

τT0(0)

)/
Z̃ (Te(τ )), (19)
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and

w
{a}
{i} (Te(τ )) = exp

(
− E {a}

{i}
τT {a}

{i} (0)

)/
Z̃ (Te(τ )), (20)

where Z̃ (Te(τ )) is the corresponding effective partition
function

Z̃ (Te(τ )) = exp

(
− E0

τT0(0)

)
+

∑
{i},{a}

exp

(
− E {a}

{i}
τT {a}

{i} (0)

)
.

(21)
The functions of the correlation freezing parameter τ are
assembled into the effective free energy F̃ (Te(τ ))

F̃ (Te(τ )) = w0(Te(τ ))E0 +
∑
{i},{a}

w
{a}
{i} (Te(τ ))E {a}

{i}

+ τT0(0)w0(Te(τ ))ln(w0(Te(τ )))

+ τ
∑
{i},{a}

T {a}
{i} (0)w{a}

{i} (Te(τ ))ln
(
w

{a}
{i} (Te(τ ))

)
. (22)

Finally, the extended temperature Te(τ ) representing the
“residual correlation motion” at a particular τ is introduced
as the statistical average of the effective temperatures of the
previous section taken at T = 0 and multiplied by τ

Te(τ ) = τ
w0(Te(τ ))T0(0) + ∑w

{a}
{i} >wt

{i},{a} w
{a}
{i} (Te(τ ))T {a}

{i} (0)

w0(Te(τ )) + ∑w
{a}
{i} >wt

{i},{a} w
{a}
{i} (Te(τ ))

.

(23)

With this construction, at τ = 1 the metathermodynamic
description of this section turns to that of the previous section
at T = 0. This point represents the full freezing of the thermal
motion and no freezing of the “correlation motion”. Indeed,
only the ground state �0(0) of the true ensemble (1) survives
at T = 0, so that the population of the excited determinants is
caused exclusively by the electron correlation in �0(0)

w0(Te(T = 0)) ≡ w0(Te(τ = 1)) = |c0,0|2

= exp

(
− E0

T0(0)

)/
Z̃ (Te(T = 0)) (24)

and

w
{a}
{i} (Te(T = 0)) ≡ w

{a}
{i} (Te(τ = 1)) = |c{a}

{i},0|2

= exp

(
− E {a}

{i}
T {a}

{i} (0)

)/
Z̃ (Te(T = 0)). (25)

At another ending point τ = 0 only the reference HF determi-
nant �0 survives in the effective ensemble (18) the ultimate
freezing of the electron “correlation motion”. Because of this,
τ = 0 can be called the “no-corrrelation” point.

The present metathermodynamic description of thermal
and correlation electron effects is culminated in the extended
temperature scale Te

Te =
{

Te(T ), T > 0

Te(τ ), T = 0
. (26)

It encompasses both combined thermal and correlation effect
at elevated temperatures T > 0 and the electron correlation

effect at T = 0. The important physical characteristic of uni-
formity of the extended scale is provided with the introduced
metathermodynamic description, according to which in both
segments of Eq. (26) Te represents the population of the same
set of the determinants �

{a}
{i} .

From the conceptual point of view it is interesting to
note that in the extended scale (26) the point T = 0 would
correspond to the different system-dependent extended tem-
peratures

Te(T = 0) > 0. (27)

So, in this scale T = 0 looses its character of the abso-
lute zero temperature. Instead, the new absolute zero of the
extended scale

Te(τ = 0) = 0 (28)

represents a fundamental characteristic of a many-electron
system, namely, the “no-correlation” point.

IV. APPROXIMATE METATHERMODYNAMIC
DESCRIPTION OF THERMAL AND CORRELATION
EFFECTS BASED ON THE ORBITAL POPULATIONS

In this section a general metathermodynamic description
of thermal and electron correlation effects of the previous sec-
tions is illustrated in the case of a simple approximate DDCI
expansion of the states �P(0) of the closed-shell canonical
ensemble (1)

�P(0) ≈ �DD
P (0) = c0,P�0 +

∑
i,a

caa
ii,P�aa

ii . (29)

In this approximation, the partial occupation ni,P
a of the virtual

HF orbital φa in the state �p(0) is just the (multiplied by N)
square of the modulus of the corresponding coefficient in the
expansion (29)

ni,P
a = N

∣∣caa
ii,P

∣∣2
, (30)

so its temperature-dependent occupation ni
a(T ) stemming

from the DD excitations from the orbital φi is given with
Eq. (8).

These orbital occupations feature in the approximate
metathermodynamic description of thermal and correlation
electron effects at elevated temperatures T > 0, in which the
effective NDM (10) turns to

�̃N (Te(T )) = (1 −
∑
{i},{a}

ni
a(T )

N
)|�0〉〈�0|

+
∑
{i},{a}

ni
a(T )

N

∣∣�a
ii

〉〈
�aa

ii

∣∣. (31)

They determine the corresponding effective temperatures
T0(T ) and T a

i (T ) through the Boltzmann formula

1 −
∑
i,a

na
i (T )

N
= exp

(
− E0

T0(T )

)/
Z̃ (Te(T )) (32)
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and

ni
a(T )

N
= exp

(
− Eaa

ii

T a
i (T )

)/
Z̃ (Te(T )), (33)

where Z̃ (Te(T )) is the effective partition function

Z̃ (Te(T )) = exp

(
− E0

T0(T )

)
+

∑
i,a

exp

(
− Eaa

ii

T a
i (T )

)
. (34)

In their turn, the effective temperatures determine the effective
free energy F̃ (Te(T ))

F̃ (Te(T )) =
(

1 −
∑
i,a

ni
a(T )

N

)
E0 +

∑
i,a

na
i (T )

N
Eaa

ii

+ T0(T )

(
1 −

∑
i,a

ni
a(T )

N

)
ln

(
1 −

∑
i,a

ni
a(T )

N

)

+
∑
i,a

T a
i (T )

ni
a(T )

N
ln

(
ni

a(T )

N

)
(35)

and the extended temperature Te

Te(T ) =
(
1 − ∑

i,a
ni

a (T )
N

)
T0(T ) + ∑ni

a (T )�nt

i,a
ni

a (T )
N T a

i (T )

1 − ∑
i,a

ni
a (T )
N + ∑ni

a (T )�nt

i,a
ni

a (T )
N

(36)

through the partial orbital occupations ni
a(T ).

The extension of Te below Te(0) is carried out with the
effective NDM

�̃N (Te(τ )) = w0(Te(τ ))|�0〉〈�(0)|
+

∑
i,a

wa
i (Te(τ ))

∣∣�aa
ii

〉〈
�aa

ii

∣∣, (37)

where the weights w0(Te(τ )) and wa
i (Te(τ )) incorporate the

“correlation freezing” parameter τ

w0(Te(τ )) = exp

(
− E0

τT0(0)

)/
Z̃ (Te(τ )) (38)

and

wa
i (Te(τ )) = exp

(
− Eaa

ii

τT a
i (0)

)/
Z̃ (Te(τ )), (39)

where

Z̃ (Te(τ )) = exp

(
− E0

τT0(0)

)
+

∑
i,a

exp

(
− Eaa

ii

τT a
i (0)

)
. (40)

The introduced τ -dependent metathermodynamic quantities
are assembled into the effective free energy

F̃ (Te(τ )) = w0(Te(τ ))E0 +
∑
i,a

wa
i (Te(τ ))Eaa

ii

+τT0(0)w0(Te(τ ))ln(w0(Te(τ )))

+ τ
∑
i,a

T a
i (0)wa

i (Te(τ ))ln
(
wa

i (Te(τ ))
)
. (41)

At the “full-correlation” point τ = 1 the weights
wa

i (Te(τ = 1)) are equal to the corresponding partial orbital
occupations at T = 0 divided by N

wa
i (Te(τ = 1)) = ni

a(0)

N
, (42)

At the “no-correlation” point τ = 0 the effective ensemble
(37) reduces to the HF determinant �0. The corresponding
extended temperature in the interval 0 � τ � 1 reads

Te(τ ) = τ
w0(Te(τ ))T0(0) + ∑wa

i >wt

i,a wa
i (Te(τ ))T a

i (0)

w0(Te(τ )) + ∑wa
i >wt

i,a wa
i (Te(τ ))

. (43)

With Eqs. (36) and (43), the extended temperature scale (26)
uniformly describes the “switching-on” of electron correlation
with Te(0 � τ � 1) as well as the combined thermal and
correlation effect at elevated temperatures Te(T > 0).

V. CONCLUSIONS

In this paper a comparative description of thermal
and correlation electron effects is proposed based on the
temperature-dependent populations of the common set of the
basis N-electron states, the HF reference determinant, and
its excitations. These states feature in the (formally accurate)
CI expansion of the states of the canonical ensemble.

Within the present metathermodynamic description, the
effective ensemble of the basis states is introduced. Its charac-
teristic feature is the partial effective temperatures providing
a connection to the real ensemble. They allow us to uniformly
describe the combined thermal and correlation electron effect
at elevated temperatures as well as the electron correlation at
T = 0.

The extended temperature Te is proposed as the statistical
average of the partial effective temperatures. In the Te scale,
“no-thermal-motion” point T = 0 of the conventional temper-
ature scale is replaced with the “no-correlation” point Te = 0
as the absolute zero. Then, the increase of Te from Te = 0 to
Te(T = 0) represents the metathermodynamic increase of the
“electron correlation motion” between the no-correlation and
full-correlation points. Further increase of Te represents the
combined effect of the correlation and conventional thermal
motion.

The proposed metathermodynamic approach is illus-
trated with the DDCI approximation. In this case, the
above-mentioned comparative description is based on the
temperature-dependent orbital occupations. This approxima-
tion can serve as the basis of further approximate schemes
with a metathermodynamic description of electron correlation
at both zero and elevate temperatures. Such a development
would parallel the analogous development within density ma-
trix functional theory (DMFT)[4–23], reported in our recent
work [24] as well as in the finite-temperature extension of
DMFT [25,26].
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